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Abstract—The literature concerning the properties of menisci is briefly reviewed and it is shown that numerical
analysis using computers has led to the solution of a whole range of meniscus problems. Menisci are classified and their
properties defined according to the nature and number of the supporting solid surfaces and of certain shape
characteristics. The sizes and shapes of different types of menisci are then obtained by integrating the Laplace-Young
equation numerically.

The free energy of the whole meniscus system is derived in terms of the surface area and the potential energy in
the gravitational field and the equilibrium and stability given in terms of the first and second differential of the free
energy with respect to perturbation. Axisymmetric perturbations only are considered as they are those of lowest
energy and hence most damaging and the energy profiles of such perturbed menisci have been obtained by numerical
analysis. It is shown that when critical stability is reached the size and shape of a given meniscus become unique
theoretically determined properties. These critical properties have been extracted from the tables of shape and size.

Finally it is shown that a further set of unique properties, but at stable equilibrium, may also be extracted from the
table. These unique properties form an excellent set of conditions by which surface tension is measured with great

precnsmn

INTRODUCTION

A meniscus is defined as being the curved surface of an
interface of a liquid with another fluid, which is supported
by at least one solid surface. This definition covers drops,
bubbles, liquid bridges, capillary rise and many other
systems containing a curve interface.

The study of menisci covers a period of about 180 yr as
is seen in Fig. 1. The earlier investigations aimed at
solving practical problems such as the size of a drop
delivered from a pharmacist’s pipette' and theoretical
problems associated with the measurement of surface
tension. Over the whole period investigations were
concerned with four major problems which were
describing

(i) the shape of the meniscus,
(i) its equilibrium properties,
(iii) its critical properties reached at the point of
rupture, and
(iv) the dynamic properties describing its movement
and break up.

This study is concerned with the first three aims and
brings together the previous work leading up to a full
theoretical explanation of the equilibrium and critical
properties of menisci.

Historically, properties of menisci became quantitative
with the simultaneous publication by Young® and de
Laplace® of the expression for the pressure change, AP,
across an interface in terms of the principal radii of
curvature R, and R,.

1 1
AP= V(Rh R )

where y is the interfacial tension.
This equation may be expressed in analytical form as
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where x and z are the horizontal and vertical coordinates,
p is the relative density of the material within the
meniscus surface to the material outside, g the gravita-
tional acceleration.

Equation 2 cannot be integrated in closed form to give
the coordinates of the shape of the meniscus. Bashforth
and Adams* were the first to obtain shapes of drops and
bubbles by integrating eqn 2 approximately, using Taylor
Series. More recently, integration has been carried out
with high-speed computers by several different methods™’
and the data so produced have led to renewed interest, the
solution to many practical problems and the recent large
number of publications (Fig. 1).
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Fig. 1. Number of publications on meniscus studies appearing each
year since 1800.
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TYPES OF MENISCI

The Young-Laplace equation describes a local equilib-
rium in one part of a meniscus. If integration is to proceed
over the whole meniscus then either symmetry or other
geometrical constraints must be known and in addition
boundary conditions must be specified. It must further be
known whether or not the fluid forming the meniscus is
distorted by a gravitational, electrical or centrifugal force
field. :

In this study it is assumed that a uniform gravitational
field only acts on the meniscus and that when the density
difference of the two fluids is zero, a special limiting case
is reached to zero effective gravity. It has been found
convenient to distinguish three geometrical types of
menisci. They are those with

(a) cylindrical symmetry,

(b) axial symmetry, and

(c) without symmetry.

Cylindrically symmetric menisci possess only one
principal radius of curvature (R,) and represent the
special case when R, is infinite as with the Wilhelmy
plate. The shape of such menisci may be obtained either
by direct integration or by the use of tables of elliptic
integrals.®

Axisymmetric menisci are common in many areas of
study such as bubbles, drops and some types of liquid
bridges. Computer solutions of the shapes of such menisci
are well known and have been published in tabular
form.>"

A number of studies of menisci with asymmetric
geometry such as the meniscus of a wedge between two
flat plates set at an angle'" and between three vertical
rods'? have been carried out. Such menisci may well lead
to solutions of problems associated with the meniscus
properties within a porous solid.

Boundary conditions

Menisci may be further classified according to the
number of solid surfaces supporting the curved surface.
Here we designate:"

Bounded menisci are those with only one solid surface
supporting the liquid forming the meniscus. In this group
fall the meniscus at a Wilhelmy plate, pendant and sessile
drops, emergent and sessile bubbles and the meniscus
formed by a rod in a free liquid surface.

The reason for describing such menisci as bounded lies
in the fact that they are bounded at one extremity by their
own envelope or by the free flat surface.

The shape of bounded menisci may be described by a
single parameter. Bashforth and Adams used the term

_pgb’
B y ©))

where b is the radius of a drop or a bubble at its apex.
However as this method is unsuitable for use with free
surface menisci the author has chosen the rather more
general definition.®
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where R,(90°) is the principal vertical radius of curvature
of the meniscus at its neck or narrowest point. b and R,
bear, of course, a fixed relationship to each other for a
given shape.
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Fig.2. Types of bonded menisci: (a) Sessile drop, (b) Pendant drop,
(c) Sessile bubble, (d) Emergent bubble.

«— X —
Fig. 3. Rod in free surface meniscus (rifs).

The shapes of drops and bubbles, as is well known,
depend on the relative density and the direction of the
gravitational force in relation to the supporting surface. In
Fig. 2, the more common drop and bubble shapes and in
Fig. 3 the rod-in-free-surface (rifs) menisci are shown.

Unbounded menisci

Unbounded menisci require two supporting solid
surfaces to maintain them in position. The most common
forms of unbounded menisci are the axisymmetric liquid
bridges, examples of which are shown in Fig. 4. The main
feature of such menisci is that they require two
parameters to describe their shape. In this study we
describe the shape of a liquid bridge by the shape factor
B' and the ratio, R,(90°)/R, (90°), of the principal radii of
curvature again at the neck of the liquid bridge.

Compound menisci

These menisci are distinguished from the foregoing by
their possession of two or more liquids with a third fluid
phase, examples are shown in Fig. 5. These menisci
possess interfaces of different chemical composition and
hence different interfacial tensions. The simplest is a lens
of oil floating on water but an example of a more complex
one is that of a rod touching a lens of floating liquid so as
to create a compound liquid bridge as shown in Fig. 5.
Shape properties are best obtained from existing drop and
rifs tables but using special manipulations to bring
together the shapes of each part that are at equilibrium
with each other." ‘
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Fig. 4. Unbounded menisci: Liquid bridges.

Compound Menisci

Pendant drop at free surface

Floating lens

Fig. 5. Compound meniscus: (a) Rod and pendant drop at the free
interface of a second immiscible liquid, (b) Floatinglens.

MULTIPLE INTERFACE SYSTEMS

A multiple interface system is one in which two distinct
and separate menisci of the same chemical composition
are formed and are connected through the supporting
solid surface so that their pressures tend to equalise. An
example is shown in Fig. 6 and a better known example is
that of Plateau—the original soap bubble experiment.
Plateau connected two soap bubbles of different sizes to
demonstrate the instability of the connected multiple
interface system. The equilibrium and stability of each
system, though not widely studied, is of great importance
in porous media.

THE MENISCUS SUPPORT
A meniscus requires at least one solid surface to
maintain the curved surface at equilibrium in a gravita-
tional field. This solid surface either supports the interface
directly or it supports a thin liquid film which holds the
meniscus in position. Various types of boundary supports
are shown in Fig. 7 and it is evident that a meniscus may

Multiple Interface Systems

Soap bubbles

Connected liquid bridges

Fig. 6. Multiple interface system: (a) Two soap bubbles connected
by a tube, (b) Two liquid bridges connected by a tube.

Types of Meniscus Boundaries

I. Soap Film

2. Thin Film

3. Fixed Boundary

4. Moving Boundary

Fig. 7. Types of meniscus boundaries: (a) Soap film, (b) Thin liquid
film, (c) Fixed boundary; radius controlled, (d) Moving boundary
contact angle controlled.

be supported by a soap film, by a thin liquid film such as
with a Wilhelmy plate or directly by a solid such as with a
pendant or sessile drop.

The meniscus support is also the theoretical boundary
of the meniscus shape derived in the tables. As already
noted'® the boundary may be controlled by a fixed radius
such as obtained with a pendant drop on a circular tip or
by a fixed angle of contact such as obtained with a sessile
drop. These systems are designated radius and angle
controlled respectively.
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INTEGRATION OF THE SHAPE OF A MENISCUS

Integration of the shape of a meniscus is required in
order to obtain a set of values of X and Z and other
properties such as area and volume at all points on the
meniscus. The first method used successfully was the
Taylor Series approximation method of Bashforth and
Adams,* the second method was a geometrical construc-
tion method of Kelvin, later developed into a first order
method® and the third, and now most usual, is by using the
Runge-Kutta method for second order equations. This
last method is capable of the greatest accuracy.’ The
principle of each method is shown in Fig. 8. These
integration methods are described fully elsewhere.**

Integration of the Young-Laplace equation is started at
any clearly distinguishable point on the meniscus and for
drops this point is at its apex where the two radii of
curvature are equal. At each integration step the surface
area, the volume and the potential energy increments are
also calculated using the equations given in Table 1. These
increments are then summed and recorded.

Rod-in-free-surface menisci present difficulties because
they have no natural starting point. This problem was
overcome by Huh and Scriven® who showed that as the
meniscus shape approaches the free surface of the liquid
at very low angles, the value of Z can be obtained from
the value of X using the equation

_KiX)-tan ¢

Sl ¥y ©)
where K, and K, are Bessel functions of zero and first
order respectively and ¢ is the meniscus angle. When the
value of X is greater than ten, approximate equations for
K, and K, are sufficiently accurate to obtain Z as a
continuous function of X. Huh and Scriven made ¢ = 0.5°
but it was found that the greater accuracy required in this
study is only achieved when ¢ = <0.02°.

MENISCUS SIZE AND SHAPE FACTORS
The meniscus possesses a number of properties which
are defined in Table 1. They are K, the meniscus constant
which replaces the often used capillary constant; 8 or B’,
the shape factor which provides a numerical value to the
characteristic shape; and a size parameter which was the
radius of curvature at the apex, b, of a drop in Bashforth

Methods of Integration

Padday — Kelvin ]
- N

Bashforth — Adams

Rv2= va(a+b+c+d+e>

- va(l +by507 +b,50* +

bysd° + bgse® x )

Runge —Kutta

§2= S%[KpumZ +Ks)

Fig. 8. Methods of integrating Young-Laplace equation: (a)
Padday-Kelvin method, (b) Bashforth and Adams, (c) Runge-
Kautta.

and Adams’ nomenclature and R,(90°) in this study. In
bounded meniscus systems B, K and b are all explicitly
related as shown in Table 1. (8', k and R, (90°) are also
related). Unbounded menisci require a further length
parameter, usually R,(90°), to specify the system com-
pletely.

Compound menisci such as the pendant lens at a free
liquid interface shown in Fig. S(a) consist of three
different meniscus types: namely, a liquid bridge, a
rod-in-free surface and a captive bubble all joined
together at stable equilibrium. These shapes can in
principle be derived theoretically from the tables but great
difficulty is found in obtaining the correct conjunction of

Table 1. Shape factors and generating equations for meniscus calculations

Shape factors

Capillary constant
a*=2ylpg Classical 6
K*=1vlpg Rayleigh and this study 7

Shape factors
pgh®
Bashforth and Adams B= e = b?[k? 8
Padday B= M =Rylk? 9
Huh and Scriven Xoso= XosolK 10
Equations

Band A b/R,+b|R, =BZ +2 11
Padday kIR, + kIR, =Z|k 12
kIR, +ksing/X=2'[k 13
VIK?=aX?*k* kIR, - kIR.) 14
Alk*=2m [ (X]cos 8) dX k> 15
E[k*=m [d[X?/k*(kIR, - kIR,)Z0] 16
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equilibrium shapes. Graphical interpolation procedures
are often the only method of solving this multiple end
point problem to yield the equilibrium and critical
properties.

The shape factor, 8’, has the additional advantage that
it allows the shapes of, and relationships between, the
properties of the three types of bounded menisci to be
compared. In Fig. 9 a captive bubble, a pendant drop and a
rifs meniscus have been plotted with their respective
shape factors all equal to unity. The height Z(90°)/k from
the free flat surface depends on the meniscus type and it is
seen that the neck (the reference point) of the pendant
drop is below the free surface (i.e. unduloid) and the
other two reference points are above it (i.e. nodoid).

Menisci may be generated at intermediate values of
Z(90%/k and these represent the shapes of unbounded
menisci (nodoid or unduloid) of the liquid bridge type
that have been discussed previously.®

The coordinates and other properties of a meniscus are
expressed in dimensionless form by dividing the dimen-
sions of the meniscus by an appropriate power of K.
Examples of the data obtained by computer integration

-7-0F

-6-0F

Z/R,,(z7o°)

70

Fig. 9. Relation between bounded menisci B’ =1.0. Captive
bubble, rod-in-free-surface and pendant drop.
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are given in Table 2, the upper set representing the
properties of a small part of a pendant drop in Bashforth
and Adams’ base units, b, and the lower set the same
pendant drop in the base unit, k. The full set of data have
been published previously as a set of tables."

FREE ENERGY OF A MENISCUS

The work performed on a system in order to form a
meniscus is identified, in general, with two separate and
distinctive terms: one is the work performed in changing
the surface area of the interfaces present in the system,
the other is the work performed by the gravitational force
on the system. Providing the meniscus is formed
isothermally and reversibly this work may be identified as
the Helmholtz free energy, F, of formation of the
meniscus.

A meniscus is formed by successively adding liquid to it
from the bulk phase. At each change in volume the
curvature and hence the vapour pressure in equilibrium
with the surface, is changed even though by an
infinitesimally small amount. For this reason menisci can
only bbe formed at constant volume, hence it is necessary
to determine the equilibrium using the Helmholtz free
energy.

In this study the free energy is derived from the tables
on the basis that the work, W, done on the system of
forming new surface and that of moving liquid from the
position of the supporting surface to its equilibrium
position within the drop, thus

W =Arvyy + As.yiy Cos 6 + VpgZ,. an

As the system is always at equilibrium and changes are
made infinitely slowly at constant temperature, W equals
the Helmholtz free energy.

The free energy is calculated on the assumptions that
the liquid in the surface phase has the same density as that
in the bulk phase; that the line tension does not contribute
to the energy of the system and that the meniscus is
sufficiently large for the surface tension to be unperturbed
by the size of the system. Though these assumptions are
arbitrary, they lead to no significant error in the systems
normally under investigation so that the value of W
derived from the tables represents the total measured
excess free energy of the meniscus.

The condition of stable equilibrium of a meniscus is
thus defined as:

dW/dB' =0; EW/dp™>0,

Table2. Pendant drop profile

(B = —0.500000; Z0/b = —4.000000)

Angle X/b Z|lb R./b R./b Vib? Alb>  PE|gh*
0 0 0 1.0 1.0 0.0 0.0 0.0
5 0.087 197 0.003 808 1.001 432 1.000 474 0.000 046 0.023 932 0.000 184
10 0.173 978 0.015 236 1.005 754 1.001 900 0.000 726 0.095 820 0.002 914
15 0.259 926 0.034 295 1.013 056 1.004 278 0.003 658 0.215 941 0.014 742

(Z0/K = -2.828 427)

Angle Xk Zlk R.Ik Rulk Vik? Alk? Elk?
0  0.000 00 0.000 00 0.707 11 0.707 11 0.000 00 0.000 00 0.000 00
2 0.025 17 0.000 45 0.707 28 0.707 16 0.000 00 0.001 99 0.000 02
4 0.050 08 0.001 78 0.707 77 0.707 33 0.000 01 0.007 89 0.000 10
10 0125 22 0011 16 0.711 32 0.708 50 0.000 28 0.049 65 0.000 78
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of critical equilibrium as:
dW/dg' =0; &W/dB"?=0,
of unstable equilibrium as:
dw/dp’' =0; &¢W/dB’' <0,
and of non equilibrium as:
dW/dp' #0.

THE STABILITY OF MENISCI

In this section the properties of a meniscus cor-
responding to the criteria for critical equilibrium, just
defined, will be sought.

Consider the case of a pendant drop formed at the tip of
a circular tube. The growth of such a drop is shown in Fig.
10, where the volume is plotted as a function of the
meniscus angle ¢ at the tip. The growth is seen for four
different tip radii and all indicate that the drop reaches
some maximum volume beyond which further growth
within the family of Young-Laplace shapes is no longer
possible. The shapes of the menisci for the largest of these
tips is shown in Fig. 11.

In a previous publication’ it was shown that an energy
profile may be constructed which represents the energy
the meniscus would possess if it were perturbed at
constant tip radius and constant volume, to a different
shape that still retained axial symmetry and also a
monotonic change in mean curvature with vertical height.
Perturbations that are axisymmetric and monotonic with
respect to mean curvature may be obtained by manipulat-

Growth in volume of a pendant drop
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Fig. 10. Volume of a pendant drop shown as a function of its shape
during growth. :
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ing the equilibrium tables® and as a result one may
describe such a perturbation as in Fig. 12(C) to distinguish
them from non-axisymmetric perturbations which are also
shown (B).

In this study we made the hypothesis that such
axisymmetric perturbations were those of lowest energy
and therefore the most damaging. Pitts'” has since shown
that in the case of pendant drops this was so. The energy
profile of a drop is therefore the energy of perturbation
plotted as a function of the degree of perturbation.

In Fig. 13, the energy profiles of four pendant drops
each of different volume but all with the same tip radius
are shown as a function of the degree of perturbation
expressed as the height Zg. The four separate profiles are
of radius-volume controlled pendent drops and it is seen
that equilibrium growth of the drop occurs along a line
joining the positions at the bottom of each energy trough
where dW/dZg = 0. The drop volume can be successively
increased until the critical energy profile is reached and
then further increases in volume lead to nonequilibrium

Work of perturbation
Constant V, Xand k

A, Unperturbed growth

w/y K = askEvzg 7k’

B.  Non-axisymmetric perturbed

W7yk?= A7k*-vzg' /k?

C. Axisymmetric perturbed

Energy
W/ yk
%

8

B,Zgor¢

Perturbation

Fig. 12. Types of perturbations of a pendant drop.

Tip radius
X/k = 1.2

Pendant drop growth

Fig. 11. Shapes of a pendant drop during growth.
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Fig. 13. Multiple energy profiles of a pendant drop as a function of drop volume and degree of perturbation.

conditions. This critical point corresponds to the criteria
for critical equilibrium and as pointed out previously
corresponds to the maximum volume.

Thus for a given tip radius, X /k, and a fixed value of the
meniscus constant, k, a pendant drop possesses a unique
volume at which critical breakaway takes place. It was
this critical volume that was sought by earlier inves-
tigators who wished to use the drop weight method for
surface tension measurement.

The maximum volume condition reached by the
pendant drop may be expressed mathematically as

d V/dB)X,k =0

and this is the critical condition of a radius-volume
controlled pendant drop in its equilibrium state.

The radius-volume controlled pendant drop is only one
of four possible methods of growing and perturbing a
drop. The other three methods are; angle-volume control-
led where the drop is formed at constant contact angle at
the under surface of the supporting plate and perturbation
is still at constant volume; the radius-pressure controlled
pendant drop where the drop is formed at constant tip
radius and perturbation is made at constant hydrostatic
pressure in the liquid at the tip; and the corresponding
angle-pressure controlled drop where the angle of contact
is again held constant during growth and perturbation.
The critical equilibrium shape of each type of drop is very
different.

The critical condition that is reached for each type of
pendant drop, sessile drop and rifs meniscus is given in
Table 3 and each condition is reached when the

appropriate values of both the first and second differen-
tials of the energy, with shape, equal zero.

It now remains to extract critical data from the
theoretical tables. Although search and interpolation
procedure may be used, by far the simplest with an
excellent degree of accuracy is that of the envelope
construction technique. This technique consists of plot-
ting a family of curves as in Fig. 14, wherein (in this
example) the pendant drop volume is plotted as a function
horizontal distance, X, of the meniscus from the axis of
symmetry at many points on each of several pendant drop
curves. An enveloping line is then constructed which
contains all the curves as shown in the figure. As all the
points plotted are at equilibrium the volumes cannot
exceed the critical values hence the enveloping line must
represent the required function of the critical condition—
in this case the maximum stable volume of a pendant
drop.

The theoretical curve derived in Fig. 14 is replotted in
Fig. 15 and compared with various equations derived for
use with the drop volume method of measuring surface
tension. Clearly the theoretical curve cannot agree with
measured values of volume because the drop volume
derived is that of the whole drop and that measured is
only the portion falling away. In order to derive the one
from the other further theoretical work is required to
describe the process of breaking away.

Even so, the important feature of this study is that
unique conditions have been shown to exist in menisci
and the numerical values of the properties at these unique
conditions have been accurately determined.

Table 3. Conditions for critical equilibrium of menisci

Volume/radius Pressure + radius Volume/contact angle  Pressure + contact angle
limited limited limited limited

Pendant drop 0= (d( V/ k 3)/dB)T‘k.x (d(Zz / k )/dﬁ )-r.k,x (d( V/ k z)dﬁ )T.k.¢ (d(Z, / k )/dB )T,k.nb
(emergent bubble)
Sessile drop 0= (d(V/k*)/dB)rsx (d(Z, [k)/dB) 1. x Always stable Always unstable
(captive bubble)
Rod-in-free-surface d(Z [k)ldB’ d(Z,[k)/d¢ d(Z [k)ldp’

. 1 , 1 Always unstable
(Hole-in-free =—=(dV/dB") =0 =—5(dV/dB")
surface) X X{
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Fig. 14. Maximum volume of a pendant drop as a function of tip radius, obtained by the envelope construction method.
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Fig. 15. Pendant drop critical volume as a function of tip radius

compared with other studies; A, Tate’s equation;' B, Rayleigh’s

equation;'® C, This study; Lohnstein’s separating volume;'; X,

Lohnsteins critical volume;'* Harkins and Brown’s drop
volumes.”®

THE MEASUREMENT OF SURFACE TENSION

Surface tension is invariably measured from the
properties of a curved liquid surface, usually a meniscus.
Examination of the methods currently available® shows
clearly that few of the methods take advantage of
determining surface tension at stable equilibrium and at
the same time at some unique characteristic point reached
during its growth.

Existing methods fall roughly into two groups: those at
stable equilibrium such as sessile drop shape, pendant
drop shape, capillary rise and Wilhelmy plate methods:
and methods involving taking the meniscus past its critical
equilibrium such as the drop volume and Du Nouy ring
methods. The supposed advantage of these latter methods
is that the drop weight or force reaches a unique critical
value. Disadvantages such as premature rupture and the
expansion of the surface causing adsorption depletion far
outweigh any advantages.

An important feature of most types of menisci is that
they possess at least one unique and well-defined
characteristic point, during growth, at which a shape or
size property reaches a unique maximum or minimum
value at stable equilibrium. The properties of the
meniscus at the critical point of rupture represent one set
of unique conditions but in addition a further set at stable

o
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Fig. 16. Force on a rod-in-free-surface meniscus as a function of
the growth of the meniscus expressed as its height.

equilibrium often exists which enable the surface tension
to be measured with extreme accuracy.

This principle is best explained by studying the example
of the properties obtained from the rifs meniscus. In Fig.
16 the force on a rod arising from the volume of liquid
supported in a rifs meniscus is plotted as a function of the
height of the rod above the free surface. It is well known
and proved in a previous study' that critical equilibrium
and rupture occurs when the height of the rod reaches a
limiting value which is clearly seen in the figure. The
curves A, B and C represent here the equilibrium forces
on rods of different radii and the points of rupture are
indicated by squares ((J); thus parts of each curve
stretching back to the origin represent points at stable
equilibrium. It is now obvious that the points at which the
force on the rod (i.e. maximum volume marked X)
reaches a maximum is at stable equilibrium because they
lie on the growth line and are reached well before critical
conditions. The stable equilibrium property of this type of
meniscus is thus

(d( V/ks)/dﬂ')kx =0

for a pressure-radius controlled rifs meniscus and is, of
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Fig. 17. Envelope construction method to obtain the maximum volume on a rod-in-free-surface meniscus.

course, different from the stability condition given in
Table 3 for the same meniscus.

Sessile drops also reach a unique condition, maximum
height at a certain stage of their growth, and this condition
has been used to measure interfacial tension” It was
shown that a sessile drop could be formed with a contact
angle of 180° (by using a thin film) and that when the
maximum drop height is reached, when the drop is only a
few centimetres in diameter, the interfacial tension is
calculated accurately from the value of the height
obtained by theoretical analysis.

The maximum force on the rifs method outlined here
and fully described elsewhere” and the maximum force
on a sphere-in-a-free surface, also a stable equilibrium
method using an unique shape condition,” possess so
many advantages that they may well supercede all other
methods when they become widely known.

These methods rely on the shape or size property being
derived theoretically with sufficient accuracy. Although
computer interpolation procedures may be used to obtain
accurate theoretical values for the maximum volume of a
rifs meniscus, the envelope construction method is both
accurate and easy to operate and gives the required
unique maximum volumes (in the case of the rifs
meniscus) as a function of rod radius as shown in Fig. 17.
In this figure greater accuracy and near linearity is
ob}tained by plotting the volume as the reciprocal function
XV

Attempts have been made to calculate the relationship
between the maximum volume of a rifs meniscus and the
rod radius but in general such calculations either are not
sufficiently accurate or only apply under a very limited set
of conditions such as with very small or very large rods.
The maximum force, expressed as a volume, is expressed
by the equation

VIk*= nX*Z|k>+ 27X (sin ¢ )/k. (18)

With large rods, ¢ tends to zero and the first term
predominates so that

VI 27X Z k> 227X k> (19)
and with small rods, ¢ tends to 90° so that the second term

predominates and

VIK’ = 2aX]/k. (20)

Surface tension methods can be classified in a way
similar to that used to classify stability criteria. Surface
tension may be measured with a cylindrical meniscus
(Wilhelmy plate) or with a axisymmetric meniscus
(capillary rise): also it can be measured by a radius
controlled equilibrium (rifs and pendant drop methods)
and by a radius-pressure .controlled equilibrium (max-
imum bubble pressure method), among many others. The
classification of these methods is important because it
enables the correct data to be extracted from the
equilibrium tables to give a theoretical value to the
constant relating surface tension to the measured
property. By doing this one is able to arrive at absolute
values of surface tension that are free of arbitrary
constants and corrections.

However even when such constants are determined
theoretically experimental error arises from the weight of
a wetting film and the solid may not be exactly zero
because the wetting film may possess effective surface
tension value different from the bulk. These difficulties
however are outweighed by the advantages of using
unique shape conditions to measure surface tension. The
advantages include the ability to measure and follow
dynamic and ageing effects and the ability to choose from
among several methods according to the nature of the
system.
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