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LAMP INTENSITY
FIGURE 1A

EMISSION INTENSITY
FIGURE lB

EMISSION INTENSITY
DUE TO EXCITATION
AT ONE TIME DELAY
(HERE 3)
FIGURE 1C
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(3)

Here the excited moiety is designated with an asterisk. Table I gives the
systems studied along with the results. One particularly fascinating
question is whether the excited state lifetime of a system with two identical
chromophores (i.e. X = Y in equation 3) would be the same as that in which
excitation wasTTmited to one (i.e. where X = Naphthyl and Y = H). The
question is whether the reversiET energy transfer process is inefficient.

This question was approached by the use of the two -naphthyl groups as X and
Y. As is seen in Table I, the lifetime was 64.2 nsec. A comparison case is
entry two in Table I where there is just one ..naphthyl group, and this model
compound has a singlet lifetime of 64.2 nsec, also. Thus, to the extent that
isoenergetic excitation transfer occurs, it does not diminish the excited
state lifetime..

x TABLE I. Intramolecular energy exchange rates (ref.5)

c
SINGLET

Ar X LIFETIMEa A EMISSION

cz-Naphthyl H 65.1 nsec 335 nm

-Naphthyl H 64.2 nsec 332 nm

Ar -Naphthyl -Naphthyl 64.2 nsec- 332 nm

cz..Naphthyl Cis-Propenyl 64.7 nsec 335 nm

o-Naphthyl Acetyl 1.84 nsec 32O..335 nm

4.39 nsec 390-405 nm

-Naphthyl Acetyl 0.28* nsec 330 nm

3.68 nsec 400 nm

cz-Naphthyl Benzoyl 0.23 nsec 331 nm

-Naphthyl Benzoyl 0.10 nsec 331 nm

*0.16 nsec when excited at 265 nm 0.36 nsec when excited at 285 mm.

aExcitatlon at 275 nm except where noted.
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TABLE II. Singlet lifetimes with variation of excitation
wave1ength (ref. 5)

Ar X EXCITATION
SINGLET
LIFETIME

-Naphthyl Acetyl 265 nm • 0.16 nsec

.
• 275 nm 0.23 nsec

.

285 nm 0.36 nsec

czNaphthyl Cyclohexane-
ca rbonyl

270

280

nm

nm

0.56 nsec

0.62 nsec

290 nm 1.1 nsec

Another question was whether the presence of a group potentially capable of
reaction (here cis-trans isomerization) would affect the singlet lifetime.
In the fourth entry in Table I, we see that the very high energy cis-propenyl
group does not diminish the lifetime; of course, we recognize that vertical
energy transfer to isopropenyl would not occur since it would be endothermic.

A last question led to more positive results. This dealt with the effect on
the singlet lifetime of a low energy acceptor as the other bridgehead group.
As the donor we used - and -naphthyl and as acceptors we utilized acetyl,
benzoyl and cyclohexanecarbonyl groups. It can be seen that all of these
dramatically diminish the excited state lifetime. Thus, note the 1.84 nsec
lifetime of the ci-naphthyl acetyl compound listed as entry 5 of Table I; this
lifetime was that measured by emission at 330 nm where naphthyl groups emit.
The same short lifetimes are found for similar compounds with acyl groups as
V.

Related to this is the observation that emission at circa 400 nm, ascribable
to ketonic fluorescence, could be observed as well. Thus, energy transfer
was occurring.

Additionally there is the intriguing point that with the shorter lifetime and
lower energy benzoyl group, a shorter naphthyl lifetime was observed in all
cases. Thus, energy transfer occurs from naphthyl with greater facility in
these cases. Since the ketonic decay was slower than that observed for the
naphthyl groups, it seems likely that the dominant factor is energetic.

Also, a most interesting effect is seen in the consistently shorter lifetime
for the -naphthyl compounds bearing a ketonic acceptor relative to the a-
naphthyl analogs. If one recognizes that the La and Lb excited states are
close lying and that the carbonyl group singlet is polarized along the
C-0 axis as a result of magnetic dipole coupling, then it it seen that
in the s-compounds the transition dipoles have a parallel arrangement in
one molecular conformation for the La transition while such a possibility
does not exist for the a-isomers. Note Figure 2.

Finally, it is otserved that excitation pf the lowest naphthalenic transition
at shorter wavelngths leads to shorter lifetimes; note Table II. This has
as one explanatiqn the utilization of higher vibronic levels with increased
rates of energy 1ransfer to the carbonyl group.



A new cyclopentadiene synthesis.
One intriguing reaction we uncovered (see ref. 6) involves the direct photo-
lysis of vinyl substituted cyclopropenes. This leads to cyclopentadienes as
shown in equation 4.

The quantum yields were found to be a function of substitution as shown. In-
terestingly, the efficiency was increased with phenyl substitution as Ra.
Terminal methyl substitution on the vinyl group (i.e. as R) diminished the
efficiency.

Two mechanisms are shown in Chart 1. One mechanism involves excited state
bridging between the two ethylenic chromophores; this is labeled PATH B. The
second mechanism begins with carbene formation followed by five ring for-
mation; this is labeled PATH A. While clear evidence is not yet available
to distinguish these mechanisms, the pattern of effect of substitution on ef-
ficiency suggests that PATH B is the correct one. Thus, phenyl substitution
as Ra would stabilize odd electron density in the bicyclo[2.l .O]biradical
formed by bridging. The carbene mechanism does not offer a similar source
of this substituent effect. Also the decrease of efficiency with terminal
methyl substitution would make sense in MECHANISM B as a steric effect; and
a parallel rationale does not derive nicely from MECHANISM A since ring
closure would occur only after the high energy carbene intermediate had al-
ready been formed.

394 HOWARD E. ZIMMERMAN

R

Figure 2. Some possible conformations and relationships between the
transition dipoles of naphthyl and acyl groups

SOME EXPLORATORY ORGANIC PHOTOCHEMISTRY

R' R

hv

Ra,Rb,Rc,Rd = Ph; R' = H

Ra = H; RbRcRd = Ph; R' = H

Ra = H; RbRcRd = Ph; R' =
CH3

Rd

0 = .049
0 = .027
0 = .010
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CHART 1. Two mechanisms for the cyclopropene to cyclopentadiene re-
arrangement

O, OY

Ph

0 (direct) = 3.05x104; 0 (sens;acetophenone) = 4.52x104

Two facets of nitroalkene photochemistry are of special interest. One is
that the reaction goes with a sensitized quantum yield which is not too much
greater than the direct efficiency. This shows that the triplet is capable.
of rearranging and suggests, but does not prove, that even in the direct ir-
radiations the triplet is utilized. The second point is the very low
reaction efficiency compared with comparable enone rearrangements (ref. 8).
This suggests an efficient excited state decay mode such as reversible
oxygen - carbon bonding.

Use of azo precursors for generation of di-ir-methane type biradicals.
The three azo compounds shown below(Chart 2) were used to generate the cor-
responding diradicals. These diradicals have been postulated by us as in-
volved in the di-.ir-methane rearrangement (ref. 9) of barrelene derivatives.

Chart 2 (ref. 10) describes the behavior of the azo compounds under thermal,
direct photolytic and sensitized photolytic conditions. The most important
observation is that thermally the azo compounds revert to the barrelene

Ra
Rb

Rc

R b

a/,\tv,',
hv PATH A

Rc Rd
Rc

Rb

Rc

R.

Phenyl migration in nitroalkene rearrangements.
Another interesting reaction encountered is that of 3,3-diphenyl-l-nitrocyclo-
hexene which rearranges to the bicyclic nitro compound as in eqn. 5 (note ref.
7). This rearrangement is parallel to the unsaturated ketone rearrangements
reported by us many years ago; note reference 8 for example.
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CHART 2. Three diradicals involved in di-.rr-methane rearrangements and
behavior of related azo compounds.

(a)Thermolysi t
(b)hv,direct
(c)hv ,sens

(a) 100%
(b) 24%
(c) 0%

0%
73%

100%

a)Thermolysis
b)hv,direct
c)hv,sens

(a) 100%
(b) c1=0.78
(c) =0.l

=0.21
=O.58

0%
=0.20

- =0.63

relatives while on irradiation semibuilvalenes, observed in barrelene photo..
chemistry, are among the products. From the sensitized runs, the semlbull
valene products are major. This is in agreement with the photochemistry of
barrelenes where it is the triplet which rearranges.

Although the azo chemistry may involve nitrogen in the transition state, es
pecially in the case of the ground state process which is most likely a
simple electrocyclic reverse Diels-Alder, the diradicals and species (g.
transition states) incorporating nitrogen are electronically similar aWU
should prove analogous in behavior. This is shown to be the case by Chart 2.

(a)
(b)
(c)

100%
=0.70
0 .08

(a)Thermolysi s
(b)hv,direct
(c)hv,sens
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The cyclopropyldicarbinyl diradical; Some theoretical aspects.
The cyclópropyldicarbinyl species discussed in context of triplet, bicyclic
photochemistry is of general interest. Thus, it occurs in acyclic and sing-.
let di-.ir-methane photochemistry also. It is therefore of considerable
interest to inspect the electronics of such a species. Using the basis set
shown in Chart 3 both Hückel—level and SCF calculations come to the con-
clusion that in S1 orbitals 1 and 5 are electron rich. The carbon bearing

CHART 3. The cyclopropyldicarbinyl species in truncated form.

,A\ l%)15
orbitals 3 and 7 is electron deficient, this being the 'methne carbon". The
results do depend on resonance integrals of the type (pIHJsp') being smaller
than those of the (piHip) type, but calculation based on geometry confirms
this. Note reference 11. Also configuration interaction calculations place
the triplet slightly below ground state.

Such a calculation is truncated from the cyclic array commonly assumed; how-
ever, this does simplify discussion and does seem to come close to reality.

CONCLUSION

It is clear that photochemistry is an ever broadening field. The number of
new reactions is increasing exponentially. The utility of those reactions
found is increasing as the generality of a given process becomes really clear.
The development of methods for studying photochemical mechanisms is a similar
challenge. The field is unique in givingresearch students particularly
broad training. Thepaper presented here merely reflects the author's en-
thusiasm with these views in mind.
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