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ABSTRACT

The existence of self-regulating mechanisms in complex organisms is common
knowledge. The single cell, the unit from which more complex organisms
are built up, also possesses remarkable powers of adjustment. Detailed quanti-
tative studies of the growth of bacteria in various environmental conditions
have given an insight into the control mechanisms and various models have
been set up. The cases when reproduction in a given environment can be
described by autocatalytic-type reactions are treated, as well as conditions on
transfer of the organisms into a fresh medium of identical composition or
into a medium of different type. The self-regulating mechanisms are explained
on the basis of simple kinetic models. The importance of the role of molecular

biology in explaining the process of reproduction is stressed.

The principal object of microbial engineering is production and as has
been aptly remarked',... 'as a productive machine the living cell is a miracle
of ingenuity, flexibility and variety. A single-celled bacterium produces a
multiplicity of chemical substances, some simple, some complex, such that
the catalogue of its products would bear comparison with, and in some
respects surpass, that of the most skilled manufacturer of fine chemicals'.
This is achieved often at the expense of simple and varied starting materials
alone, by integrated unit processes, governed by enzymes which, themselves,
must be regulated by control mechanisms. Intricate machines can be studied
in two ways both equally valuable. They can either be taken to pieces or
they can be observed in action in various conditions and general propositions
set up to explain the behaviour. The latter method has been used extensively
in our laboratory.

It is well known that in a constant environment, such as is obtained in
continuous culture, a bacterial cell reproduces all its parts according to the
relationship

dx/dt = kXorX = Xoekt (1)

This comes about by the interplay of enzyme reactions. Enzymes in isolation
do not, however, increase autocatalytically but nevertheless it is easily
established that substances which are by no means self-replicating in their
own right can increase according to the law of autocatalysis which makes
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them appear autosynthetic. For example, if we have two substances X and Y
whose rates of formation are mutually interdependent such that

dX/dt = Y and dY/dr = fiX (2)

then it is easily shown that the solutions of the equations are

X = A1 ekt + B1 eIdt and Y A2 e + B2 e kt (3)

where A1 + B1 = X0 and A2 1- B. = Y0. X0 and Y0 are the amounts of
X and Y at zero time and it follows that

x = (x0 + Yo)ekt (x0 _Yo)e (4a)

= + k

Xo)ekt
— x0) e (4b)

where 1tfi = k2. When growth has continued for a long time the ratio X/Y
settles down to

(x1
+ + k

= a/k.

Ifa portion of the system is now isolated and used as the starting point of a
new system, X0/Y0 /k and equations 4a and 4b reduce to X = X0 ekt and
Y = Y0 e'". Each separate component then increases with time as though
formed in accordance with the simple autocatalytic law given in equa-
tion 1.

When three interdependent components are present i.e.

dX/dt xY, dY/dt fiZ, dZ/dt = (5)

differentiation gives d3X/dt3 = = k3X, with similar expressions in
Y and Z, and the solutions are of the form

X = A1 ekt * B1 e°" - C1 e°""

where A1 + B1 + C1 = 0 and 1. 0 and 02 are the three cube roots of unity
(0 — + i(\/3)/2 and 0 — iL.j3)/2). On evaluating the constants
we have

x (x0 + + .Zo)ekt + 02Y() + ()jZoe0t
*

(x0
+ 01 Y11 + 02 z) C02kt

(6a)

y x0 + Y() + * + Y() + 02

+ (02 X() + Y0 + 01 kZO) e°t (6b)
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l/'k2 k 1/' k2 kZ = + jYo + Zo)elc + + 01Yo +

1 k2 k+ - ( 0 —— X0 + 02 —Y0 + Z0 eO2' (6c)3\ f3 fi /
In this example when I is large the terms containing e1kt and e821't vanish and
we again have constant ratios of the components. Thus X/Y = /k and
X/Z = /3/k2 and once more if we start a new system, in which X0, Y0 and Z0
are in this proportion, each of the components follows equation 1, the terms
in C1l(t and e2I vanishing since 01 + 0, = — 1. This treatment is due to
Hinshelwood2 who further showed that the conclusions applied generally.
Thus with r components a differential equation of the rth order, e.g.
drX/dtr = kX is obtained for each and the solution is the sum of r terms of
the type A e't. p is the complex rth root of unity. The rth roots form a geo-
metric series and when sufficient time has elapsed only the term in e" is of
importance. On removing the imaginary terms from the non-steady state
relationships sine and cosine terms appear. For example, the equations
in series 6 become

x=(xO+YO+z() ek1+e_t{(2Xo —Yo —Zo)coskt
+ J3(Y0 — 3Zo

sin (7)

with analogous expressions in Y and Z. The appearance of the sine and cosine
terms predicts oscillatory behaviour in non-steady states whose relevance
will become apparent later.

Subsequently Dean and Hinshelwood3 developed ideas of the kind
given above into a more elaborate theory of cell function again based on
general physicochemical principles. The underlying assumptions were as
follows:

(i) The chemical activity of the cell involves reactions split into a large number
of stages, the elementary reactions being combinable in many different ways
giving a variable reaction pattern.
(ii) There is an essential dependence of given reactions on specific cell
constituents (proteins synthesized under the guidance of nucleic acids,
nucleic acids dependent on enzymes for their production, some enzymes
dependent on other enzymes and so on). The whole set of dependences forms
a closed network to which a mathematical theorem (the network theorem)
applies.
(iii) That the cell has some form of spatial organization.

The mathematical development of these ideas suggested (a) that living
cells should be adaptable to changes in environment, developing the capacity
to utilize unfamiliar nutrients with optimum efficiency; (b) that this plasticity
should reveal itself in changes in cell composition and in particular in the
proportions of enzymes; (c) that enzymes no longer necessary in a new
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environment would diminish while those specially needed would increase:
(d) that the rate of establishment of a steady state after transfer to a new
environment would be very variable, and in particular that a pattern of
reactions once established might prove highly persistent even though
essentially unstable, and (e) that the general laws of growth forced upon the
cell a tendency to divide as its volume increased beyond a certain point.
Basic equations of the type dX/dt = cx. X, + were set up. For example,
a closed and unbranched network of mutual dependences was expressed as

dX1/dt = x1X2, dX2/dt cx2X3 dX/dt =
and finally to close the cycle dX/dt = (8)

The X terms represent parts of the cell in which a structural specificity
resides such as nucleic acids, enzymes and possibly polysaccharides. They
do not refer to the concentration of medium constituents or metabolites.
These concentrations can influence the values of the cx coefficients which may
also vary from one medium to another and it should be emphasized that
the treatment has little or nothing in common with a conventional mass-
action treatment of chemical reactions.

It is evident from the simpler examples already given that the short term
solution of the equations in set 8 is very complicated. Eventually, however,
when the values of X1, X2 X,, ... are large compared to their initial
levels simple relationships again prevail viz:

dX1/dt = kX1, dX2/dt = kX2 dX/dt = kX3, etc.

and k, the overall growth rate constant, is the geometrical mean of the cx
coefficients (i.e. k'1 = x1 . . . . cçj. The steady state ratios of the various
components are given by equations of the type

+ 1 = (9)

and once more, as in the simpler examples already given, if some of the
material is transferred to another supply of the same medium each com-
ponent increases with time in accordance with the simple autocatalytic
law equation I

X1 (X1)0 ekt, X2 = (X2)0 es", etc (10)

It is also easily shown that a few of the cx terms can become quite small,
as might occur on transfer to a new kind of growth medium, without lowering
the overall growth rate very much. For example, it one of them, say cxi, was
reduced to one-tenth in a network containing 40 terms, k would be reduced
in the ratio (0.1)002 or by about 5.6 per cent. Initially the rate of formation
of X would also be reduced since dX/dt +1 but in the new steady
state X will be equal to k/cx as before and since cx, is only one-tenth
of its original value the ratio X /X will have automatically increased in
proportion to restore the balance. It is also apparent that if any one of the
cx coefficients becomes zero then growth is impossible in a network of the
kind shown in equation 8. However, the actual situation must be much more
complex, the network of mutual dependencies containing numerous branch-
ings and rejoinings. The quantitative treatment of branched mutual-
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dependence cycles predicts behaviour of considerable biological relevance
and the essential features can be illustrated by considering a single branch
as in the example given by Dean and Hinshelwood4.

The basic premises are that X, in the closed cycle given in equation 8 is
formed not only under the influence of X , as previously, but also under
that of Y1 i.e., dX/dt = cXJXJ÷1 ± f3,Y1. The relevant part of the cycle can
then be expressed as

(11)

Y1 spanning the gap between X, and X2 as an alternative to X, . In the
steady state all the components will increase in accordance with the ex-
ponential law and k, the overall growth rate constant, is given by

k ± /J1b1)cL+2...x, (12)

where b1 is the coefficient for the formation of Y1 under the influence of
X2 in the relationship dY1/dt = b1X2. k is still essentially a geometric
mean and again the effect of changes in a few of the individual coefficients
will largely be damped out. In the steady state

(13)X1 dt
and at the branch, since dX/dt = o,X,÷1 ± fl,Y1,

1 dX X,-. — k c —v-— ± J3' ( 4)i ut
The latter proves to be a very important relationship which predicts be-
haviour having a striking similarity to many biological phenomena.

For example, in a given set of conditions $JY1/XJ may be very small
compared to cX + since the branch containing Y1 is little used relative
to the alternative. On transfer to a new medium, however, the supply condi-
tions may be such that c, is very small or even zero. Initially, growth in the
new environment will be very slow due to the low value of IIJY1/XJ but as it
proceeds a new steady state will eventually be established in which f3.,Y1/X
is equal to k'. As shown above k' need not be much smaller than k and hence
Y1 must have increased considerably relative to X,. Such automatically-
occurring adjustments suggest a direct response to a need and are reminiscent
of the plasticity frequently observed when bacteria are exposed to new
environments. Furthermore, on transfer back from the second medium to the
original conditions, in which c is large and the active functioning of Y1 is no
longer necessary, the composition alters again so that o(X÷ i/t) +-
fl(Y1/X) once more is equal to k and YJXJ reverts to its original low value.
This latter behaviour is very like that termed enzyme repression but depends
not on an active repressing of synthesis but on the deprivation by the
competition of a process giving more efficient overall growth.

These kinetic equations consider only the temporal organization of the
cell. It is also organized in space as modern researches bear witness and it
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seems reasonable to postulate that corresponding to an optimum reaction
pattern there will coexist an optimum geometry of the cellular components
in any given state. This is essential so that intermediates, often labile and
capable of suffering alternative fates, are produced in the right place and at
the right time. Moreover, the lengths of diffusion paths and other factors
influencing the transfer of intermediary metabolites from one centre of
synthesis to another must be consistent with the optimum values of the
various rate constants in the kinetic equations. In this respect the values of
the coefficients are themselves functions of the spatial arrangement. These
ideas are embodied in what has been called the concept of the 'spatial map'
of the cell and are discussed in detail elsewhere.56 For the present, however,
a simple model will illustrate the basic ideas. Suppose that in one set of
environmental conditions the association of a network with a geometry
M1 gives the optimum rate of autosynthesis. In other conditions, and for
reasons which have already been given in the discussion of the relevant
equations, a network N2 and a spatial map M2 may be the most suitable.
We then have the change from N1M1 to N2M2 but the automatically-
occurring adjustment — N2 should occur much more rapidly than the
more profound changes inherent in the change in geometry from M1 to M2.
The stages N1M1 followed by N2M1 and finally N2M2 can then be envisaged.
An interesting situation arises if the cells are now returned to the original
conditions since the more rapid adjustment of the reaction pattern compared
to the spatial arrangement of the cellular components implies that on the
return journey the stages are N2M2, N1M2, N1M1. In effect the loss of an
adaptation, which has proceeded to the maximum extent, may not simply
be the reversal of the process by which it was acquired. A sort of hysteresis
effect may intervene in which the cells pass through a stage (i.e. N1M2) not
encountered before. Induced reversal at any earlier stage, when the changes
have only proceeded from N1M1 to N2M1, should accordingly be more
rapid and depending on the number of stages involved, which is likely to be
more than in our simple model, a variety of types of behaviour, ranging from
easy and complete loss of adaptations. through slow and partial losses,
to tenacious retention would be expected. This has been our experience.

Thus far only the total masses of the various components have been
considered and the possibility of maintaining constant conditions assumed.
A division condition is easily introduced into kinetic treatments by assuming
that it occurs when some constituent (e,J of the cell reaches a critical amount
(or what proves to be equivalent, when the concentration of something
within the cell reaches a critical level). A proportionality will then exist
between the number of cells (n) and e so that n = Ii e,, where fi is a constant.
Nevertheless, it is instructive to consider the necessity for division. As a cell
grows the ratio of its surface to its volume decreases rendering the access of
nutrients to the interior more difficult and impeding the loss of metabolic
products. The potential energy of the integrated system of cellular com-
ponents increases, diffusion paths lengthen and the relative rates of chemical
processes are altered. Clearly for a steady state of autosynthetic growth these
variations must only occur between restricted limits about a more or less
constant average value and in actual fact this is achieved by regular cell
division.
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The steady state of growth, where each component increases in accordance
with the exponential law, then demands that the division mechanisms are
operating in a regular manner, that the cellular components are present in
the required stable ratios and that the concentrations of diffusible inter-
mediates (which participate in the linking of the various cellular reactions)
have reached their appropriate levels. These various conditions are not
necessarily all satisfied simultaneously or in a regular manner during the
nonsteady states which accompany the transfer of bacteria to new conditions
or the transfer to a fresh supply of the same medium of organisms which have
been allowed to age. Accordingly and depending on the circumstances,
lag phases followed by multiplication at optimal or less than optimal rates,
the onset of division preceding or lagging behind any increase in cell substance
and the periodic waxing and waning in the rates of increase of various cellular
components (compare equation 7) are all, in principle, possible before
steady state conditions are again established. Such phenomena have all been
observed experimentally (see for example, References 6—9).

Other seemingly diverse bacterial properties such as lysogeny and virulence
in phage—bacteria systems1 012, 'thymine-less death'1 3, 'substrate-accelerated
death'14 15 and synchrony'6 17 can also be brought within the framework
of the mathematical models if allowance is made for the reversibility of some
of the stages18. It is not proposed to discuss these phenomena here but
rather to point out that the 'turnover' of cellular components is similarly
easily accommodated. If, for example, X,+ 1 in equation 11 is assumed to be
an enzyme which can degrade component X 2 then the rate of production
of XJ+2 is given by

dX,2/dt = J+2.XJ+3 — (15)

Whether -yX+ 1 is significant or not depends on the circumstances: in
actively-growing cells it is likely to be very small or even zero but might be
appreciable in 'resting' cells.

The question now arises as to the relation of these assumptions and general
propositions to the picture presented by molecular biology. In this picture
nucleic acids are the repositories of structural information in terms of which
messenger molecules are formed and travel as 'messengers' about the cell
in parts of which they mediate protein synthesis'9'20. Certain nucleotide
structures bring about the incorporation of specific amino acids into pro-
teins21'22. Enzymes of course play their traditional roles in all these
processes23. In most ways the more specific and the more general kinds of
treatment are in no sort of opposition. The general kinetic propositions do
not ignore the essential genetic determination of the cell properties. The
X terms in the equations represent various structural elements in the cell and
might as well refer to nucleic acids as to anything else.

Next we come to the matter of messengers. The kinetic treatment postulates
systems somehow organized in space, and envisages the occurrence of the
overall synthetic reactions in very large numbers of relatively simple unit
processes. This picture involves the diffusion of the products of one step to
the place where the next occurs. No theory which postulates the formation
of nucleic acids, proteins and other cellular components at different parts
of a cell can possibly dispense with such a general postulate. Messengers,
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then, are always needed whether they are given the quite specific task of
mediating between DNA and the ribosomes, or assigned the more general
functions which from the nature of a spatially heterogeneous, multistage
chemical system must be filled. If, then, in a living cell the structure of what is
present determines what is formed, if the total process is split into stages as in
the common chemical rule, and if the whole has organization in space
(without which the very concept of the cell is meaningless), it follows that
codes, messengers, reading and transcription are necessities. The merit of
molecular biology lies in the fact that it has begun to identify the chemical
structures and reactions involved in these processes. It can fairly be said that
the kinetic models could not ever yield information about specific interactions
of a structural kind. Similarly, they do not predict gene repression. Nor do
they deny it and, in principle, conditions for it might be written into the
kinetic schemes. As the latter stand, however, they suggest that repression-
like effects, brought about by competitive deprivation, are a common
characteristic of living cells. Moreover, the theorems predict a wide range of
circumstances in which such effects should be observed and generally speaking
this is where they would be expected.
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