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ABSTRACT
The process of crystallization in concentrated solutions depends strongly on
the rate of crystallization and the rate of long range diffusion of the polymer
chains. If the crystallization proceeds slowly compared to diffusion, this type
of crystal nucleus will be formed for which the free energy of nucleation is
smallest. By taking into account entropy effects which are characteristic for
chain molecules one can show that the crystal with smallest free energy of
nucleation is a crystal with almost regular chain folds on the surfaces. The
influence of supercooling, concentration and molecular weight on the thickness
and growth rate of such crystals is discussed.

If the crystallization proceeds rapidly compared to the large range diffusion
each part of the chain will crystallize as far as possible at the same place where
it is lying in the solution. The nucleation process is not governed by thermo-
dynamics. The type of crystal which is formed depends in this case on the con-
centration and the order of the chains in solution. A single parameter has to be
introduced in the theory: the probability p that a new molecule is incorporated
into the crystal. If p is large, crystals with loose loops with comparatively large
end-to-end distances will be formed. With decreasing p the case of short
regular folds with adjacent reentry is approached. In dilute solutions small
values of p can be expected. With increasing concentration p increases, provided

that the polymer molecules penetrate each other.

A. INTRODUCTION

Experiments have shown that polymers crystallize from dilute solutions
in the form of lamellae. The lamellae have a uniform thickness of about 100 A.
The molecules are oriented perpendicular to the basal plane of each lamella
and fold back at the upper and lower surface of the lamelia. Possible models
for the arrangement of the chains in the crystals are shown in Figure 1. Some
investigators1 assume that the folds are regular and as short as possible as
indicated in Fiqure la (adjacent reentry model) others2 think of loose loops
as shown in Figure lb ('switch-board' model). In addition to the folds or
loose loops chains with one free end ('cilia') have also to be assumed4.

Lamellar crystals are also formed in concentrated solutions. Here however
the crystals are often bound together forming bigger units which, in some cases,
show a structure more or less similar to that of the spherulites obtained from
the melt5. As a consequence, in addition to loops, folds and chains with free
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Figure 1. Possible models for the arrangement of the molecules in single crystals grown from
solutions1 5•

ends, tie molecules connecting two different crystals may also emerge from
the crystal surfaces

How can these results be explained? The theory of the crystallization of
polymers has been developed in a number of papers. The first investigations
were published by Hoffman and Lauritzenh. These authors assumed that
crystals with regular folds are formed. With the help of this assumption they
showed that the crystals must have uniform thickness, namely the thickness
of the critical nucleus. A more refined calculation of crystal thickness, taking
into account variation in the thickness as well, ws performed later by Frank
and Tosi7, Price8, and Lauritzen, Di Marzio and Passaglia9. Quite recently,
Sanchez and Di Marzio'°12 extended the theory to polymers of finite mole-
cular weight and calculated the influence of molecular weight, as well as of
the concentration, on the crystal growth rate. But none of these theories
explains chain folding: they are theories on crystal growth rates, distribution
of crystal thickness, etc. under the assumption that folding of the chains occurs.

How can chain folding itself be explained? in dilute solutions, chain folding
results simply from the fact that the molecules crystallize one by one. if a
single molecule forms a crystal it has to fold more or less regularly. This is not
true, however, for concentrated solutions. Here, allowance must be made for
two or more molecules crystallizing at the same location. As a consequence,
the formation of bundle-like crystals is possible and seems quite probable.
Are there also thermodynamic or kinetic reasons which favour chain folding
in a system of concentrated chain molecules? If so, what is the most probable
distribution of the lengths and the end-to-end distances of the loops?

These questions have been investigated extensively in our laboratory in
recent years. It has been shown that chain folding can occur under certain
conditions both in concentrated solutions and in the melt. It is a consequence
of entropy effects which are characteristic for chain molecules. One has to
distinguish between two cases:
(1) Crystallization proceeds slowly compared to long range diffusion. In this
case crystals with regular folds are formed because such crystals have a
minimum of free enthalpy of nucleation' 14•
(2) Crystalll7atlon proceeds rapldly compared to long range diffusion in
this case each part of a molecule is crystallizing near the place where it is lying
in the solution or melt respectively. In dilute solutions, again, crystals with
regular folds are formed. In concentrated solutions and in the melt, however,
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regular folds are formed only if the molecules do not penetrate each other
before crystallization' , otherwise mainly loose loops and tie molecules are
found.

In the following we will review more extensively all the theories mentioned.
We shall not discuss them in historical order but shall combine them in such
a way that we obtain a systematic theory for the crystallization of concentrated
solutions.

B. THEORY OF SLOW CRYSTALLIZATION

1. Which type of crystal is formed?
In a concentrated solution, in principle different types of crystals can be

formed: bundle-like crystals (Figure 2a), crystals with irregular loose loops
(Figure 2b), crystals with regular folds (Figure 2c), and crystals which are
connected to other crystals by tie molecules (Figure 2d). Of course, a mixture

of all these types can also occur. Which type will actually be formed?
In order to answer this question we have to apply the theory of nucleation

The number of crystal nuclei formed in unit time is given'6 by

I = const. exp (— AGVkT) (I)
AG is the free enthaipy of nucleation, k is the Boltzmann constant and T is
the temperature. We will first calculate AG for a cylindrical crystal of small
molecules. The free enthalpy necessary to form such a crystal is given by6

AG 1LP21Pk AG°+ 2mp2o. + 2itpla1

p is the radius of the base, 1 the height, Pk the density. o and aethefree surface
energy at the lateral surface and the two other surfaces respectively. AG° is the
difference in bulk free enthalpy between the crystal and the melt per unit of
mass. AG as a function of! and p is represented by a plane with a saddle point
(see Figure 3). For small crystals AG increases with increasing I and p due to
the formation of additional surface, crystal growth is not favoured thermo-
dynamicalLy. After having reached a critical size, AG decreases with further
growth, and further crystallization is thermodynamically favoured. The
amount of free enthalpy AGA, which is necessary to reach the critical size so
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Figure 3. Amount of free enthalpy G for formation of a cylindrical crystal as a function of the
crystal dimensions 1 and p.

that further grcwth is favoured, depends on 1. For a certain value of 1, denoted
by 1* AGA assumes a minimum AG called free enthalpy of nucleation AGZ
1* and p are the values corresponding to the saddle point S. One obtains6 17

AG =
p AG)2

(3)

(4)
PkM

2o
and p* — (5)

In the case of long chain molecules the situation is more complicated. The
essential difference between the crystallization of small molecules and of long
chain molecules is illustrated in Figure 4. With small molecules, in an elemen-
tary step of crystallization, it is always a complete molecule which passes from
the solution into the crystal (left side of Figure 4).The entropy change caused
by crystallization is the same for each molecule. With polymers, in an
elementary step of crystallization only a small part of the molecule, say a
monomer unit, crystallizes (see Figure 4, right side). The change of entropy
connected with this process is different from unit to unit. This is due to the
fact that not only the entropy of the crystallizing unit is changed but usually
also the entropy of the rest of the chain which is not crystallized. This can be
seen very clearly in the process indicated in Figure 2b. When the unit P
crystallizes the chain betveen Qand P becomes chain with two fixed ends.
Before this process it had one end, namely P. free. Therefore the number of
conformations and the entropy of the chain QP decrease markedly when P
crystallizes.

The entropy change mentioned, ASk, of the part of the chain which is not
crystallized but is hanging out of the crystal, varies for different types of
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Figure 4. Elementary step of crystallization in a low molecular weight substance and in a polymer.

crystals*. In order to take this effect into account, equations 2—5 have to be
13, 14 If ASk is the same for each chain the total additional change of

entropy during formation of a crystal is proportional to the number of chains
coming out of the surface of the cylinder. Therefore this entropy acts in the
same way as additional contribution to the surface free energy cr If we
denote this additional contribution by a we can write

= VOkTASk

where v0 is the number of chains emerging from the unit area. Therefore, in
order to take the entropy effect mentioned into account we have simply to
replace a by ae + a in equations 2—5. In particular. for the free enthalpy of
nucleation we obtain13

AG* 8ira(a + e)
A . (7)Pk(AG )

We will now show that for various types of nuclei o is different .Therefore
according to equations 7 and 1 AG and the nucleation rate I are different.
This type of crystal which has the lowest value of a and therewith the largest
value of I, will be formed most quickly and therefore will dominate.

We consider at first the growing of a bundle-like crystal composed of
chains hanging out of another crystal. Such a process is indicated in Figure 2d.
Every time a chain is added to the growing crystal, a chain with two fixed ends
(tie molecule) is created, for example the chain QP in Figure 2d. The fixing
of the chain end is connected with a big loss in entropy ASk. Figure 5 gives this
entropy change as a function of chain length measured in number of units
of the chain. The parameter h is the end-to-end distance. When one assumes
for example an end-to-end distance of 100 nm and a chain length of 600 nm
one obtains AS1, = 25 k. This corresponds in the case of polyethylene to
additional surface free energy a 700 erg cm 2,

We consider next a crystal with loose loops and nonadjacent reentry
(Figure 2h). Here also, during the growth process. chains with fixed ends are

* The considered change of entropy of the part of the molecule w hich is not crystallized is
always negative. Therefore the introduced decrease of entropy, ASk, is always positive.
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created at the crystal surfaces, namely the ioops. However, the end-to-end
distance of the chain-loops can be considerably smaller than in the first case.
Therefore o, also is not so large. When h = 10 and N 50 one obtains
ASk = 9k and 400 erg cm 2 decreases further with decreasing values
of h.

If the loop length N and end-to-end distance h assume the smallest possible
values, the loose loop model goes over into the adjacent reentry model shown
in Figure 2c. The shortest loop with adjacent reentry consists in the case of
polyethylene of 4 CH.2-units which are outside the crystal lattice. The fixing
of the chain end,, in this case, gives rises 8 to a surface free energy of oniy
30 erg cm'2. We have also to consider that there is an increased number of
gauche-conformations in such a short ioop, which corresponds to about
70 erg cm 2 Therefore the total additional surface free energy r is about
100 erg crn2. A slight increase of loop length and end-to-end distance might
decrease o a little. This cannot be calculated exactly because the chain
statistics applied in our calculations are not valid for very short chains. In any
event, however, comparatively large loops and end-to-end distances lead to
much higher values of a, as shown above. Therefore one can say that in the
case of chain folding the smallest value of a is obtained for comparatively
short loops with adjacent or almost adjacent reentry.

Lastly we consider a bundle-like crystal formed of molecules which were
completely amorphous before they Were incorporated into the crystal
(Figure 2a). In this case, on both surfaces chains with one free end hang out of
the crystal. Each of these chains loses entropy when the molecule to which it
belongs is attached to the crystal. There are two reasons for the entropy loss;
(i) The number of conformations of the chain considered is reduced because
the volume available to this chain is limited by the crystal. Owing to this effect
conformations like that shown in Figure 6 are no longer possible. Figure 7
shows the loss of entropy ASk as a function of chain length. If, for example, the
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Figure 5. Decrease of entropy occurring with fixing the ends of a chain in a distance h as a function
of the number N of monomer units of the chain'3.
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Figure 7. Decrease of the entropy of a chain with one free end caused by the limitation of the
volume as a function of the number of units of the chain20.
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Figure6. Example of an impossible conformation of a chain hanging out of a crystal19.
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chain hanging out of the crystal consists of 1000 units, the loss of entropy
ASk = 4k corresponding to an additional surface free energy of 120 erg cm 2
(ii) The chain as a whole can no longer perform a translational diffusion after
part of it is incorporated into the crystal. The entropy caused by diffusion is
small compared to the conformational entropy of the whole chain. It is not
small however compared to the conformational entropy of a few units which
are incorporated into the crystal. wherefore it cannot be neglected in nuclea-
tion processes. The considered entropy change is given according to Fiory—
Huggins theory by2'

AS, = k ln N,/v2 (8)

where N0 is the number of units of the chain and v2 the mole fraction of
polymer. For N0 = 2000 and concentrated solution the factor v2 can be
neglected and one obtains AS,/2 = 3.80k. This value corresponds to an
additional surface free energy of 120 erg cm 2 Both effects together
give a value of a. = 240 erg cm2 According to Hoffman and Lauritzen22
one has to consider also a third contribution of about 100 erg cm 2 from the
special packing conditions.

The results obtain ed are summarized in Figure 8. Here again one can see

the crystal with short loops and almost adjacent reentry, the bundle-like
crystal formed of chains which were completely amorphous before incorpora-
tion into the crystal, and a crystal which is formed of chains hanging out of
another crystal. The corresponding additional surface free energies o are
given below each crystal type One sees that the crystal with folds has the
smallest value of o. We have to stress here, that in our estimation of the o
values we have already got an upper limit for the folded chain crystal and
lower limits for the other types of crystals. From this result we conclude that
the crystal with short folds with almost adjacent reentry is thermodynamically
favoured.
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2. Crystal thickness
After having seen that crystals with almost regular folds are also formed in

concentrated solution, we can apply the theories developed fOr folded chain
crystallization. We will first calculate the thickness of the crystals according to
the theory of Lauritzen and Hoffman6. The theory starts with the statement
that crystals with chain folds can grow only in a lateral direction; an increase
in thickness is combined with difficult diffusion and is very slow. Therefore
during crystal growth 1 is constant and p is increased. The change in free
enthalpy during crystal growth with a constant value of I is indicated for
some values of! by the dashed lines in Figure 3. One sees that the amount AGA
of free enthalpy which is necessary to create a stable crystal varies with 1. AGA
assumes the minimum value AG if I equals the thickness 1* of the critical
nucleus defined by the saddle point. in principle crystals with all values of I
will be formed. But according to equation J the nucleation rate for crystals of
different thickness 1 is given by

I = const. exp (— AGA/kT) (9)

Therefore the overwhelming number of crystals will have the thickness 1* for
which AGA is at a minimum and I at a maximum.

As mentioned in the introduction, this theory has been refined by consider-
ing also variations in thickness during growth. Without going into details, we
show only some results. The curves in Figure 9 show the calculated thickness
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Figure 9. Lamellar thickness of chain-folded polyethylene single crystals as a function of
crystallization temperature. The curves represent calculated values for different values of surface

free energy o. The points represent the measured values23.

of the lamellae as a function of crystallization temperature for different values
of the surface free energy. The points have been obtained experimentally for
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crystallizations from dilute solutions. No experimental results are known for
concentrated solutions.

3. Growth rate
Assuming chain folding, the theory of Sanchez and DiMarzio10'2 for

crystal growth rates can also be applied. Growth rate is governed mainly by
the rate of secondary nucleation. Sanchez and DiMarzio distinguish between
two different nucleation mechanisms nucleation by cilia, that is by chain ends
hanging out of the crystal, and nucleation by chains which lie completely in
the melt. If SC and S are the two nucleation rates respectively, and u and
ws the probabilities for the two processes, the total nucleation rate is given by

S = 14FSC + WSs (10)
SC and S have been calculated separately as a function of molecular weight

and concentration for the case of polyethylene in p-xylene. The results are
shown in Figure 10. One sees that both SC and SS increase with increasing

Figure 10. The relative effect of concentration on nucleation rate of solution molecules S' and
cilia S as a function of molecular weight".

molecular weight The influence of concentration on S is not the same as on
5S 55 increases with concentration, SC however is almost independent of
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concentration. Unfortunately only very low concentrations have been
considered in the calculation.

The values and W have not been calculated by Sanchez and DiMarzio.
According to our considerations in part I, wS has to be much smaller than W,

C. THEORY OF RAPID CRYSTALLIZATION
We will next assume that crystallization proceeds rapidly compared to long

range . In this case a part of the molecule which is reached by the
crystal surface will be incorporated by the crystal, independently of whether
the thermodynamically most favoured configuration is reached by this
process. In Figure 11 we see two molecules penetrating each other, before

Melt

Crystal

Figure 11. Schematic representation of the crystallization process if crystallization proceeds
rapidly compared to long range diffusion' .

crystallization(above) and after crystallization (below). Generally, those parts
of the molecules which are neighbours in the concentrated solution remain
also neighbours in the crystal.

Figure 12 illustrates the different crystallization processes we have to
consider. Crystal growth has proceeded so far that at location P a chain has to
be added. in any stage of crystallization one will find on the crystal surface
sharp folds, loops with nonadjacent reentry and chains with one free end.
The amounts of the different types of chains may vary but in principle all these
types have to be considered. We have to distinguish between four possible
processes:
(a) A part of a new chain, which before lay completely in the melt, is incor-
porated in the crystal. In this case a chain with one free end is created both
in the upper and in the lower surface.
(b) A part of a chain hanging out of the upper surface can be incorporated in
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Figure 12. The different processes during crystal growth' .

the crystal. In this case a loop is formed at the upper surface and a chain with
one end free at the lower surface.
(c) A part of a chain hanging out of the lower surface can be incorporated,
thus forming a loop in the lower surface and a chain with a free end in the
upper surface.
(d) A chain hanging out of another crystal can be crystallized, thus creating a
tie molecule and a chain with one free end.
For the following calculation we need only one parameter for the characteri-
zation of the system, which we will call p: p is given by

p = p1 + P2 (11)

where Pi is the probability that a new molecule, previously lying completely
in the solution, is added to the crystal, and P2 is the probability that a tie
molecule is formed. In the case of dilute solutions p will be almost zero because
no other molecule is in the vicinity of the molecule considered. In the case of
concentrated solutions p increases with increasing concentration, provided
that the molecules penetrate each other. If the molecules do not penetrate
each other p is also small for concentrated solutions. Using this parameter
we will derive the end-to-end distance distribution function co(h) of the loops,
that is, the number of loops which have an end-to-end distance between h and
h ± 1. The meaning of h can be seen in Figure 13.

For the calculations the following assumption is made the probability that
a ioop of end-to-end distance h is formed at a certain point P is given by the
number of possibilities of forming such a ioop divided by the number of
possibilities of forming a loop of any end-to-end distance. If (h) denotes the
density of chains with one end free in distance h from point P one can write

w(h)

j(h) h Z*(N, h)
N

.ji(h) Z*(N, h) dh
(12)

Z*(N, h) is the number of conformations of a chain of length IV and end-to-end
distance h. hrnax is the average length of chains with one free end and a the
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Figure 13. Definition of h and N for a ioop'5.

distance of neighbouring chains in the crystal. The function (h) is not known.
It can be derived however from the condition that the numbers of chain ends
which disappear must be equal to the number of loops formed. This condition
yields a differential equation

ji'(h) + f3(1 p) Z*(N, h)ft(h) = 0

with

= , Z(]V, h) dhl

By solving this equation (h) is determined and then with help of equation 12
the function co(h) is obtained.

The influence of the probability p on the end-to-end distribution function
o(h) for molecules consisting of N0 = 2000 units is shown in Figure 14. If p

has a very small value, for example jo_b,which is the case in a dilute solution
or in a concentrated solution in which the molecules do not penetrate each
other, aim ost all molecules have an end-to-end distance which is smaller than
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Figure 14. End-to-end distance distribution function w(h) fordifferent values of the probability
p. N0 = number of monomer units of a molecule.
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Figure 15. End-to-end distance distribution function o(h) for molecules of different length N0
when p = 10 The length P is measured in monomer units' .
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5. This means that one has almost adjacent reentry. With larger values of p the
distribution becomes broader and loops with greater and greater end-to-end
distances occur. p increases when the concentration increases and the mole-
cules penetrate each other. As the molecules actually penetrate each other
under usual conditions, one can conclude that, with increasing concentration
of the solution, the end-to-end distances of the loops become larger.

The end-to-end distance distribution is also influenced by the length of the
molecules, that is by the molecular weight. Figure 15 shows o(h) for molecules
of different lengths N0 when p equals 1O °. With increasing lengths the
end-to-end distances become larger. The same is true also for other values of
p as shown in Figure 16.

Figure 16. End-to-end distance distribution function (h) for molecules of different length N0
when p = iO j. The length Nc is measured in monomer units1 .

Up to now, we have discussed only the end-to-end distances. The loop
lengths have not been calculated. This is because the kinetic factors during
crystallization do not influence the final loop length The end-to-end distance
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distribution established during crystallization cannot be changed later with-
out melting the whole crystal. The ioop lengths however can always be changed
by comparatively simple diffusion processes and the melting of small surface
layers of the crystal. Therefore the final loop lengths are not determined by
kinetic but by thermodynamic factors. The kinetic parameter p influences the
loop length only as far as it determines the end-to-end distances of the loops.

Calculations of the average equilibrium loop length assuming fixed ends
of the loops* have been performed by methods described elsewhere15" 8,24,
Some results are shown in Figures 17 and 18. The average loop length <N>
increases with increasing temperature because of partial melting. Compared
at the same temperature, <N> increases with increasing p and N0. From
these results we can conclude that the loop lengths and the melting range of
the crystals will increase with increasing concentration of the solution in
which the crystals were grown.

Trn T, °C

<N> as a function of temperature for molecules consisting of
N0 = 4000monomer units' .

N0 4000 50

00

A

V

p1= 10W'

p1lO10

Figure 17. Average loop length

* Calculations of the end-to-end distance distribution functions and the lengths of the loops
when the end-to-end distance of each ioop may vary, have been performed by Roe25 as well as by
Zachmann and Peterlin24. We do not think, however, that the assumption of various end-to-end
distances is fulfilled under usual experimental conditions (see discussion in Ref. 25).
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Figure 18. Average ioop length <N> as a function of temperature for molecules consisting of
N0 = 2000 monomer units'5
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