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PLASMA ENGINEERING IN METALLURGY AND
INORGANIC MATERIALS TECHNOLOGY

N. N. RYKALIN
A. A. Baikov Institute of Metallurgy, Prospekt Lenina, 49 Moscow, B-334, USSR

Abstract—An account is presented of the work done in the USSR on the generation of thermal plasma, plasma
melting, and plasma jet processes. The various methods of plasma generation are reviewed, such as arc plasma
generators and high frequency (HF) plasma generators including HF-induction plasmatrons, HF-capacity
plasmatrons and HF-flame plasmatrons. Plasma melting techniques covered include plasma-arc remelting and
reduction melting. Plasma jet reactors, multi-jet reactors, and processes such as product extraction, dispersed
material behaviour in plasma jets, production of disperse materials, reduction of metals, synthesis of metal
compounds, and production of composite materials are briefly described.

INTRODUCTION

Thermal plasma engineering enables new inorganic
materials, with pre-determined mechanical and chemical
properties, shape and structure to be produced, such as
metallic alloys, chemical metal compounds, ultra-disperse
and spherical powders and refractory and composite
materials. Thermal plasma processes can play an impor-
tant role in extraction metallurgy, both in the effective
ulilisation of polymetal ores and concentrates, and in the
processing of industrial wastes, particularly environmen-
tal pollutants.

The most promising application of thermal plasma
engineering is in the production of materials with new
specific properties, which cannot be synthesized by any
other method.

The use of thermal plasmas, in a metallurgical
installation, can essentially intensify many metallurgical
processes, as chemical reactions occur in the gas phase,
between the vaporised condensed phases, and the
dissociated and activated vapours, and not on the surface.
The kinetics of such reactions is therefore intensified,
resulting in milliseconds being sufficient for completion of
processes. The productivity of the installation per unit
time, area and volume is remarkably improved if both the
response time and volume are minimised.

The possibility of realizing thermal plasma processes,
depends on the development of the appropriate plasma
equipment, i.e. the plasma generators, furnaces and
reactors. The general requirements of process engineers
are sufficient power, the possibility of utilising different
active gases, sqch as hydrogen, oxygen, chlorine, methane
etc. and a durable service life.

The difficulties involved in realising plasma processes
are primarily determined by an insufficient development
of both the engineering and technological problems
dealing with specific conditions arising in high-
temperature rapid-rate processes. Among these are
problems of jet diagnostics, powder mixing, quenching,
condensation, high temperature filtering etc. A certain
danger may also arise from non-critical attempts in
applying thermal plasma to unsuitable objects and
processes. It is therefore necessary, first of all, for
metallurgists and chemical engineers to make a critical
assessment of both the advantages and disadvantages in
applying a particular plasma route.

Metallurgical and engineering plasma processes and
devices (in plasma engineering the processes and equip-

ment for their realisation are especially closely related)
may be broadly classified, by the aggregate state of the
material to be processed, into the following four groups:
the processes involving the effect of plasma jets on a
compact solid phase, on a compact liquid phase, on
dispersed condensed material transformed to a certain
degree into vapour and on gaseous phases (which in pure
form is a typical plasmochemical process) (Table 1).

If one neglects the overlap of typical characteristics
between these classes, and the complications arising from
chemical reactions, during the process, this simplified
classification may help to systemize the data and to assess
the main advantages and shortcomings of each type of
process.

A number of processes affecting a compact solid body
has already been realised on an industrial scale: cutting of
metallic and non-organic materials, welding and building-
up, realizing predetermined surface properties by thermal
or chemical means, processing and drilling of rocks,
spraying on protective coatings (heat-resistant, wear-
resistant and corrosion-resistant), producing composite
materials by building-up matrix material on reinforcement
fibres, producing refractory metal workpieces by spraying
layers on the model subsequently smelting out. The
hardware and engineering problems of these processes
have to a certain extent been solved, and they are widely
used in industrial material processing technology.

1. THERMAL PLASMA GENERATION

Thermal plasma jets for technological applications are
generated in direct and alternating current arc plasmot-
rons, as well as in electrodeless high-frequency induction
plasmatrons. Research is under way for developing
plasmatrons operating at high (up to 100 bar) and low
(down to 10_2 torr) pressures, as well as plasmatrons of
the ultrahigh frequency, pulsed arc discharge and other
types.

Arc plasmatrons have a high efficiency (60—90%) and
provide high power of up to 2—5MW. Their service life,
however, is limited by electrode erosion and, when
operating with reactive gases (oxygen, chlorine, air) does
not exceed 100—200 hr. With electrodes that erode, such as
graphite, the service life of arc plasmatrons used in the
cracking of petroleum products, may reach several
hundred hours.

At the Institute of Thermal Physics in Novosibirsk
(Prof. M. F. Zhukov) several types of arc plasmatrons for
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Table 1. Metallurgy and inorganic chemical engineering thermal plasma processes

500-1000 kW have been examined.4 Powerful three-phase
plasmatrons have been developed with a net efficiency
exceeding 90%. At the Paton Institute of Electric welding
(Kiev) a series of direct and alternating current arc
plasmatrons have been constructed. By joining several
plasmatrons in the reactor the total power may rise up to
2—3 MW and more.

High frequency induction plasmatrons have at present
relatively small power (up to 1 MW) with efficiencies from
50 to 75% and their durability is limited only by the
service life of power sources (up to 2—3 months). At the
Baikov Instute of Metallurgy (Moscow) high frequency
induction generators on a power level up to 300 kW have
been developed (I. D. Kulagin, L. M. Sorokin).

1. Arc plasma generators
Among the electric arc plasma generators the most

widely used are the linear types (Fig. 1). Cathodes are
made of tungsten rods alloyed with thorium, yttrium or
lanthanum and zirconium, generally in a water-cooled
copper housing. The cathode service life ranges from
twenty to several hundred hours depending on operation
conditions. The service life of a copper ring-formed or
tubular anode (intensively water-cooled) for currents up
to 10 kA when operating with high enthalph gases reaches
100—150 hr. The magnetic field for the rotation of the arc
anode spot is provided by a water-cooled solenoid
mounted on the anode housing. The arc and solenoid are
power-supplied, as a rule, in series from the same source.
Argon, nitrogen, air, hydrogen, natural gas and their
mixtures are used as the plasma forming gas. Depending
on the type of gas, the efficiency varies within 60—85%.
The average mass flow gas temperature for hydrogen on
the plasmatron outlet is up to 3700°K, for other gases—up
to 4500—12,000°K.

The tendency to increase jet temperature and flow rate

(a)

by diminishing the channel diameter and increasing the
length of linear plasmatron, results in current shunting to
the tube body and can lead to the formation of a
fluctuating (cascade) arc. The maximum current of the
furnace plasmatron is limited not only by the service life
of the cathode but also by the so-called current of
stationary stability, i.e. the current value at which the arc
can burn for a long time without forming a cascade. A
fluctuating arc leads to descruction of the linear plasmat-
ron assembly and has hindered further development of
high power plasma furnaces. One way to decrease the
possibility of forming a cascade arc is by arc current
modulation. The fluctuating arc does not occur if the arc
burning time is lower than a certain value. The so-called
current of dynamic stability can considerably exceed the
value of stationary stability current.'

Some developments of arc plasma generators are
promising:

(a) A generator with interelectrode inserts in the
sectioned channel and distributed gas supply (Fig. 2);2

(b) A generator with tubular electrodes and distributed
gas inflow for heating up nitrogen, air and natural gas;
with this type arc power is increased considerably by
raising the voltage (Fig. 3);4

(c) A three-phase generator with 3 or 6 tungsten rod or
tubular electrodes (Fig. 4)3 for heating hydrogen and inert
gases. This type has a rather good service life at power
levels up to 100 kW.

Rather extensive experience in discharge investigations
enables one to calculate, by using criterion relationships,
the electric, gasdynamic and geometric parameters of
linear arc plasma generators with gas and magnetic
discharge stabilisation for a wide power range and for the
falling and rising volt—ampere source characteristics.4

In high (atmospheric) pressure plasma arcs, plasma is
the main source of heat. Thus, the energy transferred by
argon plasma can constitute 40-70% of the total value of
energy absorbed by the compact heated body. With
decreasing pressure (10 torr and lower), the arc spot
becomes the main heating source. The convective and
radiative components of the heat transfer from plasma to
heated body do not exceed 5—10% of the total energy
transfer. The drop of potential in the anode area, observed
in low pressure discharges in an argon-shielded atmos-
phere amounts to several volts.

The hollow cathode for low-pressure arc (10-—1 torr) is
constructed in the form of a cylinder formed by tungsten
sections through which the plasma-forming gas is brought
in (Fig. 5)7 The hollow rod tungsten cathode has shown a
high serviceability with argon, helium, hydrogen, nit-
rogen. The electrode erosion is due only to the
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(Fig. 1. Arc plasma generator—linear type.4 (1) electrodes, (2) arc,
(3) breakdown of low temperature gas, (4) electromagnetic coils, (5)

vortex chamber, (6) thermo-cathode.
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Fig. 3. Arc plasma generator with distributed gas injection.4 (1,2)
electrodes; (8) current-conductive washer; (9) collector for gas

input.

Fig. 4. Three-phase arc plasma generators.3 (1) plasmatron body,
(2) isolation insertion, (3) electrode holder, (4) electrodes, (5)

current input, (6) nozzle chamber.

evaporation of tungsten and is in agreement with
Langmuir's law.

The low-pressure plasma is essentially on a non-
equilibrium state. The electron temperature measured by
a probe method amounts to 40 x i0—i00 x 103°K. The
temperature of the neutral species does not exceed
1500—3000°K. This rather high electron temperature plays
an important role in transferring energy from the
discharge to the heated body.

For further development of arc plasma generators, it is

Positive ion

Electron generated in plasma

Electron from cathode surface

Fig. 5. Scheme of hollow cathode arc plasma generator.7

very important to investigate the electrode phenomena in
d.c. and a.c. arcs, in order to increase the heating
efficiency and the electrodes' service life. Increasing the
power of plasmatrons is an urgent problem, especially for
big metallurgical and chemical installations. However,
several plasmatrons of smaller unit power may be
arranged in the same reactor. In this case, it is necessary
to have several independent power supply sources and
control units. The power supply scheme is much simpler
with a.c. plasma generators.

Thyristors with automatic arc current stabilisation are
now mostly used as power supply sources for d.c. plasma
generators with parameters 1000 V/1000 A; more power-
ful sources are available up to 7 MVA. For small plasma
generators silicon-diode power supply sources are rated at
350 V/600 A.

2. High frequency plasma generators
The main practical advantage of electrodeless HF

plasma generators lies in that the service life of plasma
installation is limited only by life time of electro-vacuum
parts of a transformer and of an electromagnetic energy
source—approx. 2—3 x iO hr.

Energy generators and transformers providing the
necessary constant anode voltage (usually 10—12 kv),
assembled on thyristors or semi-conductor diodes, have
high efficiency (99%) and are practically unlimited in
power. The HF generators of electromagnetic energy
circuits also use electro-vacuum parts: high power

Fig. 2. Arc plasma generator with a sectioned channel.2
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generator triodes, tetrodes, magnetrons etc., their power
reaching at present to approx 500 kW. Conventional
industrial generators have high anode losses, up to
20—40%, thus sharply reducing the HF system efficiency
which does not exceed 40-60%. Two ways of diminishing
the anode losses to between 5—8% are being developed.
These are (a) operating the generator under overload
conditions and (b) using special generator lamps with
magnetic focussing. HF industrial generator efficiency
may increase by these means up to 70—85%.

Energy generated by a high frequency electromagnetic
field is used for gas heating in different types of HF
plasmatrons: induction, capacity, flame and combined
(Fig. 6).

HFI-induction plasmatrons have been developed the
most. Their power in pilot plants has reached 200—300 kW;
in laboratories 500—1000 kW units are being tested. The
minimum power necessary for self-sustained induction
discharge is determined by the gas, pressure and
frequency of electromagnetic field. As the frequency is
reduced from the MHz range to the hundreds of KHz
range, the power increases from less than 10 kW to
hundreds of kW, and then rises hyperbolically on further
frequency reduction. Difficulties in supplying the power
for discharges on standard industrial frequencies (50—
60 Hz) are explained by this very phenomenon. To reduce
the minimum power for sustaining an induction discharge,
it is necessary to increase the plasma conductivity by
lowering the pressure or by adding ionizing mixtures.

Electrodynamics of HFI-discharges is governed by the
laws of induction heating of conductive materials.
However gas dynamic phenomena in HFI-discharge are
rather complicated and can only be qualitatively
evaluated. That is why engineering methods to calculate
gas flow HFI-discharges, have yet to be developed.
HFI-plasmatrons can operate with quartz or metallic
discharge chambers for different plasma forming gases.
The most promising is the operation on chemically active
gases: oxygen, chlorine hydrogen and vapours of reactive
substances.

HFC -capacity -plasmatrons have no wearing parts, as
the electrodes are placed outside the discharge chamber.
Capacity coupling of an HFC-discharge with the elec-
trodes voltage leads to the formation of a phase shift
between the electrode and discharge current. The
electrodynamic conditions of HCF discharge are worse-
ned by a phase shift and so the efficiency of the discharge
is reduced. To maintain a self-supporting HFC-discharge
comparatively small power is necessary: in the range of
10—20 MHz it equals 0.2 kW for air and 1.0 kW for
hydrogen operation. This presents an essential advantage.
An efficiency of about 40% has been achieved on a 10 kW
power level. -We do not envisage any major difficulties in

increasing the power of HFC-plasmatrons and in develop-
ing a HFC-systems of 100 and 1000 kW power levels. For
HFC-plasmatrons, any plasma forming gases are suitable.

HFF -flame plasmatrons are essentially of a combined
type, as the electrode discharge current is grounded
through the distributed capacity. The efficiency of the
system is near to 50%. Even lower minimum power is
necessary to maintain the HFF-discharge. The presence
of an erodable electrode limits the choice of a plasma
forming gas, though at a power level of up to 10 kW,
erosion of this electrode is unessential.

Plasmatrons with combined energy supply: HF + direct
current; HF + alternating current; HF + LF (low fre-
quency) are not yet fully developed, but many present a
certain interest.

In the field of HF plasma industrial engineering the -
following problems have to be solved: increasing the
efficiency of the anode circuit up to 90—95%; increasing
the power of HF-plasmatrons up to 3—5 MW; developing
combined energy supply plasmatrons. On theoretical side
of HF-discharges it is important to develop engineering
methods of calculation HF-plasmatrons taking into
account dynamics of a plasma gas flow, especially in
turbulent conditions. Attention should also be paid to
development of tubeless generation of HF-
electromagnetic oscillations.

2. PLASMA MELTING

The processes concerned with the effect of thermal
plasma on compact molten material, the melting of metals
and ceramics, the alloying and refining remelting of metals
and alloys, the reduction smelting of metals and the
growing of metallic and ceramic crystals, are carried out
in plasma furnaces. Processes in industrial use at the
present are: the continuous remelting of bars or rods
(electrodes) in the water-cooled crystalliser, the intermit-
tent melting of materials in a ceramic crucible, and
combined methods, e.g. induction plasma melting of
metals and alloys.

1. Plasma furnaces
A number of types of plasma furnaces for laboratory

and industrial applications have been developed.
Industrial plasma furnaces for semi-continuous opera-

tion have been developed at the Paton Electric Welding
Institute (Kiev)—Table 2. From 3 to 6 d.c. or a.c.
plasmatrons are radially arranged (Fig. 7). The furnaces
are designed for remelting of axially located ingots. These
furnaces are used for refining of precision and heat-
resistant - alloys, high-temperature metals, ball bearing
steels high tensile special steels as well as for nitrogen
alloying of metals (Fig. 8).

Furnaces with three-phase power supply have been
developed by Electrotherme (Belgium).6 The furnaces are
designed for the refining of niobium, tantalum, bolyb-
denum, titanium - and other metals as well as of
heat-resistant alloys based on nickel and cobalt.

Table 2. Paton electric welding institute plasma furnaces5

Furnace type Y-461 Y-467 Y-600

Total power, kW 160 360 1800
Number of plasmatrons 6 6 6
Maximum weight of ingot, kg 30 460 5000
Maximum diameter of ingot, mm 100 250 630
Extrusion rate of ingot, mm/mm 1.5—15 1.5—15 2—20

2 3

Fig. 6. Schemes of high frequency plasma generators. (1)
Induction—HF!; (2) Capacity—HFC; (3) Flame—HFF.
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Table 3. IMET laboratory plasma furnaces

No.
Layout

Number
plasmatrons

Diameter
of ingot

(mm)

Plasma-forming gas Gas consump-
tion

(cbm/hr)

Operating
pressure in

melting space

Power
(kW)

Efficiency
(%)

1. Axial 1—3 60-100 argon, mixture of argon and
nitrogen and hydrogen

2-4 (1—3) bar 30 30-40

2. Axial 1 60—100 argon, helium, nitrogen,
hydrogen

10_3_10_1 10—10 ton 100 30—70

3. Radial 4 100 argon, argon—nitrogen, ammonia 2—4 1—2 bar 50 30—50

Note: The efficiency was measured on water-cooled copper anode.

(anode). This type is especially promising for metal
refining, melting steel and special alloys and for producing
big-size high-quality castings. Furnaces for batch work
having a capacity of up to 10t9"° have been also built in
USSR, GDR.

A plasma induction furnace, with the induction heating
being combined with plasma arc heating (Fig. 12) has been
developed by Daido Steel (Japan)." A plasma arc using
some 35% out of total power of 100—500 kW increases
considerably the output of the furnace, and intensifies the
refining action of slags. These furnaces are used for
melting stainless steels, non-ferrous metals and special
alloys.

2. Plasma -arc remelting
This substantially improves the quality of metal. Unlike

vacuum-arc and electron-beam remelting, the losses of
highly vaporizable components (manganese, molyb-
denum, magnesium etc.) by the plasma process are very
low. Plasma arc remelting makes it possible to refine
alloys with readily oxidizable and chemically active
components—tittinium, aluminium. The most widely used
gases are argon, argon—hydrogen (for iron—nickel and
nickel alloys) and argon—nitrogen (for alloying from the
gas phase).

In a plasma furnace the liquid metal bath is affected by
activated gas particles of the plasma jet. Therefore, the
equilibrium concentrations of reagents in this case will
differ from the equilibrium concentrations with the
non-activated gas. Investigation of the interaction be-
tween liquid metal and nitrogen containing plasma has

Fig. 12. Induction furnace with arc plasma generator.1'

shown the possibility of alloying metal by nitrogen from
the gaseous phase. The plasma alloying enables one to
obtain higher concentrations of nitrogen in the ingot and a
rather uniform distribution of the nitride phase, both of
which are unattainable by other methods.'2'5

The Paton Electric Welding Institute (Kiev) has
developed the industrial technology of producing more
nitrided grades of stainless steel. The way is thus open for
producing new alloys with an increased nitrogen content,
e.g. alloys of bc.c. metals with internal alloying im-
purities. Plasma-arc remelting enables one to control the
alloying phase content within the prescribed limits and is
now an established industrial method for obtaining such
compositions.

A plasma-arc method of growing large monocrystals of
refractory metals, up to 50 mm in diameter and weighing
more than 10kg, has been developed in the Baikov
Institute of metallurgy (Prof. E. M. Savitsky) and realized
in industry.'3 Tungsten monocrystals produced with
plasma melting are characterized by a high purity (Fig.
13): high technological plasticity, resistance to recrystalli-
zation and creep, and anisotropy of emissive properties
reaching 30—70%.

3. Reduction melting
A plasma melting process can be combined with metal

reduction by gaseous or solid reducers: hydrogen,
ammonia, natural gas, petroleum cracking products and
carbon. The furnaces for reduction melting have to be
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Fig. 13. Decarbonization efficiency of plasma remelting by
tungsten monocrystals production.'3 Carbon content in starting
tungsten—0.014—0.016%. (x-axis—rate of monocrystal growth
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xlllY3 wt%.)

Plasma arc torch

Peeping window for

Hopper for alloy
addition

Coil for

heating

Electrode



Plasma engineering in metallurgy and inorganic materials technology 185

provided with appliances for the formation of the ingot
and the removal of condensed and gaseous reaction
products from the furnace.

Hydrogen plasma reduction melting with deep deoxida-
tion, which has made it possible to discard the subsequent
deoxidation process by producing soft magnetic alloys
(50% Fe and 50% Ni) altogether,'3 was carried out at the
Paton Institute (Kiev). Reduction melting of a material
containing 80% metallic iron was performed at Baikov
Institute of metallurgy (Moscow) in a radial plasma
furnace. Ammonia admixture to plasma forming argon
acted as a reducer. After melting a 100% high purity iron
ingot was obtained.

Refractory materials (oxides, nitrides) are melted in
Belgium, France and Great Britain in plasma furnaces
with rotating ceramic crucible.'4'15 These furnaces have a
horizontally or vertically located crucible of heat-resistant
refractory material. The inner cavity of the crucible has a
barrel shape and is heated by arc plasma column (Fig. 14).
The charged material is melted by convective and
radiative heat from the plasma arc column. Oxidising,
reducing and vapourizing processes can be carried out in
these furnaces under batch or continuous operating
conditions.

3. PLASMA JET PROCESSES

Chemical and metallurgical processes progressing
under the effect of thermal plasma jets on the condensed
phase of the dispersed material, such as the reduction of

Fig. 14. Arc plasma furnaces with rotating ceramic crucible. (a)
horizontal or inclined axis.'4 (b) vertical axis.'5.

metals from simple compounds, the direct and oxidising—
reducing synthesis of metal compounds, the processing
and decomposition of raw materials, are realised in
plasma jet reactors.

1. Plasma jet reactors
Chemical and metallurgical plasma jet processes are

carried out as a rule on dispersed particles of condensed
materials. The introduction of dispersed material into the
high temperature jet zone and its extraction from the
wake of hot gases stream represent complex engineering
problems, in view of the high temperatures and rates of
gas flow. Complete processing of the starting material and
a maximum fixation of the product must be achieved.

In research and development of plasma processes,
simple direct flow cylindrical reactors with water or
gas-cooled metal walls and with a single plasmatron are
mostly used (Fig. 15). The reactor diameter at the jet inlet
lies generally within 2—10 jet diameters. The starting
material is introduced into the jet by the transporting gas
(dispersed raw material) or by overpressure (liquid and
vapour materials). Cooling gas is sometimes blown in
through the reactor walls for terminating the high
temperature reaction and fixing the condensed phase
product.

The disadvantages of simple cylindrical reactors are as
follows. The dispersed raw material, deposits on the
outlet nozzle of the plasma generator and on the reactor
walls. The optimum conditions that will eliminate or
minimize these disadvantages for introducing the mater-
ial into the jet that will eliminate or minimize these
disadvantages are to be determined for each reactor type
by special investigations. The deposit formation on the
reactor walls can be dealt with in different ways; by
increasing the reactor diameter by raising the temperature
of its inner wall, by blowing on the walls with ballast gas,
and by imposing ultrasonic vibrations.

The quenching, i.e. rapid chilling of the reaction
products for small scale processes, is usually realized by
cold gas jets, on the cooling surface of a rotating metal
drum.

Reactors in which the dispersed raw material is brought
in directly to the zone of electric discharge have not yet
gained wide application, though a number of interesting
suggestions have been put forward. One of them is a
reactor involving a fountain layer with high frequency
discharge torch (Fig. 16).16 Another one is a magneto-
hydrodynamic spatial discharge reactor (Fig. 17). The
plasma jet formed by a conventional arc generator acts as
a cathode for a more powerful spatial discharge in the
zone of the solenoid magnetic field. The powder to be
processed is brought into the same space. The particles
residence time in the high temperature zone is essentially
increased due to the comparatively low gas flow rate and
drift due to the tangential component of the velocity.
Since the concentration of raw material in the space is
relatively low, the discharge remains stable, and varia-
tions of its parameters do not exceed 10%. With the
bottom arrangement of the plasma generator the material
residence time in the high temperature zone is still longer.2

High frequency and flame (ultra high-frequency)
plasma generators are usually combined with the direct
flow reactors, the raw material being introduced into the
discharge area or below the discharge. An exception is the
high frequency torch discharge with the rountain layer
reactors.

(b)
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(b)

Fig. 15. (a) Direct flow reactor with cooled walls for processing
dispersed materials. (1) plasma generator; (2) powder feeder; (3)
reactor body; (4) power supply source. (b)Direct flow reactor with
high frequency generator and axial material injection. (1) body; (2)
inductor; (3) discharge chamber; (4) vortex chamber; (5)feeder;(6)

quenching device; (7) reactor.

2. Multi-jet reactors
The reactor with two conflicting plasma jets is used for

processing polydispersed raw materials (Fig. 18).17 The
finely dispersed material formed in the process is carried

out of the reactor, while the large unprocessed particles of
the raw material oscillate in the high temperature turbulent
wake of the opposite by directed gas jets; the larger the
particle the longer it stays inthe high temperature zone..

— 4

+
6

5

(a)

3

4

7

Fig. 16. Fountainlayerreactorwith a dischargetorch'6 (1) housing,
(2) feeder, (3) reducer, (4) plasmatron, (5) nozzle, (6) separation

device, (7) hopper.

Fig. 17. Reactor with magnetic and hydrodynamic spatial
discharge.2 (1) plasmatron, (2) plasma jet-cathode, (3) main anode,
(4) housing, (5) solenoid, (6) zone of the spatial discharge, (7)
quenching device, (8) cooling gas supply, (9, 10, 11) current lines,
(12, 13, 14) power supply sources, (15) oscillator, (6) plasma-

forming gas supply (17) powder supply.
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The reactor with the three-arc mixing chamber shown
in Fig. l9 provides a rather uniform temperature
distribution across the section of 0.85 dia, at a distance of
about two diameters from chamber outlet. Usually the
plasma generators are placed normally to the chamber
axis, but installation at an angle of 60° to the axis
facilitates the axial injection of raw material.

Installatiohs are available in which several plasmatrons
are symmetrically arranged on a conical head attached to
the cylindrical portion of the reactor. The hrnterial is
supplied to the top of the cone, closer to the plasma jets,
so that fraction of processed raw material is being
increased.

Reactor with several plasmatrons fixed tangentially
(Fig. 20)16 ensures a uniform temperature distribution
across the sections of the reactor, although the heat losses
through the walls are rather high.

Product extraction. If the product is formed in molten
state and accumulated on a liquid bath its removal from
the apparatus can be carried out either periodically or
continuously. It is also rather easy to withdraw large-size
friable powders. Rather complex problems arise with
ultra-dispersed powders tending to stick together, or with
pyrophoric powders. Such powders require highly effec-
tive filters, thereby increasing considerably their size.
Special maintenance is required. Stringent requirements
are imposed on reactor sealing; when producing highly'
active powders that are easily oxidized in the air; the
extraction of such powders can be accomplished by
intermediate lock chambers. Self-ignition of the powder in
the air can be eliminated by introducing passivating
additions or by thermal annealing in the reduction
atmosphere.

(a) (b)

Fig. 19. Three-arc mixing chamber (a) and scheme of jet
interaction (b).4

3. Dispersed material behaviour in plasma jets
Interaction between the disperse material and the

heated gas jets, as well as gas jets mixing phenomena, are
investigated in order to develop optimal reactor designs
for various plasma processes. Efficiency of chemico-
metallurgical plasma processes as well as product quality
are primarily determined by heating up and transforming
the raw material (fusion, evaporation, chemical reac-
tions), by condensation of the vapours formed, and by
coagulation of the condensed product particles.

Material is held in the reactor zone for rather brief
residence times. The complexity of experiments makes it
impossible so far to obtain full information on the material
behaviour, for the range of temperatures and rates for the
state of substance in which we are interested. Certain
results have been obtained on the heating up and the
motion of rather large particles (over 100—150 mkm) ma
plasma jet. Pictures of the jet were taken through a
rotating perforated disk using high-speed filming and
photometry at different wave lengths. Laser diagnostics
of the bi-phase jet is very promising too.

Mathematical modelling of the disperse material
behaviour in the plasma jet brings rather encouraging
results. Undoubtly, a complete model taking into account
all known phenomena in the particle loaded jet would
have been too complicated for carculation and analysis.
Therefore several simplified models have been suggested.

A rather complete model worked out by Yu. V.
Tsvetkov and S. A. Panfilov considers heating up, phase
transformations (melting, evaporation) and acceleration
of spherical particles less than 50 mkm diameter, which
are uniformly distributed across a jet-section having no
radial gradients of velocity and temperature.18

This model enables one to analyse the kinetics of gas jet
and particle velocity, to evaluate the degree of material
evaporation and to choose the process parameters and the
length of the direct-flow reactor Fig. 21. Length of the
complete evaporation path of the tungsten trioxide
particles of different diameter in a hydrogen—argon jet
rises with initial jet temperature and with particle
diameter, Fig. 22. Calculated and experimental data for
the degree of reduction of tungsten oxide W03 in a
hydrogen—argon jet, and in an argon jet with carbon
particles rises with initial jet temperature—Fig. 23. The

-s

Fig. 18 Scheme of a reactor with conflicting plasma jets.17
P1,2—plasma generators; G,,2—gas input; S—powder feeder;

R—reactor body.

Fig. 20. Cyclone reactor.'6 (1) reaction chamber, (2) mixing
chamber, (3) plasmatron, (4) gas supply, (5) raw material input, (6)

reactor cone, (7) hopper, (8) gas phase outlet, (9)branchpipe.
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Fig. 21. Kinetics of gas (Ar) and particle (W) parameters.'8
=0.5 cm; C,, = 0.1 g/sec; GA = 1.18 g/sec. T8,—temperature

of gas and particles, °K; w8,,, —rate of gas and particles, cm/sec;
i—length of particle's path, cm; r—particle's radius, cm; a—heat
exchange coefficient of gas with particle, cal/cm2 Sec deg;

t—time, sec.

discrepancy between the calculated and experimental
results is observed at low average mass temperatures of
gas jet because of jet temperature non-uniformity. This
model is at present being extended to take into account
the gradients of temperature and gas velocity across the
jet section.

Simplified models have been developed: a model of
heating up of moving particles in the isothermal jet of
gas,'9 a model of heating up of moving particles in a jet
with parameters changing along its length, 20 a model of
condensation and coagulation of particulates in an
isothermal jet.2' Assuming that the velocity Wg and

25mcm

- I0mcm

.5mcm

4000 4500 5000 5500 6000

T, °K

Fig. 22. Length of complete evaporation path of W03 particles
depending on their radii and the initial temperature T0 of the
hydrogen-argon jet:'8 R, = 0.5 cm; CA = 1.2g/sec; C,2 =

0.015 g/sec; C,, = 0.33 g/sec; r = 2.5;5; 10.0 and 25 mçm.

temperature Tg of a gas jet in the course of its interaction
with particles remain constant, which is reasonable for the
high-enthalpy gases and taking the Nusselt criterion in
order of 2, then for the small diameter particulates
(<50 mkm) it is possible to express the dependence of
particle velocity w,, cm/sec and temperature T °C on time

in explicit form (Nikolaev)'9

T Tg(TgTpo)exp(tIt'); Bi'1 (1)

Vp = Vg [1 — exp (—t/t")]; Re < 1 (2)

V Y5. Re>2 (3)P

T0—initial particle temperature, °C; t'—time constant of
particle temperature rise; t" and t"—time constants of
particles acceleration, sec

,_Cpypd. 1_ d2yp . 4d'yp—

6a ' —

l8Vyg'
—

3ifJVgyg

Here: d—particle diameter, cm; a—heat exchange
coefficient, cal/cmsec°grad; C —specific heat of particle
material, cal/g grad; y, yg—densities of particle material
and ' of jet gas, g/cm3; V—gas kinematic viscosity,
cm2/sec; i/i—drag coefficient.

These expressions can be used, e.g. for evaluating the
time of heating particles up to the melting temperature
and length of heating path.

4. Production of disperse materials
Disperse metallic and non-metallic materials are used in

manufacturing powder metallurgy products and porous
parts (filters), to strengthen metals and alloys, to produce
special ceramics and plastics, components for electronic
appliances and also directly as abrasives, catalysts,
propellant components and pigments. When manufactur-
ing powder materials in plasma jets, the dispersity and
shape of powder particles, their purity and surface
physico-chemical properties are controlled by the jet
parameters (power, temperature, flow rate, gas partial
pressure) and the tempering intensity. As the reactions
proceed within the plasma jet and its wake, the processed
materials have no contact with the reactor walls, so the
reaction products are not contaminated by the lining
material. Therefore, a jet of low-temperature plasma, and,
especially, that of high-frequency induction plasma,
makes it possible to obtain high-purity powders (ultradis-
persed, spheroidized, composite etc.) based on metals,
alloys, oxides, nitrides, carbides, borides, hydrides and
complex compounds.

Spherical particulates of pre-determined size are
produced by plasma heating: from wire or bars butt-
melted by plasma arc (Fig. 24) or by supplying standard or
granular powders to the plasma jet (Fig. 15). The process
has been realised in both versions on installations rated up
to 100 kW.22

Particles of tungsten, molybdenum, nickel and other
metals and high-temperature oxides from 0.1 up to 2 mm,
with an output up to 15kg/hr are produced by wire or rod
melting. By powder surface melting particulates are
obtained of high-temperature metals and their alloys,
titanium and chromium carbides, tungsten, aluminium and
zirconium oxides measuring from 1 mkm up to 1 mm with
an output of the spherical fraction of over 90% (Fig. 25).
This process is realized in electric arc plasmatrons with a
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thermodynamic and transport properties of substances in
a dissociated and partially ionized state (Institute of High
Temperatures, Moscow).

Research of non-stationary, modulated and interacting
plasma jets with superimposed electric and magnetic
fields as well as of pulse, cascade, colliding and multi-jet
plasmatrons operating in a.c., d.c. HF, UHF at elevated
pressures, and in vacuo, shall enlarge appreciably the field
of thermal plasma technological applications.

Industrial applications
Thermal plasma processing is in industrial use for

producing special quality alloys, obtaining monocrystals,
producing pure powders of specific structure, spherical
and ultradispersed, carrying out direct synthesis of
compounds and a synthesis combined with oxidising and
reducing reactions. Plasma processes are rather suitable
for processing of complex ores such as phosphate,
silicon-aluminium and titanium ores and valuable indus-
trial wastes ("man-made ores"), e.g. wastes of refractory
and rare metals, cinder wastes, sulphur containing
gaseous wastes of non-ferrous metallurgy. The possibility
of varying both the temperature and the medium
composition in the reaction zone of a thermal plasma
presents powerful means for developing fundamentally
new processes, as well as modernising the traditional
routes in metallurgy and inorganic materials technology.
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