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Abstract—In order to probe the mechanisms of chemical transformations in electric discharges it is most useful to
monitor concentrations of reactants, products and reactive intermediates as a function of discharge parameters. Mass
spectrometry, a popular technique for observing intermediates in chemical reactions, meets with particular difficulty
when applied to discharges, due to the presence of excited molecules as well as free radicals in such systems.
Molecular beam analysis, a synthesis of mass spectrometry with molecular beam measurements of electric and
magnetic moments and velocity distributions, is a technique developed in our laboratory which offers distinct
advantages for the analysis of intermediates in electric discharges.

In low pressure discharges, end-product analysis can be facilitated by sample compression. A chromatographic
sampling system which employs compression in order to achieve high sensitivity has been developed and evaluated.

There is some question concerning the appropriate discharge parameters to be employed in correlating measured
variations in concentrations. We are investigating the use of discharge "actinometers" as a means of measuring the
intensity of electric discharges. In discharges the intensity (number and energy of the electrons) and the chemistry
are strongly coupled. Thus, it is necessary that the actinometer be present in the reactor; it is not permissible to
substitute vessels as is customary in photochemical investigations. Since the actinometer is to measure only the
discharge intensity, it must not participate in any chemical reactions with molecules and intermediates in the
discharge. Finally, the ratio of the rates of the primary interactions of the actinometer and reactant with the discharge
must be independent of discharge parameters.

INTRODUCTION

It is generally accepted in chemistry that it is not possible
to prove that a reaction proceeds by a particular
mechanism; one can only eliminate unimportant pathways
from consideration. Nevertheless, for many transforma-
tions, the chemical evidence and theoretical limitations
supporting a particular mechanism are so overwhelming,
that its acceptance is universal. In plasma chemistry much
has been written concerning mechanisms and yet very
few mechanisms are well established. This situation
results both from the inability of simple theoretical
considerations to rule out all but a few pathways, as well
as from the myriad of products produced in many
experimental investigations. Yet there are cases in which
the yield of a single product approaches unity in the
plasma reaction of a large organic molecule,2 indicating
that there are predominant mechanisms in discharge
chemistry.

One of the most important tools used in investigating
the mechanism of a chemical reaction is a study of its
kinetics. For a plasma reaction the goal of a kinetics
investigation is to predict the yield of various products as
a function of chemical parameters (concentration, pres-
sure and flow rate) and discharge parameters (e.g. voltage,
current, frequency and reactor dimensions). The analysis
is simplified in the limit of short contact times or very
weak discharges, where the probability of subsequent
transformations of the initial products can be ignored. It
may be necessary to consider both the discharge and post-
discharge environments. Alternatively, the discharge reg-
ion can be sampled directly, using a technique which
permits the concentration of intermediates to be meas-
ured, thereby removing one stage of speculation from the
analysis. The most powerful approach combines measure-
ments of both product yields and intermediate concentra-
tions, demonstrating the extent to which the observed
intermediates can quantitatively account for the forma-
tion of the final products by the postulated mechanism.

The successful accomplishment of such a program for any
but the simplest plasma systems has not yet been re-
ported. However, the present paper will focus on novel
diagnostic techniques being developed in our research
group, with this objective in mind. In our laboratory,
stable products are analyzed by gas chromatography, with
sample compression for enhanced sensitivity. Inter-
mediates are quantified by molecular beam analysis, a
synthesis of mass spectrometry with molecular beam
measurements. Finally, an attempt is being made to
combine the effects of the discharge parameters into a
single variable, conveniently measured by the decomposi-
tion of trace amounts of a discharge "actinometer" which
is added to the system.

MOLECULAR BEAM ANALYSIS

Although intermediates in post-discharge flowing gases
have been quantified by a variety of methods, very few of
these techniques have been successfully applied directly
to discharge environments, due to the special properties
of such regions (e.g. free charges, light emission, corro-
sion and polymer deposition). Mass spectrometry, how-
ever, appears to be generally useful for this purpose,
especially for low pressure discharges, where representa-
tive sampling presents little difficulty. The utility of mass
spectrometry for monitoring ions in discharges is obvious,
and great sensitivity can be achieved in such measure-
ments.3 For neutral intermediates (e.g. atoms or free
radicals), ionization by electron or photon bombardment
is required, with concomitant reduction in sensitivity. In
order to ensure the survival of unstable intermediates, the
sampled gas usually enters the ionization region as a
collimated molecular beam, which passes through several
separately pumped chambers in order to maintain a low
residual pressure in the ionizer. Modulation of the
molecular beam is helpful to further discriminate against
ions formed from background gas.

Although a mass spectrometer allows Unambiguous
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identification of ions (in the limit of infinite m/e resolu-
tion), identification of the neutral parent of each ion
requires considerable care. Atoms and free radicals are
usually identified by the method of appearance potential
discrimination, i.e. the formation of ions with electrons of
energy lower than that needed to produce the atomic or
free radical parent ion by any fragmentation process46
(see Table 1). Since the cross-section for direct ionization
(I) approaches zero at threshold, discrimination against
dissociative ionization (II) is facilitated by a large bond
energy. However, one must consider not only the bond
energy of the reactant RX (II), but also of all products,
RY, some of which may be more weakly bound (III). Ion-
pair formation (IV) has a threshold reduced by the
electron affinity of the negative ion-forming moiety, and
for electronegative substituents, may occur at lower ener-
gies than direct ionization (I). Loss of discrimination due
to thermal energy (V) and mutual repulsion of electrons
(VI) can be eliminated by the use of photo-ionization,7 or
reduced by means of the retarding-potential-difference
method8 or deconvolution techniques.5'9

There is both theoretical'° and experimental" evidence
that molecules become vibrationally excited in electric
discharges, and also that vibrational energy, W(RX*), is
completely effective in lowering the appearance potential
for dissociative ionization of molecules.12 Thus, process
VII can be particularly troublesome in discharges, where
vibrational temperatures are generally unknown, espe-
cially in case where the reactants have sufficient vibra-
tional degrees of freedom to store appreciable vibrational
energy. In conclusion, appearance potential discrimina-
tion can be be employed to quantify intermediates in

Process Minimum energy

I R+e-÷R+2e V=I(R)
II RX+e-R+X+2e V=I(R)+D(RX)

III RY+e-*R+Y+2e V=I(R)+D(RY)
IV RX + e- R + X + e V = I(R)+D(RX)- EA(X)
V thermal energy of electrons

VI space charge effects
VII RX*+ e-*R + X + 2e V = I(R)+ D(RX)- W(RX*)

SourceS

discharges, but careful attention must be paid to potential
interferences from process h—Vu.

In our laboratory an alternative mass spectrometric
procedure is employed for identifying transient inter-
mediates in chemical reactions. The method is termed
molecular beam analysis, because it uses molecular beam
measurements of the properties of neutral species to
supplement ionic mass data.'3 The molecular beam
analyzer, shown in Fig. 1, employs a 45°, 15-cm radius
magnetic sector mass spectrometer, with an electron
multiplier detector and either a pulse counting or a current
measuring data handling system. Since appearance poten-
tial discrimination is not employed, ions can be formed
with a very intense beam of electrons (ca. 200 mA) of
energy close to that at which ionization cross-sections are
maximized.

The molecular beam is modulated in the source
chamber at 78Hz by a rotating sectored disk. In the main
chamber a moveable obstacle blocks the direct path into
the ionizer. Particles are then deflected into the ionizer by
the inhomogeneous hexapolar field shown in Fig. 2. This
field can serve as either a magnetic or electric lens. In the

Table 1. Appearance potential discrimination

Fig. 2. End view of the hexapolar electromagnetic-electrostatic
field. The energizing coils are only shown around one of the pole

tips.

Detector
Buffer

Fig. 1. Side view of molecular beam analyzer; (A) electron bombardment ionizer; (B) magnet pole tips; (C)
variable-width slits; (D) electron multiplier; (E) cryopump; (F) variable leak valve; (G) flexible metal bellows; (H)
straight-through valve; (3) directional entrance; (K) moveable obstacle; (L) hexapolar electromagnetic-electrostatic
field; (M)feed-throughs (9) for water-cooled magnet coils;(N)high-voltagefeedthrough;(P)beammodulatororpulser;

(OJ motor; (R) source mounting cone; (5) flowtube; See Ref. 13 for additional details of this apparatus.
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F

Fig. 6. Arrangements for sampling directly from r.f. discharges. (a) A—square cross-section quartz flow tube;
B—sampling orifice; C—mounting cone; D—grounded capacitor plate; E—capacitor plate; F—molecular beam
analyzer. (b) A—aluminum oxide sampling cone; B—quartzflow tube; C—r.f. electrode; D—O-ring seals; F—topump;

G—moleculaibeam analyzer.

W(PAC /PTY'2 (watts)

Fig. 7. Relative methyl radical concentrations in an acetone
discharge. Variation of variables: W, 1—20W; 0.006—

0.038 torr; P,0(Ar), 0.4—0.8 torr.

of power (1—20W) and of acetone partial pressure (0.006—
0.038 torr) and with a factor of two in variation in total
pressure (0.4—0.8 torr), the measured methyl radical
concentration varies approximately linearly with the
variable W(P acetone/P 10)U2• Figure 8 shows that roughly the
same result is obtained when monitoring CF3 radicals in a
hexafluoroacetone discharge. It is interesting to compare
these results with those predicted by a steady-state kinetics
analysis for the simplest conceivable mechanism for such
reactions, where radicals are produced directly by the
discharge and lost by homogeneous termolecular recom-
bmation.

k1

(CH3)2C0-* 2CH3 + CO

k2

2CH3 + M- C2H6 + M

d[CH3] — 0 = 2k1[(CH3)2C0] — 2k2[CH3]2[M]dt —

1k1 [(CH3)2C01[CH3] =
[M} )1/2

(1)

a 9 0

Fig. 8. Relative trifluoromethyl radical concentrations in a
hexafluoroacetone discharge. Variation of variables: W, 3—24 W,

Phexafloocoacetone, 0.016—0.064 ton; P01(Ar), 0.4—0.09 torr.

With the assumption of negligible heating or consumption
of reactant, this gives the same dependence on Pacetone and
Ptotai as is observed. If k2 is assumed to be independent of
discharge power, agreement with 'the experimental power
dependence is obtained if k1 is proportional to W2. The
most important deficiency of this analysis is its neglect of
consumption of reactant (equating the initial concentra-
tion of reagent to the instanteous concentration required
in eqn 3). This may be responsible for the three points
with largest [CF3I in Fig. 8 falling somewhat below the
line, and the experimental procedure is currently being
altered so as to be able to account for reagent consump-
tion. We consider the reasonable agreement of our results
with this very simple kinetics analysis to be extremely
encouraging.

ELECTRIC DISCHARGE ACTINOMETERS

The second part of this paper deals with the question
of what discharge parameters are most useful in making
correlations in order to reveal the mechanisms of trans-
formation in plasma chemistry. I would like to suggest
that in answering this question, we follow the lead of

(3)
photochemists, who make useful correlations on the basis
of quantum yields. In photochemistry, the dependence of

(a)

=

(b)

ACETONE DISCHARGE

rI 1.0

HEXAFLUOROACETONE DISCHARGE

0.5

2 3 4 5 6 7 8 23 4 5 6
W(PHFA/PT)'2(watts)
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the quantum yield of a process on the chemical parame-
ters of a system can often disclose the transformations of
active intermediates produced in the reaction, in the
absence of knowledge concerning the primary photochem -
ical event. Often, at a later date, a photochemical reaction
is re-investigated with more sophisticated techniques,
which reveal the details of its initial steps.

The use of quantum yields presupposes a knowledge of
the number of interactions between the source of excita-
tion and the reactants. In photochemistry, this is clearly
the number of quanta absorbed by the reactant, but what
is the corresponding quantity in discharge chemistry,
which we will call the "intensity" of the discharge? In
some discharge systems, it may be possible to use the
consumption of reactant as a measure of the intensity. For
example, in the previously discussed mechanism,
ln ([(CH3)2C0]0/[(CH3)2C0]) = kir, where T is the resi-
dence time in the discharge. Thus eqn (3) can be rear-
ranged to

[CH3] = (— ln ([(CH3)2C0]0/[(CH3)2C0])

< [(CHCO]\ 4
[M] I '

which is independent of discharge parameters. However,
this approach will obviously be invalid in cases in which
there is appreciable back reaction, chain reaction, or
quenching of a reactive or dissociating state. In such
instances, we propose the use of a discharge actinometer,
i.e. a molecule which is destroyed in a simple manner by
the discharge and can be added to plasma reactions in
order to measure the rate of primary interactions between
the discharge and substrates. It is emphasized that, in
contrast to photochemistry, in plasma chemistry the ac-
tinometer must be incorporated into the system being
studied—no substitution of vessels is permitted, due to
the strong coupling between the chemical and discharge
parameters of a plasma system.

There are a number of important requirements for
discharge actinometers. First, such molecules must be
destroyed only by direct interaction with the electrons
and photons of the discharge and not by reaction with
active particles produced from the substrate, such as
atoms or free radicals. (When an inert carrier gas is
employed, it seems appropriate to include destruction by
collision with inert gas ions and excited states as direct
interactions of the discharge.) Second, the ratio of the
rates of primary interaction of the actinometer and sub-
strate with the discharge must be a constant as discharge
conditions are varied. The latter requirement might seem
like an impossibly difficult criterion to satisfy, since the
interaction of molecules with electrons and photons are
often strongly energy dependent. However, in discharges
one must consider averages over broad distributions of
energy, and these might show much less variation. For
example, some results for an r.f. discharge in Ar to which
varying amounts of tetrahydrofuran and hex-
afluoroacetone have been added are shown in Fig. 9.
Along each axis is plotted a quantity proportional to the
first-order constant. for destruction of one of the sub-
strates. Within the normal experimental error for this type
of experiment, these data are fitted by a straight line; i.e.
over the range of variables used in this experiment, the ratio
of constants for destruction of the two reagents is
independent of conditions. A similar linear relationship has
been found for discharges containing hexafluoroacetone

In E0

L L .L4 .6 .8
[n-hexane],
[n-hexane]

and n-hexane, as shown in Fig. 10. Such data encourages us
in our search for appropriate discharge actinometers.

END-PRODUCT ANALYSIS

The measurements shown in Figs. 8 and 9 were made by
mass spectrometrically (with the molecular beam anal-
yzer) monitoring characteristic ions of these compounds

.11

L I I I
2 .4 .5

In Lm.EJo
[THF]

Fig. 9. Two substrate discharge, hexafluoroacetone and tetra-
hydrofuran, Phe eeaeteee '0.0018 ton, 0.020

ton, PT = 0.4—0.8 ton, W = 1.7—12.6W, T 0.025 sec.

6

1.4

S

I.2L

.6

Fig. 10. Two substrate discharge, hexafluoroacetone and n-hexane,
Phe,,,eteee =0.0035 ton, Ph,, = 0.017 ton, PT = 0.5

1.0 ton, W = 1.2—13.2W, r = 0.025 sec.

J
.0
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sufficiently far down-stream of an r.f. discharge to permit
vibrational relaxation of excited molecules. Besides being
an extremely expensive technique, mass spectrometry
also suffers from limited accuracy in monitoring trace
concentrations of actinometers (P ' 0.001 torr) and inter-
ferences at ions characteristic of many products. A more
conventional method of end-product analysis, such as gas
chromatography, would thus be useful in our work.
Unfortunately, we find that even with the extremely
sensitive flame ionization detector, the sensitivity of gas
chromatography is insufficient to accurately monitor the
concentration of trace products and actinometers in these
low pressure discharge systems. This results from the
maximum volume of the low pressure gas that can be
employed as a sample (usually ca. 1 cm3) without degrad-
ing the resolution of the method. An alternative procedure
is to trap the discharge effluent and then dissolve the trace
compounds. However, this procedure can be exceedingly
time consuming.

In our laboratory we have developed a simple method
for compressing low pressure gaseous samples to atmos-
pheric pressure, with proportional increases in the partial
pressure of trace components, in order to provide a large
increase in sensitivity for gas chromatographic analyses.
The increase in sensitivity is Patm/Psampie, and usually is
greater than 100. Sample compression is accomplished in
a Teflon bag which is sequentially evacuated, filled with
low pressure sample, isolated, and then compressed by
atmospheric pressure. Using this technique, we can
quickly and accurately quantify discharge products hav-
ing partial pressures of <i0 torr.

Although we have not yet completed the detailed
analysis of any plasma reaction, we are hopeful that with
the promising diagnostic techniques described in this
report, we will be able to make some meaningful progress
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in this direction. Perhaps we are not far from the day in
which mechanisms of plasma transformations will be
discussed with the same degree of confidence as they
are presently for other, older methods of carrying out
chemical reactions.
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