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MANUAL OF SYMBOLS AND TERMINOLOGY FOR PHYSICOCHEMICAL QUANTITIES AND UNITS.
Appendix II : Definitions, Terminology and Symbols in Colloid and Surface
Chemistry.

Part 1.13 SELECTED DEFINITIONS, TERMINOLOGY AND SYMBOLS FOR RHEOLOGICAL PRO-
PERTIES

Approved by the Interdivisional Committee on Nomenclature and Symbols, 1978.
Prepared for publication by H. van Olphen & J. Lyklema on behalf of IUPAC Com-
mission I.6 on Colloid and Surface Chemistry of the Division of Physical
Chemistry (see Note a.).

1.13 RHEOLOGY

Rheology is the study of the flow and deformation of matter under the influ-
ence of a mechanical force. It is concerned particularly with material beha-
vior which cannot be described by the simple linear models of hydrodynamics
and elasticity. Some of these departures are due to the presence of colloid-
al particles or to the influence of surfaces. Some of the simple terms and
concepts of rheology are of sufficient importance to colloid and surface
chemistry to deserve inclusion in this manual.

The recommendations in this document should be considered a subset of a com-
plete set of recommendations on terminology in the field of rheology and
fluid dynamics in general, which has not yet been developed. The present
subset is a selection of those terms which are of particular interest to
colloid angd surface chemists, and which can be defined in a relatively ele-
mentary fashion. Another subset of terms relating to elastic deformations,
viscoelasticity, creep flow, etc. is equally important for the audience men-
tioned, but cannot be properly defined without referring to the fundamental
equations on fluid mechanics. Therefore, its development will be postponed
until the complete set has been established.

Rheology may be conveniently divided into bulk rheology, in which effects
due to the surface of the system can be neglected, and surface rheology, ia
which such effects are predominant. It should be noted that in surface rheo-
logy the neglect of bulk behavior is permissible only in exceptional circum-
stances, such as for very thin films surrounded by a gas.

Note a .

While this paper was prepared, membership of Commission I.6 was as follows:
K.J. Mysels, USA; R. Haul, Fed.Rep.of Germany; J. Lyklema, The Netherlands;
R.L. Burwell Jr., USA; R.S. Hansen, USA; V.B. Kazansky, USSR; C. Kemball,UK;
R.M. Barrer, UK; G. Ertl, Fed.Rep.of Germany; J. Haber, Poland; P. Mukerjee,
USA; E. Ter Minassian-Saraga, France; I.I. Tretiakov, USSR; H. van Olphen,
The Netherlands; E. Wolfram, Hungary; D.H. Everett, UK; W. Schirmer, German
Democratic Republic.

The section on Bulk Rheology incorporates some suggestions made as a result
of a review by members of the International Committee on Rheology, an Asso-
ciate Organization of IUPAC (R.S. Marvin. chairman 1972-197¢).

The Commission acknowledges the contributions of M. van den Tempel in draft-
ing the section on Surface Rheology.
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1.13.1 BULK RHEOLOGY

Viscosity is a material property relating siress and rate of strain in a fluid flowing in a
fashion such that the distance between volume elements changes with time. Stress expresses
the force per unit area acting across an imaginary plane in the fluid. Strain is the relative
change of position of the volume elements. Rate of strain is determined by all spatial deri-
vatives of the components of velocity.

A. Newtonian behavior

A Newtonian fluid is one in which the components of the stress tensor are linear functions of
the first spatial derivatives of the velocity components. These functions involve two mate-
rial parameters (taken as constants throughout the fluid, although depending on ambient tem-
perature and pressure) :

(1) the shear viscosity, n, often termed simply viscosity since in most situations it is the
only one considered, relates the shear components of stress and those of rate of strain at a
point in the fluid by :
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where ?xy' the shear component of rate of strain,

. 1
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Corresponding relations hold for Ogxz and Uyz; ny is the component of stress acting in the y-
direction on a plane normal to the x-axis; Vg, Vy, Uz are the components of velocity (Note b.).
(2) the volume viscosity or dilatational viscosily, G, enters into equations at any point
where the flow involves a change in volume, i.e. is dilatational. If the deformation is pure-
ly dilatational, the average of three normal stress components is:

23
where p is the hydrostatic pressure at the point considered in the absence of motion. By the
usual convention, the normal components of stress and the pressure act in opposite directions.

o= (1/3) (cxx + oyy +o0_, ) =-p+ ;(aqx/ax + B%J/ay + 3%;/33)

Shear stress, being defined in terms of forces acting across imaginary planes in a material,
cannot e measured directly. It must be inferred from measurements made at a surface of the
material, and its calculation implies some assumptions about the rheological properties and
the homogeneity of the material studied. The constitutive equation relating stress and rate
of strain is, properly speaking, an abstraction. When a fluid is termed "Newtonian", this
means that its flow behavior is consistent with the above definition.

The full constitutive equation for a Newtonian fluid, from which the above relations follow,
is equivalent to six scalar equations, which hold at every point in the fluid. Only a few
idealized problems can be solved exactly. One is that of simple shear, i.e. the case of a
fluid between two large parallel plates (to permit ignoring edge effects) of area A, separa-
ted by a distance A. If one plate moves relative to the other with a constant velocity V, re-
quiring a force F acting in the direction of movement, and the density, pressure, and vis-
cosity throughout the fluid are constant, the Newtonian equation can be coupled with the equa-
tions of motion and of continuity to show that the velocity gradient in the fluid is constant
(= V/h), and that F/A = nV/h. This idealized case (simple shear) is sometimes used to define
shear viscosity. If V and F are in the x direction and % in the y direction, then 2y, = V/A

and Ogy = F/A. Accordingly, in simple shear, the shear rate D is defined as D = Z?xy = daV/dy
and the shear stress F/A as Oy
The following are some additional terms and symbols describing Newtonian behavior:
o = 1/n : fluidity
v = n/p 1 kinematic viscosity
N N : viscosity of the solvent or the continuous medium
n, =n/ng : relative viscosity or viscosity ratio
n, = (n—ns)/n_s : relative viscosity increment
Note: this is a new term. The use of the former term "specific
viscosity" is discouraged.
n./e : reduced viscosity or viscosity number, where p_ is the mass con-—
i""D : X D
centration of the dispersed phase.
[n] = 1im(ni/pD): intrinsic viscosity or limiting viscosity number
pD—>0

nln=[1n(n/ns)]/pD: inherent viscosity or logarithmic viscosity number (the symbol
Ninh is often used).

Note b. Alternative definitions omit the 2 and % respectively. The possibility is left open,
that in the final complete set of definitions this alternative will be recommended.
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For dispersions of charged particles; components of the viscosity connected with the charge of
the particles are referred to as electroviscous effects.

B. Non-Newtonian behavior

The definitions below of various types of non-Newtonian viscosity are stated in terms of sim-
ple shear (i.e. scalar) relations. This can be justified in part by the fact that they are
used almost exclusively in cases of flow involving no change in volume. But even with this
limitation, some of the properties, such as the yield stress which is a special case of a
more general tensor yield condition, may vary with the type of flow.

If steady flow occurs only above a certain finite stress, it is called plastic flow. Consist-
ency is a general term to describe the property of a material by which it resists permanent
change of shape.

For systems showing non-Newtonian behavior when measured in steady simple shear, the shear
dependent viscosity, n, is a coefficient equal to 0/D at a given value of D; Ny is the limit-
ing viscosity at zero shear rate, and Ne the limiting viscosity at infinite shear rate; lno]
is the limit of intrinsic viscosity at zero shear. The differential viscosity, Mp, is the
derivative of stress with respect to the rate of shear at a given shear rate.

The ratio of stress to rate of strain, calculated from measurements of forces and velocities
as though the liquid were Newtonian, is termed apparent viscosity, Napp- If the liquid is ac-
tually non-Newtonian, the apparent viscosity depends on the type and dimensions of the appa-
ratus used.

If viscosity is a univalued function of the rate of shear, a decrease of the viscosity with
increasing rate of shear is called shear thimning and an increase of the viscosity shear
thickening. Shear thickening is often accompanied by an increase in volume of the system,
which is referred to as dilatatancy. This term has formerly been used for the phenomenon of
shear thickening.

The yield stress, O, or Ty, is the shear stress at which yielding starts abruptly. Its value

depends on the criterion used to determine when yielding occurs. Many colloidal dispersions

D show Bingham flow which is characterized by a o-D diagram as
shown in figure 1. At rates of shear greater than that at point
A, the following relation applies:

0 -0y = nAD

/ A og (or tp) is called the Bingham yield stress.
G‘o G‘B o

Figure 1. 0-D diagram, characterizing Bingham flow.
The following terms describe some time- and shear history dependent rheological phenomena.

The application of a finite shear to a system after a long rest may result in a decrease of
the viscosity or the consistency. If the decrease persists when the shear is discontinued,
this behavior is called work softening (or shear breakdowm), whereas if the original viscosi-
ty or consistency is recovered this behavior is called thixotropy. The time in which a cer-
tain viscosity or yield stress is reached after discontinuation of the shear is the time of
thizotropic recovery or the time of solidification. These times depend on the values of vis-
cosity or yield stress chosen by the experimenter. Rheopexy describes the phenomenon in which
the time of solidification, after discontinuation of a relatively high shear rate, is short-
ened by applying a small shear rate.

Terms which describe the opposite behavior, i.e. the fact that shear results in either a per-
manent or reversible increase of viscosity or consistency with time are work hardening (oppo-
site of work softening) and anti-thixctropy (opposite of thixotropy) .

1.13.2 SURFACE OR INTERFACIAL RHEOLOGY

In general, surface or interfacial rheology involves two-dimensional analogs of the models
used in three-dimensional rheology. Thus, phenomena of surface dilatation concern changes in
area rather than in volume. Whereas bulk rheology deals primarily with deformations involving
shear, dilatational deformations prevail in surface rheology. In surface dilatation one may
start at zero area or end up with zero area, whereas in bulk processes zero volume cannot oc-
cur. Another difference is that in bulk rheology purely viscous behavior is often encountered,
whereas in surface rheology it is rare. In surface rheology viscoelastic phenomena involving
both viscous and elastic aspects are predominant and have to be considered.

The interface between two fluids can always support a pressure difference, Ap, which produces
a stress normal to the surface, provided the surface has the proper curvature, given by the
Laplace equation :

1 1
Ap = Y(;T + ;;0
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where y is the surface or interfacial tension, static or dynamic as the case may be (cf.1.2.1)
and r;, rp are the two principal radii of curvature. Thus, for a flat interface there can be
no pressure difference, and the following discussion will be restricted to such interfaces.
The interface between two fluids may or may not be able to support a tangential shear stress
and/or a tangential dilatational stress.

For steady state deformations one can define a surface shear viscosity n°, and an area visco-
sity or surface dilatational viscosity C°. In a Cartesian system with the x axis normal to
the surface, they are defined by the equations:

° d(1n 4)

"5 ?av and ¢% = ay/ S5

y' T
where Ogy is the shear component of the surface stress tensor, v, is the y component of the
surface velocity vector, A is the surface area, ¢ is the time, and Ay is the difference be-
tween the (steady state) dynamic surface tension and the equilibrium surface tension. In ge-
neral, as in bulk rheology, these viscosities are dependent on the rates of deformation and
past history of the surface. They are constant only if the behavior is Newtonian.

For surfaces at which no adsorption occurs, ns and CS are zero. In practice, the interfaces
between two pure immiscible liquids often approach this behavior. Surfaces at which adsorption
occurs, including spread monolayers, generally show a surface dilatational viscosity, since
this is related to the fihite rate of re-establishment of equilibrium surface tension. In ad-
dition, such surfaces may or may not possess significant surface shear viscosity.

In analogy to the customary treatment of viscoelasticity in bulk, the ratio of the surface
shearsstress to the corresponding surface shear strain is defined as the surface shear modul-
us, G :
n
¢®=¢% +i¢%" .
Here, GS' represents the elastic component of the response, and GS" the dissipative or vis-

cous component.

n
For a simple harmonic motion of angular frequency w, the dynamic surface shear viscosity G°

follows from
GS = GS"/w

The surface dilatational modulus is defined by:
KS = KS' + iKs"

with the dynamic surface dilatational viscosity:
S = k5" /w

For small deformations these quantities are often independent of the extent of deformation,
but generally depend on the frequency.

Motions of the surface are coupled with those of the subsurface fluid or fluids, so that move-
ments of the liquid normally produce stresses in the surface and vice versa. The movement of
the surface and of the entrained fluid(s) caused by surface tension gradients is called the
Marangoni effect.

When only one fluid has a significant viscosity, coupling between surface and subsurface
fluid motion can be described by the force balance equation for a surface element and a liquid
velocity distribution Vg, vy, Vgt

v 2 2
x s 9%¢ s 9°¢
—_— = +
"[az =0 K ax? ¢ ayz
Here § is the & component of the displacement of the surface element, and n the complex bulk
shear viscosity. An analogous equation can be written for Vy. These equations are basic to
the measurements of surface rheological properties.

Shear properties can be measured by subjecting the surface to a state of stress in which
every element deforms without changing its area. Similarly, surface dilatational properties
are best measured in a purely isotropic dilatation. There are, however, many systems having
significant dilatational properties in which surface shear resistances are negligibly small
(although the reverse is not likely to be encountered) and for such systems dilatational
properties can be measured by extending the surface in one direction only. Otherwise, the an-
alysis of experimental results on surface behavior in which both shearing and dilatation are
significant (as in the canal viscometer) is extremely difficult.

Although rheological phenomena can be described in terms of an excess viscosity (or elastici-
ty) associated with the interfacial layer (cf. 1.2.3), the resulting surface properties will
depend in general on the detailed geometrical arrangement and not only on the nature of the
surface and on its motion.

.o0o0 .





