METHODES NOUVELLES D'ACCES ELECTROCHIMIQUE ET DE CALCULE NUMERIQUE RELATIVES AUX CONSTANTES DE STABILITE DES POLYCOMPLEXES

CONSTANTIN LUCA

Université de Bucarest, Faculté de Chimie, Spl. Independentei 89, Bucarest, Roumanie

et

GUY BERTHON

Université de Poitiers, Faculté des Sciences, 40. avenue du Recteur Pineau, Poitiers, France

ABSTRACT

The method of Bjerrum for calculating the stability constants of complexes formed by metal ions is modified to permit more rapid convergence during the calculation of a series of successive approximations. The incomplete curves for the formation of polycomplexes can be extrapolated by using the Bjerrum numerical method.

A computer least-squares method is described for the stability constants of metal-ion complexes. The method takes into consideration the experimental uncertainties in free ligand concentration and average number of ligands bound to each metal ion. Results are compared with those obtained with other programmes.

La connaissance des constantes d'équilibre de complexation est importante du point de vue analytique dans la mesure où elles peuvent permettre de calculer les concentrations d'une seule espèce dans des conditions expérimentales données, de connaître la composition d'une solution pour en interpréter plus correctement les propriétés analytiques, et peut ainsi être d'une grande utilité dans les procédés de séparation par précipitation, extraction, échange d'ions, etc.

La mise en présence d'un ion métallique B et d'un coordinat A conduit à la formation de complexes succesifs suivant les réactions :

$$B + A \rightleftharpoons BA$$

$$BA + A \rightleftharpoons BA_{2}$$

$$BA_{N-1} + A \rightleftharpoons BA_{N}$$
(1)

Les meilleures conditions pour l'étude quantitative des ces équilibres se trouvent généralement réunies lorsqu'on opère dans un milieu de référence contenant un électrolyte support, chimiquement indifférent, à une concentration uniforme suffisamment grande par rapport à celles des espèces en présence, pour que l'on puisse, pour ces dernières, confondre activités et concentrations¹.

Dans de telles conditions, la concentration d'une espèce BA_n peut être rapportée, par l'intermédiaire de la loi d'action de masse, à celle de l'espèce d'ordre inférieur BA_{n-1} suivant

$$[BA_n] = K_n(BA_{n-1}][A]$$
⁽²⁾

ou à celle de ces constituants initiaux B et A d'après

$$[\mathbf{B}\mathbf{A}_n] = \beta_n[\mathbf{B}][\mathbf{A}]^n \tag{3}$$

La grandeur K_n peut être dénommée² constante stoechiométrique 'étagée' de stabilité du complexe BA_n tandis que β_n représente la constante stoechiométrique 'globale' de stabilité de ce même composé, que l'on peut exprimer en fonction de K_n par la relation

$$\beta_n = \pi_n K_n \tag{4}$$

Le calcule de ces constantes (soit 'étagées' soit 'globales') est lié à la connaissance d'un certain nombre de grandeurs physiques déterminées expérimentalement et qui expriment les premières en fonction de [A]. Ces calcules nécessitent alors la détermination de certaines variables de concentrations et de grandeurs physiques qui leurs sont liées.

Sans entrer ici dans le détail des possibilités expérimentales conduisant à leur détermination, nous définirons successivement d'après Bjerrum³ deux grandeurs essentielles accessibles par voie électrochimique :

Le degré de formation du système

$$\bar{n} = \{C_{\mathbf{A}} - [\mathbf{A}]\} / C_{\mathbf{B}} = \sum_{0}^{N} n \beta_{n} [\mathbf{A}]^{n} / \sum_{0}^{N} \beta_{n} [\mathbf{A}]^{n}$$
(5)

Le degré de formation du complexe BA_n

$$\alpha_n = [BA_n]/C_B = \beta_n [A]^n / \sum_{0}^{N} \beta_n [A]^n$$
(6)

et sa fonction derivée :

$$\psi = \sum_{0}^{N} \beta_n [\mathbf{A}]^n = 1/\alpha_0 \tag{7}$$

à laquelle il est possible d'accéder, d'après Fronaeus, par :

$$\psi = \exp \int_{0}^{|\mathbf{A}|} \frac{\tilde{n}}{[\mathbf{A}]} d [\mathbf{A}]$$
(8)

Les concentrations totales du groupe central et du coordinat sont respectivement exprimées par :

$$C_{\rm B} = \sum_{0}^{N} [{\rm BA}_{n}] = \sum_{0}^{N} [{\rm B}] \beta_{n} [{\rm A}]^{n}$$
(9)

et

$$C_{\mathbf{A}} = [\mathbf{A}] + \sum_{1}^{N} n[\mathbf{B}\mathbf{A}_{n}] = [\mathbf{A}] + \sum_{1}^{N} n\beta_{n}[\mathbf{A}]^{n}$$
(10)

Bien qu'elles puissent, dans le cas de systèmes à deux phases, être déterminées expérimentalement par un certain nombre de méthodes⁴, les grandeurs C_A et C_B seront toujours connues en tant que compositions analytiques des solutions initiales au cours de ce travail, puisque seule y sera envisagée l'étude de systèmes homogènes.

Les valeurs des concentrations d'équilibre de A et de B sont couramment obtenues par l'intermédiaire de mesures potentiométriques ou polarographiques, soit par voie directe, soit par des méthodes faisant intervenir des réactions compétitives^{5, 6}.

Lorsque les valeurs de [A] et [B] sont ainsi déterminées, il est possible de calculer les constantes de stabilité des polycomplexes formés en utilisant les relations 9 et 10 à la condition de connaître au préalable une des concentrations totales C_A ou C_B , mais il est plus fréquent que l'on connaisse seulement l'une des variables [A] et [B] en fonction de C_A et C_B et que l'on doive alors faire appel aux variables secondaires de concentration \bar{n} , ψ et α_n pour accéder quantitativement aux constantes cherchées.

Il est claire que dans le cas de complexes mononucléaires tels que ceux considérés ici, \bar{n} , ψ et α_n sont seulement fonction de [A] et que, dans ces conditions, la connaissance simultanée de N couples de valeurs \bar{n} , [A]; ψ , [A] ou α_n , [A] suffit, *a priori*, pour calculer les N constantes β_n d'un système donné.

I. METHODES ELECTROCHIMIQUES D'ACCES AUX VARIABLES DE CONCENTRATION

I-1. La méthode potentiométrique

La potentiométrie est, en fait, l'une des méthodes électrochimiques les plus utilisées, puisque tout en étant de beaucoup la plus précise, elle est largement applicable à l'étude des équilibres ioniques en solution.

Pour une réaction du type

$$x\mathbf{X} + y\mathbf{Y} + \dots + z\mathbf{e} \rightleftharpoons p\mathbf{P} + q\mathbf{Q} + \dots \tag{11}$$

le potentiel pris par une électrode mise en contact avec un mélange d'espéces P, Q, X, Y à l'équilibre, est donné par l'équation de Nernst.

$$\varepsilon = {}^{T}\varepsilon_{0} + \frac{RT}{zF} \ln \frac{\{X\}^{x}\{Y\}^{y} \dots}{\{P\}^{p}\{Q\}^{q} \dots}$$
(12)

où le potentiel standard d'électrode ${}^{T}\varepsilon_{0}$ corresponde à l'état d'activité unité pour toutes les substances envisagées. Dans notre cas considéré précédement, la relation 12 s'écrit :

$$\varepsilon = \varepsilon_0 + \frac{RT}{zF} \ln \frac{[\mathbf{X}]^x [\mathbf{Y}]^y \dots}{[\mathbf{P}]^p [\mathbf{Q}]^q \dots}$$
(13)

le potentiel dit formal ε_0 étant défini par :

$$\varepsilon_0 = {}^T \varepsilon_0 + \frac{RT}{zF} \ln \frac{\gamma_X^x \gamma_Y^y \dots}{\gamma_P^P \gamma_Q^q \dots}$$
(14)

L'électrode peut être inerte, comme dans le cas de système redox, ou elle même constituée par l'une des espèces participant à la reaction 11. Dans ce dernier cas, elle est considérée comme étant de première, de deuxième ou de troisième espèce. Les électrodes habituellement employées pour l'étude des équilibres ioniques sont réversibles par rapport aux ions métalliques, aux protons ou aux anions; dans le cas d'une technique de titrage. le potentiel de celles-ci doit atteindre dans un temps raisonnable celui qui leur est assigné par la relation 13.

Généralement, si une telle électrode fait partie d'une cellule électrochimique, la f.e.m. se conforme à une expression telle que :

$$\varepsilon = \varepsilon_0 + \varepsilon_i - (RT/zF) \ln C \tag{15}$$

où ε_0 est une constante propre à la cellule particulière considérée, ε_j le potentiel de jonction s'il y en a et C une fonction des concentrations.

En fait. la quantité

 $\varepsilon' = \varepsilon - \varepsilon_0 - \varepsilon_i = -(RT/zF)\ln C \tag{16}$

peut toujours être calculée à partir du potential ε mesuré dans des conditions appropriées.

Si l'électrode est réversible par rapport à la concentration [B] d'ions métalliques libres et représente le pôle gauche de la cellule, on peut écrire :

$$\varepsilon' = -(RT/zF)\ln[\mathbf{B}]$$
(17)

ou encore

$$\varepsilon' + (RT/zF)\ln C_{\rm B} = -(RT/zF)\ln \alpha_0 \tag{18}$$

De la sorte. si ε' est déterminé pour des solutions contenant des concentrations C_A et C_B connues, il est possible de calculer la fonction $\alpha_0([\Lambda])$ et, partant, de valeurs de concentration [A] du coordinat à l'équilibre correspondantes⁷.

Si, au cours d'une série de mesures, le potentiel de jonction ε_i et la concentration totale d'ion métallique $C_{\rm B}$ demeurent identiques, le calcul de α_0 se trouve ainsi considérablement simplifié, les potentiels de cellule en présence et en l'absence de coordinat étant alors donnés respectivement par:

$$(\varepsilon)_{C_{\mathbf{A}}} = \varepsilon'_{0} + \varepsilon_{j} - (RT/zF)\ln\left[\mathbf{B}\right]$$
(19)

et

$$(\varepsilon)_{C_{\mathbf{A}}=0} = \varepsilon'_{0} + \varepsilon_{i} - (RT/zF)\ln C_{\mathbf{B}}$$
(20)

De la sorte, la relation

$$(\Delta \varepsilon)_{C_{\mathbf{B}}} = (\varepsilon_{C_{\mathbf{A}}} - \varepsilon_{C_{\mathbf{A}}=0})_{C_{\mathbf{B}}} = -(RT/zF)\ln\alpha_0$$
(21)

permet de déduire aisément α_0 ou $\psi = 1/\alpha_0$ de la différence entre les deux lectures.

METHODES NOUVELLES D'ACCES ELECTROCHIMIQUE

Considérons maintenant la cellule de concentration :

$$\begin{array}{c|c} M & M^{+z} \text{ (concentration} \\ \text{totale } C_{\text{B}} \end{pmatrix} & M^{+z} \text{ (concentration} \\ \text{(ou } M-\text{Hg}) & A \text{ (concentration} \\ \text{totale } C_{\text{A}} \end{pmatrix} & \text{totale } C_{\text{B}} \end{pmatrix} & \text{(ou } M-\text{Hg}) \end{array}$$

dans laquelle les deux demi-cellules contiennent la même concentration totale d'ions métalliques mais une seule du coordinat. En supposant $\varepsilon_i = 0$, la f.e.m. de la cellule est donnée par :

$$(\varepsilon)_{C_{\mathbf{B}}} = -(RT/zF)\ln\alpha_0 \tag{23}$$

La fonction α_0 ([A]) ou ψ ([A]) et par conséquent les valeurs de [A] peuvent être obtenues à partir des paires de valeurs (ε)_{C_B}, C_A.

La méthode des solutions correspondantes permet également de déterminer \bar{n} en traçant un ensemble de graphes des fonctions $X(C_A)_{C_B}$ et $C_A(C_B)_X$ car les deux équations 21 et 23 montrent que la propriété

$$X = (\Delta \varepsilon)_{C_{\mathbf{B}}} = (\varepsilon)_{C_{\mathbf{B}}} = -(RT/zF)\ln\alpha_0$$
(24)

est seulement fonction de la concentration [A] du coordinat à l'équilibre.

En plus des électrodes métalliques de prémière espèce, il est encore possible d'utiliser, entre autres procédés, des électrodes métalliques de deuxième ou de troisième espèce, des électrodes à hydrogène ou des électrodes redox⁴. Etant donnée l'importance des difficultés rencontrées dans la détermination de constantes de stabilité à partir de mesures de pH ou de tensions redox, nous avons trouvé particulièrement utile de développer, au cours de quelques travaux⁹⁻¹¹, la généralisation d'un nouveau type d'électrode métallique, dites métal-complexe, proposé récemment¹²⁻¹⁵, qui présente l'avantage de ne pas solliciter de mesure de pH dans ses applications. L'originalité de l'emploi d'une électrode métal-complexe à l'étude de complexes en solution réside dans de nouvelles méthodes de calcule de la concentration du coordinat à l'équilibre dans un système donné et donc de la fonction $\bar{n} = {C_A - [A]}/C_B$.

I-2. La méthode polarographique

Systèmes réversibles

Dans le cas d'équilibres rapides et réversibles, où le courant est contrôlé par la diffusion, la méthode polarographique peut être appliquée avantageusement à l'étude des complexes d'ions métalliques puisque les potentiels de demi-vague de ces derniers se déplacent au cours de la complexation. La mesure de ce déplacement en fonction de la concentration en agent complexant permet de déterminer la formule et la constante de stabilité du complexe¹⁶.

Si cette technique ne peut s'appliquer directement, du fait des conditions de réversibilité, qu'à un nombre restreint d'ions métalliques, l'usage des méthodes de concurrence permet d'en èlargir considérablement le domaine par l'étude de réactions compétitives de complexation.

Le courant moyen de diffusion i_d durant la vie de la goutte (exprimé en

microampères) est relié à la concentration de la substance réductible ou oxydable par la relation d'Ilkovic

$$i_{\rm d} = 607 \, nm^3 t^4 D^4 C \tag{25}$$

où *n* est le nombre d'électrons mis en jeu dans la réaction considéré; *m* est le débit du mercure en mg s⁻¹; *t* est le temps de vie de la goutte en \dot{s} ; *D* est le coefficient de diffusion de la substance entrant en réaction en cm².s⁻¹; *C* est le concentration de la substance en millimole. l⁻¹.

Lorsque plusieurs ions complexes métalliques BA_n contribuent simultanément au courant de diffusion global, l'équation 25 peut être transcrite sans la forme:

$$i_{\rm d} = \sum_{0}^{N} d_n [\mathbf{B}\mathbf{A}_n] = d_{\rm c} C_{\mathbf{B}}$$
(26)

où

$$d_{\rm c} = \sum_{0}^{N} d_n [\mathbf{B}\mathbf{A}_n] / \sum_{0}^{N} [\mathbf{B}\mathbf{A}_n]$$
(27)

et d_n sont les coefficients d'Ilkovic des complexes BA_n .

La relation quantitative entre le potentiel ε de l'électrode à gouttes et le courant (corrigé de courant résiduel) pour un processus

 $B^{+z} + ze \rightleftharpoons B - Hg$

est obtenue par la combinaison des équations de Nernst et d'Ilkovic

$$\varepsilon = \varepsilon_{\frac{1}{2}} - (RT/zF) \ln \frac{i - i_{da}}{i_{dc} - i}$$
(28)

où *i* est le courant en un point quelconque de la vague, et i_{de} et i_{da} sont les courants de diffusion cathodique et anodique, qui s'annulent respectivement pour des vagues purement anodique ou cathodique.

Si la vague considérée est réversible, la pente de la courbe $\{-\varepsilon, \log (i - i_{da})/(i_{dc} - i)\}$ doit être égale à RT/zF d'après la relation précédente; Ringbom et Eriksson¹⁷ ont cependant établi que la valabilité de ce critère devenait hasardeuse pour des systèmes dans lesquelles les complexes sont très stables aux faibles concentrations en coordinat libre, ceci du fait que les différences entre ces dernières au sein de la solution et à la surface de l'électrode ne sont pas négligeables.

Si le coordinat A est présent dans la solution en assez grand excés pour que l'on puisse considérer comme pratiquement égales à ses concentrations au sein de la solution et à la surface de l'électrode et s'il y a en présence un électrolyte support éliminant tout courant de migration, le courant à chaque point de la vague est donné par:

$$i = d_n([\mathbf{B}\mathbf{A}_n] - [\mathbf{B}\mathbf{A}_n]_0) \tag{29}$$

où la constante d'Ilkovic du complexe BA_n est représentée par d_n .

De la même manière, le courant de diffusion moyen est donné par

$$i_{\rm d} = d_n [{\rm BA}_n] \tag{30}$$

METHODES NOUVELLES D'ACCES ELECTROCHIMIQUE

tandis que la concentration de l'amalgame à la surface de l'électrode est rapportée au courant par la relation

$$i = d_a C_a^0 \tag{31}$$

Compte tenu de ces différentes expressions, l'équation du déplacement du potentiel de demi-vague d'un ion, dû à sa complexation, s'écrirait :

$$(\Delta \varepsilon_{\frac{1}{2}}) = (\varepsilon_{\frac{1}{2}})_{s} - (\varepsilon_{\frac{1}{2}})_{c} = \frac{RT}{zF} \ln \frac{d_{n}^{T} \beta_{n} [A]^{n} \gamma_{A}^{n} \gamma_{B}}{d_{s} \gamma_{BA_{n}}}$$
(32)

Si le même capillaire est utilisé dans les deux cas (absence et présence du coordinat), si l'on suppose les coefficients de diffusion approximativement identiques pour les deux espèces, les concentrations en coordinat à l'équilibre [A] est globale C_A pratiquement confondues, et l'influence de coefficients d'activités négligeables dans un milieu de référence donné, l'équation 32 peut être simplifiée sous la forme suivante :

$$\Delta \varepsilon_{\pm} = (2,303 \ RT/zF) \log \beta_n C_A^n \tag{33}$$

L'équation 33 montre que le potentiel de demi-vague est indépendant des concentrations des espèces complexées et il est évident que les variations de celui-ci en fonction des concentrations en coordinat permet d'accéder au calcul de β_n mais cette voie n'est applicable que s'il y a un seul complexe (BA_n) qui se forme en solution.

Un traitement polarographique rigoureux de la formation de complexes successifs est donné par De Ford et Hume¹⁸. Les équations de base sont fondamentalement les mêmes que le précédentes relatives à la méthode de Lingane, mais certains de leurs termes doivent maintenant être sommés, n prenant successivement les valeurs 1, 2, 3, ..., N.

Dans des conditions similaires, le déplacement du potentiel de demi-vague s'exprime alors suivant

$$\Delta \varepsilon_{\frac{1}{2}} = (\varepsilon_{\frac{1}{2}})_{s} - (\varepsilon_{\frac{1}{2}})_{c} = \frac{RT}{zF} \ln \frac{\gamma_{\mathbf{B}} \cdot d_{c}}{d_{s}} \sum_{0}^{N} \frac{{}^{T} \beta_{n} \, [\mathbf{A}]^{n} \, \gamma_{\mathbf{A}}^{n}}{\gamma_{\mathbf{BA}_{n}}}$$
(34)

en fonction des concentrations de coordinat à l'équilibre [A] et des constantes globales thermodynamiques de stabilité ${}^{T}\beta_{n}$.

Cette dernière relation peut encore être transformée de façon à exprimer la variable secondaire de concentration $\psi([A])$ qui s'écrira, pour un milieu de référence donné où l'influence des coefficients d'activité est négligeable:

$$\psi([A]) = \frac{1}{\alpha_0} = \exp \left(\frac{\Delta \varepsilon_{\pm} - Q}{RT/zF}\right) = \sum_{0}^{N} \beta_n [A]^n$$

avec

$$Q = (RT/zF)\ln\left(\frac{d_{\rm c}}{d_{\rm s}}\right) \tag{36}$$

La validité de cette méthode nécessite évidemment que le coordinat ne soit pas réductible polarographiquement dans les conditions de l'expérience ou, si tel n'est pas le cas, que sa réduction ait lieu à un potentiel beaucoup plus négatif que l'ion métallique simple.

Casassas et Eek¹⁹ ont etudié le cas où le coordinat est réduit à l'électrode à gouttes à un potentiel plus positif que l'ion du métal B envisagé, la variation du potentiel de demi-vague du coordinat A en présence d'un excés de cet ion permettant théoriquement de déterminer des constantes de stabilité des complexes successifs B_nA . Cette méthode aboutit à l'expression d'une fonction $\psi([B])$ semblable à celle de l'équation 35, mais qui ne s'applique que lorsque la concentration de l'ion métallique est en excés par rapport au coordinat, ce qui favorise la formation du seul premier complexe BA.

Systèmes irréversibles

Lorsqu'il est impossible d'étudier directement la complexation des ions d'un métal B du fait que ces derniers ne se réduisent pas de manière réversible à l'électrode à gouttes, ou même qu'ils ne sont pas réductibles, il est alors nécessaire d'effectuer cette étude par rapport à la complexation d'un métal indicateur B' dont les équilibres sont déjà connus.

Le degré de formation. du système B. A qui est accessible cette fais-ci, est calculé d'après la rélation générale

$$\bar{n}_{\rm B} = \{C_{\rm A} - [{\rm A}]_0 - \bar{n}'_{\rm B'} (i_{\rm d} - i)/i_{\rm d}\}/C_{\rm B}$$
(37)

qui, au potentiel de demi-vague, prend la forme plus simple

$$\bar{n}_{\rm B} = \{c_{\rm A} - [{\rm A}]_0 - \bar{n}_{\rm B'}' c_{\rm B'}/2\}/c_{\rm B}$$
(38)

II. METHODES NOUVELLES DE CALCUL DES CONSTANTES DE STABILITE

Les différentes méthodes électrochimiques exposées précédement permettent soit l'accès direct aux équilibres de complexation que l'on exprime alors quantitativement au moyen de la fonction

$$\psi = \alpha_0^{-1} = \sum_0^N \beta_n \, [A]^n \tag{39}$$

soit l'accès indirect à ces mêmes équilibres, qui conduit cette fois à l'expression du nombre moyen de coordination du système

$$\bar{n} = \sum_{0}^{N} n\beta_n \left[A\right]^n / \sum_{0}^{N} \beta_n \left[A\right]^n$$
(40)

Les deux variables secondaires de concentration ψ et \bar{n} reliant d'une manière semblable par des équations différentes les concentrations en coordinat à l'équilibre [A] aux constantes globales β_n du système, il nous a semblé judicieux de traiter globalement les méthodes de calcule de ses dernières.

La méthode la plus utilisé consiste à affiner, par une suite d'approximations successives, des constantes dites 'temporaires' déterminées *a priori* d'après Bjerrum, de deux façons possibles:

(a) la première part du principe qu'une solution prise dans l'état corre-

spondant à $\bar{n} = n - \frac{1}{2}$ doit contenir des quantités approximativement égales de composés BA_{n-1} et BA_n , et conduit à l'expression

$$K_n = (1/[A])_{\bar{n}=n-\frac{1}{2}}$$
(41)

(b) le deuxième fait intervenir le 'facteur de distribution' x, défini par :

$$K_n/K_{n+1} = fx^2$$
 (42)

avec

$$f = \frac{(N-n+1)(n+1)}{(N-n)n}$$
(43)

dont la valeur moyenne est calculée par l'intermédiaire de la 'pente au point milieu' de la courbe $\bar{n} = f([A])$, d'après la relation

$$\Delta = \frac{\sum_{1}^{N} n(n-\frac{1}{2}) \frac{N!}{(N-n)!n!} x^{(N-n)n}}{1 + \sum_{1}^{N} \frac{N!}{(N-n)!n!} x^{n(N-n)}}$$
(44)

et la constante moyenne du système

$$K = (1/[A])_{\bar{n}} = N/2 \tag{45}$$

Dans ces conditions, la relation exprimant les constantes temporaires s'écrit

$$K_n = \{ (N - n + 1)/n \} K x^{N+1-2n}$$
(46)

Une fois ces constantes déterminées, elles peuvent ensuite être affinées au moyen d'approximations successives en les introduisant dans l'expression

$$K_{n} = \left(\frac{1}{[A]}\right)_{n=n-\frac{1}{2}} \frac{1 + \sum_{t=1}^{t=n-1} \frac{1 + 2t}{[A]^{t} K_{n-1} \cdot K_{n-2} \cdots K_{n-t}}}{1 + \sum_{t=1}^{t=N-n} (1 + 2t) [A]^{t} K_{n+1} \cdot K_{n+2} \cdots K_{n+t}}$$
(47)

Pour le calcule des approximations successives par la relation 47, on signale que lorsque x est inférieur à l'unité, la somme des termes correctifs devient tellement grande que la formule conduit de toutes façons trop lentement vers un résultat.

Dans les conditions où $x \ll 1$, on se contentait d'établir l'ordre de grandeur des constantes étagées des composés intermédiaires aux états B et BA_N par les constantes temporaires issues de la relation 46.

En effet, si l'expression 47 converge effectivement pour des valeurs de $(1/[A])_{\bar{n}=n-\frac{1}{2}}$ suffisamment éloignées les unes des autres, il n'en est pas de

même lorsque celles-ci sont voisines²⁰, comme le prouvent les deux exemples suivants:

(a) Complexes de Cu(11) avec l'imidazole⁵

Le Tableau 1 rassemble, avec les valeurs $(1/[A])_{n=n-3}$, assez différentes les unes des autres, les valeurs prises par les constantes K_n au cours des itérations successives jusqu'à leur valeur limite atteinte à la trentième itération. Il est claire que l'on obtient, dans le cas présent, un résultat précis.

Tableau I. Système Cu-Imidazole. Constantes temporaires et affinage par la relation 47 jusqu'à leurs valeurs limites (30e itération)

Itération no.	k ₁	k ₂	k ₃	k ₄
0	11220	2851	749,9	177.83
3	5323,651	4289,629	509,742	377.410
5	4795,765	4902.957	462,950	395.791
10	4501,714	5236.772	444,111	404,212
15	4482,359	5259,520	442,938	404,759
20	4481,091	5261,014	442.861	404,795
28	4481,004	5261,117	442.856	404,798
30	4481,003	5261.119	442,856	404,798

(b) Système théorique avec $K_1 = 10^4$, $K_2 = K_3 = K_4 = 10^3$ Le Tableau 2 contient les valeurs de $(1/[A])_{\overline{n}=n-\frac{1}{2}}$, assez voisines, puis les valeurs prises par les constantes K_n au cours des itérations successives jusqu'au vingtième rang. Il est évident que la relation 47 ne peut être utilisés comme formule de convergence.

Tableau 2. Système théorique. Constantes temporaires et affinage par la relation 47 jusqu'à la 20^e itération

Itération no.	<i>k</i> ₁	k ₂	<i>k</i> 3	k4
0	1285,5	213,45	95.63	36.12
1	807,619	117,948	112.658	89.098
5	1007,309	105,392	107,084	103,918
9	1020,323	110,886	114.168	109,766
14	940,506	74,790	72.637	81,249
19	1121,950	177.532	232,560	209,052
20	804,039	34,908	36,003	58,912

II-1. Accélération de convergence

Nous avons établi²¹ au cours d'essais que l'on obtenait, quel que soit x, une convergence effective pourvu que, pour une constante K_n correspondant à une itération d'ordre (m), on affecte la série K_{n-1} . K_{n-2} . K_{n-3} ... K_{n-1} figurant au numérateur de l'expression 47, du même ordre (m), tout en conservant, bien sûr, l'ordre (m-1) pour la série $K_{n+1} \cdot K_{n+2}$. $K_{n+3} \dots K_{n+t}$ figurant en dénominateur. La relation 47 s'exprime, dés lors, par:

1 - - - 1

$$K_{n}^{(m)} = \frac{1}{[A]_{n=n-\frac{1}{2}}} \cdot \frac{1 + \sum_{t=1}^{t-n} \frac{1 + 2t}{[A]^{t} K_{n-1}^{(m)} \cdot K_{n-2}^{(m)} \cdots K_{n-t}^{(m)}}}{1 + \sum_{t=1}^{t-n-n} (1 + 2t) [A]^{t} K_{n+1}^{(m-1)} \cdot K_{n+2}^{(m-1)} \cdots K_{n+t}^{(m-1)}}$$
(48)

Elle permet d'obtenir, appliqué au système théorique déjà pris comme exemple ci-dessus, les résultats consignés dans le *Tableau 3*.

Itération no.	k,	<i>k</i> ₂	<i>k</i> ₃	k4
0	1268	213	95	
10	1010	94	107	96
20	999	99	100	99
30	998	99	100	99
40	998	100	99	100
50	998	100	99	100
60	997	100	99	100
70	997	100	99	100
Valeur réelle	1000	100	100	100

Tableau 3. Système théorique. Constantes temporaires et affinage par la relation 48 jusqu'à leurs valeurs limites (70^e itération)

Il apparaît ici que le relation 48 permet la convergence vers une limite très proche de la valeur imposés théoriquement dans la définition du système.

Une fois mise au point cette méthode, nous l'avons appliqué à plusieurs systèmes réels. Prenons comme exemple la complexation du Zn(11) par NH₃ (mesures effectuées par I. Bjerrum). Nous avons consigné dans le *Tableau* 4 les valeurs de K_n pour ce système données par Bjerrum et les valeurs issues

	$-\log[\mathrm{NH}_3]_{\overline{n}=n-\frac{1}{2}}$	Bjerrum	Notre valeur
n = 1	2.87	2,37	2,44
n = 2	2,51	2,44	2,28
n = 3	2.27	2,50	2,64
n = 4	1.84	2,15	2,11

Tableau 4, Système Zn-NH₃. Constantes temporaires et affinées

Tableau 5. Système Zn-NH₃. Valeurs de \bar{n} théoriques et finales recalculées, avec les constantes obtenues par Bjerrum et avec les constantes affinées par la relation 48

n théorique	<i>n</i> (B jerrum)	\bar{n} (relation 48)
0.500	0,489	0,500
1.500	1,495	1,500
2.500	2,486	2,500
3,500	3,500	3,500

de notre méthode. Les valeurs de K_n correspondantes sont assez différentes, et il était important de savoir lesquelles étaient les plus satisfaisantes. C'est pourquoi nous avons recalculé \bar{n} aux valeurs $\bar{n} = n - \frac{1}{2}$ à partir de ces différentes constantes (*Tableau 5*).

Il est clair que les valeurs des constantes K_n calculées par la relation 48 conduisent à une meilleure vérification de \bar{n} et apparaissent donc comme les plus précises.

II-2. Méthode de déterminants

Il est évident que si la suite $K_1^{(m)}$, $K_2^{(m)}$... $K_N^{(m)}$ converge vers une limite K_1, K_2, \ldots, K_N , l'équation:

$$\sum_{0}^{N} (\bar{n} - n) \beta_{n} [A]^{n} = 0$$
(49)

conduit, par l'intermédiaire de la relation 48, à la formation, pour le cas où N = 4, du système suivant :

$$\beta_{1}[A]_{1} + 3\beta_{2}[A]_{1}^{2} + 5\beta_{3}[A]_{1}^{3} + 7\beta_{4}[A]_{1}^{4} = 1$$

$$- \beta_{1}[A]_{2} + \beta_{2}[A]_{2}^{2} + 3\beta_{3}[A]_{2}^{3} + 5\beta_{4}[A]_{2}^{4} = 3$$

$$- 3\beta_{1}[A]_{3} - \beta_{2}[A]_{3}^{2} + \beta_{3}[A]_{3}^{3} + 3\beta_{4}[A]_{3}^{4} = 5$$

$$- 5\beta_{1}[A]_{4} - 3\beta_{2}[A]_{4}^{2} - \beta_{3}[A]_{4}^{3} + \beta_{4}[A]_{4}^{4} = 7$$
(50)

avec

$$\begin{bmatrix} A \end{bmatrix}_{1} = \begin{bmatrix} A \end{bmatrix}_{\bar{n}=0.5} \\ \begin{bmatrix} A \end{bmatrix}_{2} = \begin{bmatrix} A \end{bmatrix}_{\bar{n}=1.5} \\ \begin{bmatrix} A \end{bmatrix}_{3} = \begin{bmatrix} A \end{bmatrix}_{\bar{n}=2.5} \\ \begin{bmatrix} A \end{bmatrix}_{4} = \begin{bmatrix} A \end{bmatrix}_{\bar{n}=3.5} \end{bmatrix}$$
(51)

dont les constantes β_1 , β_2 , β_3 , β_4 représentent les solutions. D'après l'unicité de la limite d'une suite convergente, si la suite $K_1^{(m)}$, $K_1^{(m)}$, $K_3^{(m)}$, $K_4^{(m)}$, converge vers une limite K_1 , K_2 , K_3 , K_4 , celle-ci ne peut être que la solution du système d'équation 50.

En effet, pour tous les systèmes pris en exemple, les solutions d'équations 50 ont été rigoureusement identiques aux limites de convergence correspondantes.

L'emploi d'approximations successives n'est plus nécessaire, ce qui permet un gain de temps appréciable, même lorsque les calcules sont effectués au moyen d'un ordinateur. De même, l'introduction de constantes temporaires déterminées par l'intermédiaire du facteur x, faisant intervenir la pente de la courbe de formation au point $\bar{n} = N/2$, n'est plus nécessaire, puisque la solution peut maintenant être obtenue quelque soit x.

II-3. Exploitation des courbes de formation incomplètes

Les deux méthodes nouvelles que nous venons de présenter sont très rapides et ils peuvent être appliqué à tous les systèmes à étudier. Bien que ces deux méthodes ne sont basées que sur un ensemble de N données, ces

N données représentaient statistiquement la synthèse des déterminations expérimentales à condition que la courbe de formation ait une allure suffisamment réguliers, ce qui est rarement démenti.

Cependant, si l'application de ces deux méthodes a été rendue possible quelleque soit la valeur du facteur de distribution, elles nécessitent *a priori* que la courbe de formation soit entièrement déterminée.

Du point de vue pratique, ceci est assez improbable dans une même manipulation quand les complexes étudiés ont des stabilités assez différentes et même exclu s'il s'agit de complexes peu solubles. Nous avons cependant établi²² qu'il est possible, dans un grand nombre

Nous avons cependant établi²² qu'il est possible, dans un grand nombre de cas, d'extrapoler rationnellement une courbe incomplète afin d'utiliser les deux méthodes pour le calcule des constantes K_n . Il est considéré, pour fixer les idées, le cas N = 4.

Supposons que $[A]_4$ ne soit pas accessible expérimentalement. Il existe un intervalle de valeurs possibles de $[A]_4$ pour lequel l'ensemble des quatre grandeurs définies dans l'équation 51 conferera à la relation 48 une convergence effective, ou au déterminant 50 une solution unique exprimée par une série de constantes:

soit
$$\beta_1 = \frac{X}{D}; \quad \beta_2 = \frac{Y}{D}; \quad \beta_3 = \frac{Z}{D}; \quad \beta_4 = \frac{T}{D}$$
 (52)

soit
$$K_1 = \frac{X}{D}; \quad K_2 = \frac{Y}{X}; \quad K_3 = \frac{Z}{Y}; \quad K_4 = \frac{T}{Z}$$
 (53)

ceci quand les polynômes D, X, Y, Z, T sont positifs.

Connaissant $[A]_1$, $[A]_2$, $[A]_3$, il est facile de déterminer les zéros de ces polynômes en $[A]_4$ et degré inférieur ou égal à quatre, et par conséquent les limites inférieure α_1 et supérieure α_2 de l'intervalle envisagé.

Cependant, si la limite inférieure α_1 de l'intervalle est toujours voisine de $[A]_4$, la limite supérieure α_2 s'en écarte très rapidement au fur et à mesure que la pente mesurée δ de la courbe de formation à point $\bar{n} = 2$ (definie antérieurement) diminue, comme le montre le *Tableau* 6 où figurent les

Tableau 6. Valeurs de [A]₄ et de ses limites supérieure et inférieure en regard de la pente mesurée δ de la courbe de formation au point $\bar{n} = 2$

δ	α2	α_1	[A] ₄
7.835	0,1813	0,1790	0,1806
5.854	0.5174×10^{-1}	0.4682×10^{-1}	$0,4933 \times 10^{-1}$
5,232	0.4122×10^{-1}	0.3446×10^{-1}	$0,3743 \times 10^{-1}$
5.046	0.3906×10^{-1}	$0,3156 \times 10^{-1}$	0.3467×10^{-1}
4.605	0.3551×10^{-1}	0.2562×10^{-1}	$0,2908 \times 10^{-1}$
2,962	0,1437	$0,1085 \times 10^{-1}$	$0,1542 \times 10^{-1}$
2,815	$0.6142 \times 10^{+1}$	$0,9870 \times 10^{-2}$	$0,1450 \times 10^{-1}$
2.774	$+\infty$	0.9608×10^{-2}	$0,1425 \times 10^{-1}$

valeurs δ , α_1 , α_2 et $[A]_4$ de quelques systèmes entièrement définis. De ce fait, $[A]_4$ ne représente pas la valeur moyenne de α_1 et α_2 , et ne peut pas donc être déterminée directement.

Il est alors nécessaire, pour ce faire, de relier α_1 et $[A]_4$ à un paramètre

représentatif du système considéré, comme δ par exemple. Nous avons ainsi, grâce à une série de déterminants du type 50 déterminé, pour un grand nombre de systèmes entièrement définis $[A]_1$, $[A]_2$, $[A]_3$, $[A]_4$ étant connus et composés théoriquement, les valeurs du rapport $([A]_4 - \alpha_1)/[A]_4$ (en pourcentage) en regard des valeurs de δ correspondantes²². Ces valeurs permettent la construction d'une courbe que nous appéllerons, 'courbe d'étalonnage' (*Figure 1*), et qui rend compte de la

Figure 1. Généralisation de la méthode de Bjerrum. Courbe d'étalonnage.

variation de l'écart de α_1 à la valeur réelle [A]₄, donnée par ([A]₄ - α_1)/[A]₄ pour cent, en fonction de la pente δ de la courbe de formation $\bar{n} = f(p[A])$ mesurée en son point milieu $\bar{n} = 2$.

Dans le cas d'un système expérimental où seules les valeurs de $[A]_1$, $[A]_2$ et $[A]_3$ sont connues, $[A]_4$ pourra donc être déterminé directement d'après la courbe d'étalonnage. Les constantes K_n pourront ensuite être calculées rapidement par l'intermédiaire d'un déterminant du type 50.

Exemples. Pour un système théorique, construit avec les constantes $K_1 = 10^{3.5}$; $K_2 = 10^{2.5}$; $K_3 = 10^{1.5}$; $K_4 = 10^{0.5}$, la valeur de [A]₄ lue sur la courbe de formation est égale à 0,3920m alors que la valeur trouvée par la méthode définie précédemment est égale à 0,3918m.

Dans le cas d'un système expérimental quelconque comme celui de la complexation du zinc par l'imidazole (en milieu NH_4NO_3 0,5 m à 25 °C) où la valeur maximum déterminée pour \bar{n} est 3,186, la valeur de $[A]_4$ obtenue par ce procédé a permis de calculer par le determinant 50, les constantes exprimées par leurs logarithmes:

$$\log \beta_1 = 2,29$$
, $\log \beta_2 = 4,72$, $\log \beta_3 = 6,87$, $\log \beta_4 = 9,08$

tandis que la méthode de Fronaeus conduisait à

$$\log \beta_1 = 2.33$$
, $\log \beta_2 = 4.66$, $\log \beta_3 = 6.91$, $\log \beta_4 = 9.11$

Les valeurs ainsi obtenues vérifient de manière satisfaisante celles provenant de l'autre méthode de calcule, par conséquent, la valeur de [A]₄ extrapolée rationnellement est determinée avec une bonne précision. Sans doute, la détermination expérimentale de l'ensemble de la courbe de formation est toujours préférable, mais notre méthode d'extrapolation rationnelle peut se révèler utile dans le cas où les complexes atteignent leurs saturations dans le milieu considéré.

II-4. La méthode des moindres carrés

Il apparaît évident que la connaissance de N paires de données (\bar{n} , [A]) conduit à la détermination directe des N constantes cherchées. Cependant, le calcule impliqué ayant été jugé trop fastidieux par J. Bjerrum³ à l'aide des seules méthodes manuelles existant à cette époque, ce dernier effectuait cette résolution au moyen d'approximations successives en portant des N valeurs de \bar{n} les plus significatives de l'ensemble donné expérimentalement, c'est-à-dire généralement $\bar{n} = n - \frac{1}{2}$ (avec n = 1, 2, ..., N).

Cette méthode a donné lieu par la suite à de nombreuses modifications que nous avons présenté dans les paragraphes précédentes.

Plus tard. Sullivan et Hindman²³ résolvaient, à l'aide d'un ordinateur, le système d'équations de la forme 49 à partir des N valeurs de $\bar{n} = n - \frac{1}{2}$ preconisées par Bjerrum. Puis, cette méthode apparaissant insuffisante puisque ne faisant intervenir que N données d'un ensemble généralement plus large, Sullivan et ses collaborateurs²⁴ introduisaient l'usage de la méthode des moindres carrés, laquelle permettait de réduire l'ensemble des données à un système normal d'équations de la forme 49.

Ces derniers auteurs ayant alors supposé que seule la concentration [A] en coordinat à l'équilibre était susceptible d'être affectée d'erreurs, Varga²⁵ trouvait récemment plus réaliste de considérer que les deux grandeurs \bar{n} et [A] étaient affectées respectivement des erreurs standard $\sigma_n = P\bar{n}$ et $\sigma_{[A]} = P[A]$, où P représentait l'erreur relative moyenne commise sur un groupe de données.

Cependant, s'il apparaît effectivement exact de penser que lorsque [A] est affecté d'une erreur, \bar{n} l'est également, nous avons jugé préférable de considérer¹⁵ la véritable erreur affectant \bar{n} , en fait imposée par l'erreur admise sur [A]. Nous avons étudié l'influence de cette correction sur les valeurs des constantes calculées par cette méthode pour des systèmes étudiés soit par les auteurs précédement cités, soit dans nos laboratoires.

Traitement du problème

L'équation 40 exprime une fonction de la forme

$$y = f(\bar{n}, [A]) \tag{54}$$

peut être écrite

$$y = \sum_{0}^{N} \left(\bar{n} - n \right) \beta_{n} \left[\mathbf{A} \right]^{n}$$
(55)

Lorsque la fonction y est satisfaite théoriquement, elle s'annulle pour donner la relation 40.

Il s'agit ici de déterminer le groupe de constantes β_n qui puisse rendre la valeur y la plus proche possible de cette nullité, en minimisant la somme

$$S = \sum_{i=1}^{I} \left[(\bar{n}_i - n) \beta_n [A]^n - y \right]^2 w_y$$
(56)

 w_y représente le poids de chaque valeur expérimentale y_i , et s'exprime suivant

$$w_{\rm r} = 1/\sigma_{\rm r}^2 \tag{57}$$

La variance de chaque valeur de y est donnée, d'après la théorie de propagation des erreurs, par la relation

$$\sigma_y^2 = (\partial y / \partial \bar{n})^2 \sigma_{\bar{n}}^2 + (\partial y / \partial [\mathbf{A}])^2 \sigma_{[\mathbf{A}]}^2$$
(58)

dans laquelle σ_n et $\sigma_{[A]}$ représentent les erreurs standard affectant respectivement les grandeurs \bar{n} et (A), et sont définies par :

$$\sigma_{n} = Q \,\bar{n} \tag{59}$$

$$\sigma_{[A]} = P \,[A]$$

P et Q définissent ici les erreurs relatives commises respectivement sur les valeurs de (A) et \overline{n} .

En effectuant les calcules définis dans la relation 58, cette dernière prend la forme :

$$\sigma_{y}^{2} = Q^{2} \,\bar{n}^{2} \left(\sum_{0}^{N} \beta_{n} \,[A]^{n} \right)^{2} + P^{2} \left(\sum_{0}^{N} \bar{n}(\bar{n} - n) \,\beta_{n} \,[A]^{n} \right)^{2} \tag{60}$$

De plus en dérivant la relation 40, il est possible d'exprimer Q en fonction de P selon :

$$Q = \left(\frac{\sum_{n=1}^{N} n^2 \beta_n [A]^n}{\sum_{n=1}^{N} n \beta_n [A]^n} - \bar{n}\right) P$$
(61)

Ainsi, en remplaçant Q par sa valeur dans l'équation 60, il vient :

$$\sigma_{y}^{2} = P^{2} \left[\bar{n} \sum_{0}^{N} \beta_{n} [A]^{n} \left(\frac{\sum_{0}^{N} n^{2} \beta_{n} [A]^{n}}{\sum_{0}^{N} n \beta_{n} [A]^{n}} - \bar{n} \right) \right]^{2} + P^{2} \left[\sum_{0}^{N} n(\bar{n} - n) \beta_{n} [A]^{n} \right]^{2}$$
(62)

La grandeur w_{y} , étant une fonction des constantes β_{n} cherchées, il est possible, par une série d'itérations successives, d'affiner son estimation en même temps que celle des valeurs correspondantes des β_{n} jusqu'à ce qu'une convergence satisfaisante soit obtenue.

Sans entrer ici dans le détail du programme de calcule, nous présentons dans le *Tableaux* 7 uniquement les valeurs des constantes de stabilité des complexes du système Ni-NH₃ déjà étudié par Bjerrum³.

Système Ni(11)–NH₃

Nous avons apris l'exploitation des mesures effectuées par J. Bjerrum³ concernant la complexation de l'ion Ni²⁺ par NH₃ dans le milieu NH₄NO₃,

METHODES NOUVELLES D'ACCES ELECTROCHIMIQUE

2 M à 30°C, ainsi que l'avait déjà fait Rydberg²⁵ au moyen d'un programme ne tenant compte que des erreurs affectant [A]. Notre programme prenant en considération les erreurs affectant les deux variables [A] et \bar{n} , nous a conduit à des valeurs différentes des constantes β_n . Cette série de constantes rassemblées dans le *Tableau 7*, sont comparées à celles calculées par J.

$\log \beta_n$	J. Bjerrum	Rydberg	Notre résultat
$\log \beta_1$	2,795	2,785 + 0,003	2,785 ∓ 0,001
$\log \beta_2$	5,035	5,046 \mp 0,009	5,051 ∓ 0,004
$\log \beta_3$	6,765	6,730 ∓ 0,014	6,718 ∓ 0,014
$\log \beta_4$	7,955	7,966 ∓ 0,020	$8,003 \mp 0,022$
$\log \beta_5$	8,705	$8,716 \pm 0,022$	$8,676 \pm 0,037$
$\log \beta_6$	8,735	8,741 ∓ 0,032	8,765 ∓ 0,046

Tableau 7. Système Ni–NH ₃ ,	Comparaison of	les résultats
---	----------------	---------------

Bjerrum³ et Rydberg²⁵. Les valeurs des constantes issues de notre programme sont comparables à celles des auteurs précédentes. Cependant, nos dérivations standard sont moins importants que celles issues du programme de Rydberg en ce qui concerne les constantes d'ordre faible, et plus importants en ce qui concerne celles d'ordre élevé, ce qui est la signe d'une meilleure signification physique de nos résultats.

Figure 2. Système Ni-NH₃. Méthode des moindres carrés.

La Figure 2 montre la courbe de formation du système recalculée par l'ordinateur, en parfait accord avec les points expérimentaux matérialisés.

BIBLIOGRAPHIE

- ¹ F. J. Rossotti, Modern Coordination Chemistry, Interscience: New York (1960).
- ² G. Berthon et C. Luca, Bull. Soc. Chim. France, 2, 432 (1969).
- ³ J. Bjerrum, Metal Ammine Formation in Aqueous Solution, 2^e ed., P. Haase et Fils: Copenhague (1957).

- ⁴ F. J. Rossotti et H. Rossotti, *The Determination of Stability Constants*, McGraw-Hill: New York (1961).
- ⁵ G. Berthon, Thése No. 120, Université de Poitiers : France (1970).
- 6 C. Luca, Bull. Chim. Soc. France, 7, 2556 (1967).
- ⁷ C. Luca et O. Entea, Determinarea Constantelor Analitice. Metode Optice si Electrochemice, Editura Didactica si Pedagogica: Bucuresti (1971).
- ⁸ S. Fronaeus, Komplexsystem hos Koppar, Gleerupska Universitets Bokhandeln: Lund (1948).
- ⁹ C. Luca, V. Magearu et G. Popa, J. Electroanal. Chem. 12, 45 (1966).
- ¹⁰ V. Magearu, C. Luca et M. Teodorescu, J. Electroanal. Chem. 12, 148 (1966).
- ¹¹ V. Magearu, Teza de doctorat, Universitatea din Bucuresti: Roumanie (1968).
- ¹² G. Berthon et C. Luca, Chim. Anal. 51, 358 (1969).
- ¹³ G. Berthon et C. Luca, Chim. Anal. 49, 452 (1967).
- ¹⁴ G. Berthon et C. Luca, Chim. Anal. 52, 391 (1970).
- ¹⁵ G. Berthon et C. Luca, Anal. Chim. Acta, 51, 239 (1970).
- ¹⁶ J. J. Lingane, Chem. Revs, 29, 1 (1941).
- ¹⁷ A. Ringbom et L. Eriksson, Acta Chem. Scand. 7, 1105 (1953).
- ¹⁸ H. Irving, Advances in Polarography, Pergamon: Oxford (1960).
- ¹⁹ E. Casassas et L. Eek, J. Chim. Phys. 64, 971 (1967).
- ²⁰ I. M. Bhatt, K. P. Soni et A. M. Trivedi, Indian J. Chem. 5, 165 (1967).
- ²¹ G. Berthon, A. Sirieix et C. Luca, Bull. Soc. Chim. France, 2, 509 (1970).
- ²² A. Sirieix, G. Berthon et C. Luca, Bull. Soc. Chim. France, 3, 899 (1970).
- ²³ J. C. Sullivan and J. C. Hindman, J. Amer. Chem. Soc. 74, 6091 (1952).
- ²⁴ J. C. Sullivan, J. Rydberg et W. F. Miller, Acta Chem. Scand. 13, 2023 (1959).
- ²⁵ J. Rydberg, Acta Chem. Scand. 15, 1723 (1961).
- ²⁶ L. P. Varga, Analyt. Chem. 41, 323 (1969).