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?bstract - The Bjerrwn theory of ion pairing may be regarded as an approxi-
mation method for calculating the thermodynamic properties of the restrict-
ed primitive model (essentially charged hard spheres in a dielectric mediuit
for an electrolyte solution. For this model, with parameters appropriate
to a 2-2 electrolyte in water or a 1-1 electrolyte in ethanol, the struc-
tural implications of Bjerrum's theory are compared with the structural
information in the ion-ion pair correlation functions g.(r) and g÷(r)
obtained in a new series of hypernetted chain equation (HNC) calculations
for the sane model.

The degree of ion pairing implied by Bjerrum's theory is rather similar to
the comparable functional of g. (r), although there are percentage differ-
ences even at concentrations as low as 1mM. The g(r) results are inter-
preted as showing that triple ions make a strong contribution to the
solution properties even at concentrations as low as 10mM.

The implications of these results for the interpretation of data for the
electrical conductivity of electrolyte solutions and of data for the con-
centration dependence of electron exchange reactions such as Fe2+ + Fe3+ =

exchangeare briefly discussed.

INTRODUCTION

In 1926 N. Bjerrum showed that the Debye-HUckel theory could be extended by blending it in a
certain way with the law of mass action for the assumed chemical equilibrium between ion
pairs, which are electrically neutral, and the ions of the Debye-Hickel ion atmosphere (1).
Bjerrun's theory has a much greater range of applicability than most other extended forms of
the Debye Huckel theory. It is widely used in the molecular interpretation of data for the
electrical conductivity for ionic solutions (2) and it is applicable to other aspects of
ionic systems as well (3).

The Bjerrum theory can be thought of as an approximation method for evaluating the properties
of a certain model for ionic systems, namely the restricted primitive model. In this model
the particles are governed by classical mechanics with a potential function UN that is pair-
wise additive

UN(r1,
=

El<j(N (1)

with the following very simple form for the pair potential (written for r Ir. -I)
u.. °° if r<R..
1] (2)
= e.e./Cr if r>R..

2_J

These are the equations for the primitive model (4), roughly for charged hard spheres in a
medium of dielectric constant c. The relation of this model to real solutions has recently
been elucidated by Hoye and Stell (5). In the restricted primitive model we also assume that
there are just two species of ions of the sane size (i.e. all R. .=R) and they have the same

magnitude of charge.

The states of the restricted primitive model may be represented in terms of the reduced

temperature (6)

T=R/b (3)

where b, the so-called Bjerrum length or Landau length, is given by

b tz+jel2/ekBT, (4)
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where -z.e is the charge on a particle of species i, and the reduced densityie N+Nr6 R3 , (5)

where N is the number of particles of species i in a system of volume V. The correspondence
with real systems if made by assigning realistic parameters z1, C, and R to the latter (6).
Figure 1 shows the "Bjerrum line", the locus of states in which, according to Bjerrum's
theory, half of the ions are paired and half contribute to the ion atmosphere. Figure 1 also
shows the locus of states with minimum electrical equivalent conductivity according to the
theory of Fuoss and Kraus (7), and the coexistence curve that characterizes ionic systems,
all calculated for the primitive model. The coexistence curve for this model is as yet
poorly known; the. curve in Figure 1 is based upon a combination of theory for the primitive
model together with experimental data for real ionic systems (6).

The Bjerrum theory fails to give the coexistence curve shown in Figure 1 (6). Since the
2-2 aq. isotherm lies near the coexistence curve in Figure 1, one may doubt whether Bjerrum's
theory is reliable on the 2-2 isotherm at densities Pr 10-2, where the two lines are close
to each other. To test this point results from Bjerruxct's theory are compared with those from
the HNC integral equation (6) applied to the same model, all for states along the isotherm
for 2-2 aqueous electrolytes in Figure 1. A similar study was recently made by Rasaiah (8),
and some time before that, using a numerical solution to the full Poisson-Bo2tzmann equation
for the primitive model, by Guggenheim (3).
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Fig. 1. The corresponding states diagram for an ionic fluid (6). Curve A
is the estimated coexistence line for the restricted primitive model.

Region B is typical of electrolyte solutions in weakly polar solvents while
region C is typical of fused salts. The line 1-1 aq (2-2 aq) is the locus
of states of a 1-1 (2-2) electrolyte in water at 25°C, assuming that R=4L

Bjerrum (1) assumed that the ionic solution had a certain structure, namely a mixture of ions
and ion pairs. On the other hand, in either the full Poisson-Boltzmann equation or the HNC
approximation method the structural features as well as the measureable properties are
deduced from the model's Hamiltonian. It seems possible and useful to go somewhat beyond
Guggenheim and Rasaiah to compare the actual structural features of the primitive model with

those assumed by Bjerrum. It is especially interesting to do so along the isotherm for 2-2
aqueous electrolytes because, as noted above, this passes close to the coexistence curve
(Fig. 1) where we already know (6,9,10) that there is a dominant structural effect, namely
phase separation, that is missed by Bjerrum's theory.

The states on this isotherm also are close to those for solutions of 1-1 electrolytes in
solvents with dielectric ccnstant 20.

C
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of r at zero concentration is used by Bjerrum to classify ion pairs; namely a cation and an
anion whose separation is smaller than mm is an ion pair. Since mm, the value of r at
which r2g_(r) is a minimum, is a rather strong function of concentration (Fig. 2) we see
that Bjerrum1s classification becomes concentration dependent, a feature that is not
accounted for by Bjerrum's theory. In fact rmin=b/2 only at zero ion concentration.
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Fig. 2. a. The function f= (r/R) 2_ (r) at various concentrations (6).
The arrows indicate the minima.

b. The resulting mm, the value of r at the minimum, as a
function of concentration.

To pursue this structural aspect we notice that, for a given choice of rp, the Bjerrum theory
a is related to the pair correlation function g_(r) by the equations

a = n+(r) (11)

where, for any distance ' and any pair of species i and j, the running coordination number
is defined as
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For the rest we deal with the restricted primitive model. For real ionic systems, solutions
as well as pure salts and plasmas, the primitive model is merely a caricature of the
Hamiltonian. To elucidate the differences between the real Hamiltonian and the primitive
model Hamiltonian one may compare measureable properties calculated from the latter with
experimental properties. Recently Justice and Justice (2) and Barthel, Wachter, and Gores (2)
have reported interesting results obtained in this way by the use of Bjerrum's theory or
certain generalizations of it, so it is especially interesting to ask how faithfully the
Bjerruxn theory represents the primitive model.

In Section Il the Bjerruxn theory equations are summarized. Comparison with the results for
some new HNC calculations for the same model are presented in Section III. In Section IV we
present new results for the "pairing" of like-charged ions, deduced from the same calcula-
tions. These results are completely outside the scope of the Bjerrum theory and are relevant
to certain experimental measurements on systems related to, but more complicated than aqueous
2-2 electrolytes.

SECTION II - BJERRUM THEORY

Writing C for catioms and A for anions, with the charges suppressed, we define K as the
equilibrium constant for the reaction of the ions to form pairs,

A+C=AC (6)

If the primitivemodel is assumed then the equilibrium constant is given by

K = F!Rrp eDr 4irr2 dr (7)

where rp is the longest possible distance between A and C in a pair, F is a proportionality
constant depending upon the units of the concentration c, and b is given by Eq. (4). The
equilibrium constant also obeys the equation

K = cx/c(l—)2y2 (8)

where is the fraction of the free ions that are paired and is the mean activity coeffi-
cient of the free ions,,assumed to be given by the equation

-

ln = - bK/(l+aK) (9)

where K, the Debye kappa for the unpaired ions, is given by

K (8irbc(l-c)) (10)

Bjerrum's choice for rp namely r=b/21 has been very widely discussed; a new aspect is
presented in Section III. The most consistent choice for the length a seems to be a=r (2),
but other choices are often made (3,8,9). In this paper, references to the Bjerrum theory
assume a=rp=b/2 unless other values are specified.

SECTION III - COMPARISON OF BJERRUM AND HNC RESULTS

Like Rasaiah and Guggenheim we find that the Bjerrum theory gives reasonably accurate osmotic
coefficients for the primitive, model for aqueous 2-2 electrolytes. In fact 4) from the

Bjerrum theory agrees with 4) calculated by the virial equation from the correlation functions
yielded by the HNC approximation better than the results of the virial equation agree with
the compressibility equation (6). In other words, the disagreement between the Bjerrum and
HNC osmotic coefficients is within the uncertainty of the latter. Rather similar results are
obtained using the modification of Sjerrum's theory in which one uses the expression for K
assumed by Fuoss (11). Another version of the Bjerrum theory, in which rp=b/2 and a=R gives
osmotic coefficients that are substantially too high, although this version does give a
critical point near that in Fig. 1 (6,12). The osmotic coefficients 4) are related to the

activity coefficients by the Gibbs-Duhem equation, so the results for the latter will also
be nearly the same for the Bjerrum theory as for the HNC equation.

The pair correlation function g..(r) calculated from the HNC equation (13a) is shown in Fig.2
(The local concentration of a particle of species i in the solution at a distance r from a
particle of species j is cjgjj(r), where ci is the overall or stoichiometric concentrations
of species i. The pair correlation funötiôns are structural quantities that may be calculat-
ed, at least approximately, for a given 'model system and they are closely related to the
results of suitable diffraction experiments upon real systems (l3a). Given the correlation
functions and the Hamiltonian for a model system one can calculate most other equilibrium

properties without further approximation if Eq. (1) applies (l3a).) What is actually
plotted in Fig. 2 is the function r2g...(r) because the minimum in this particular function
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n (r') = (N./v) jr' g.(r) 47rr2dr,
ij 1 (12)

the average number of particles of species i within distance r' of a particle of species j.
In Fig. 3 we see that, at low concentration, a calculated from the Bjerrum theory and
n+_(b/2) agree quite well but that at higher concentrations they become quite different and
n+-(b/2) even exceeds unity, an indication of the formation of larger than two-ion clusters
in the model system. Such clusters are not allowed for jn Bjerrum's theory.

Fig. 3. The fraction of ions paired (a, Bjerrum) and the running coordina-
tion numbers n+_(b/2) and n+_(rmin), both calculated by HNC, as functions
of concentration.

In Fig. 3 we also show n+_(rmjn) , where mm is defined above in terms of the minimum in
r2g_(r) as a function of r. A version of Bjerrum's theory in which an AC pair was defined
in terms of a maximum separation rprmin would yield values of a that should be compared with
n.-.. (mm). However such a version would not be a complete theory since the determination of
the g_(r) functions needed to find rmin requires the use of some other theory, such as the
HNC equation used here.

To bring out the significance of these results we consider one of the widely used conductiv-
ity equations that gives the equivalent conductance as a function of the free ion concentra-
tion (l-c*)c. The discussion above leads to the suggestion that an improvement might be the
replacement of (l-cz)c by (l-n÷..(r))c which has the sane sense as the former but which
liberates us from dependence upon Bjerrum's theory. How should rp be chosen? Figure 3 shows
that whether one uses a or n4_(b/2) or n+_(rmjn) changes the concentration of "free" ions by
as much as 10% even at a concentration as. low as 1mM and may have even much greater effects
at higher concentration. Errors of the sane order are expected to appear in the equilibrium
constants derived from any of the usual combinations of a conductivity equation with the
Bjerrum theory, even if there are no other sources of error in the conductivity equations
themselves. (Still another definition of ion pairs, in terms of the "partners correlation
function", is considered in reference 6.)

It may be inferred that further advances in the molecular interpretation of experimental data

for systems in which ion pairs are important depend upon methods which allOw for the contri-
bution of all ionic configurations to the property measured. While this already is possible
for the calculation of thermodynamic properties, at least within the accuracy of the HNC
equation or the Monte Carlo simulation method, for transport coefficients such powerful
methods are not yet available, except possibly Brownian Dynamics. (l3b).
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On the other hand, for the calculation of the effects of composition changes upon the rate
constants of chemical reactions the ionic interaction part of the theory is somewhat easier
(14,15). The overlap of the electronic wave functions of the reacting particles, say i and j,
is only important at small separation so that the rate of an activation-controlled reaction
tends to vary with composition in the same way as ij (r) at a value of r corresponding to a
collision of the two particles; in the present context g(R) may be a useful guide. The
discussion above shows that Bjerruxn's theory is a qualitative guide to the structural features
related to g.(r) so one may 'expect that for 'an activation-controlled reaction of a cation
with an anion a calculation via Bjerruxn's theory of the change in a rate constant due to
variations in the solution composition (i.e., assume that the rate of reaction is proportion-
al to the concentration c of ion pairs) will be qualitatively in agreement with the calcula-
tion of the same effect using the HNC-derived g..(R) in Figure 4.

Fig. 4. Correlation functions at "contact" g...(R) and g++(R) as functions
of concentration. The arrows on the left-hand scale show the limiting
values at vanishing concentration of the electrolyte.

Using the same reasoning as in the application of Bjerrum's theory to the reaction of an
anion with a cation, one would conclude that if i and j were both cations then the rate of a
chemical reaction between them would increase uniformly with increasing ionic strength, in
contrast to the actual behavior of g(R) which also is shown in Fig. 4. This observation
motivated the study of the cation-catiQn interaction in the primitive model for aqueous 2-2
electrolytes as described in the following section.

SECTION IV - INTERACTION OF LIKE CHARGED IONS

Because of symmetry in the restricted primitive model one has g(r)=g (r) so the following
discussion, which is couched in terms of cation-cation interactions for simplicity, has a
counterpart in terms of anion-anion interactions.

The concentration dependence' of g.. (R), shown in Fig. 4, is quite remarkable, especially in
comparison with the much simpler g+ (R). Especially interesting is the fact that in' the
experimentally important range from O.OO1M to lM one finds that g+(R) is constant within a
factor of two at a value two orders of magnitude larger than its limiting value at zero ion
concentration. The essential features of g++(R) may be found in the work of Rasaiah (8),

0.1
c/molar
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although the new HNC computations reported here differ from the earlier ones in respect to
g(R) more than in the other coefficients reported.

A useful insight into the behavior of g÷.. (R) in Fig. 4 comes from the graph of g+ (r) as a
function of r at several concentrations (Fig. 5). In the range from 0.0004M and up there is
a well defined maximum in g.. at rmax 2R. The presence of this maximum implies that there

is an important contribution to g÷÷(r) for r 2 R from triple ions +-+. The most stable

configuration of such a triple ion would be the linear one with a 2R separation between the
cations; for bent configurations one would have R < r < 2R and smaller g4(r) owing to the
electrical work of bringing the two cations closer together, just as shown in Fig. 5. At
very low concentrations there is no maximum in g++ (r), hence no contribution from triple ions,
presumably because there are so few ion pairs.

Fig. 5. Examples of g(r) for

The concentration dependence of rmax is shown in Fig. 6. Part of its complexity may be
attributed to the fact that the structure of the solution changes markedly near c=0.03M,
judging from the behavior of functions related to g (6).

Another aspect of these results is shown in Fig. 7 where the concentration dependence of
g(r) in the range R r 2R is shown. From 0.001 to 0.OlM the relative concentration
dependence lng÷(r)/3c is rather precisely independent of r while even above this range the
dependence is still rather weak. As also shown in the figure, the ratio of n++(2R) to the
molarity is quite constant at a value near 0.7 in this concentration range. Thus at 5mM
about 0.3% of the cations have a cation neighbor within a distance 2R while at 100mM 7% of
the cations have such neighbors. These close cation pairs are, following the conclusion
reached above, members of a triple ion. Such a triple ion contributes to the conductivity
but is not allowed for in any of the contemporary conductivity theories, an omission that
perhaps leads to percentage errors in the calculated conductivity for models with parameters
close to those for 2-2 aqueous electrolytes.

0.5

0
1.5 2.0 2.5

r/ R

various molarities.



2154 HAROLD L. FRIEDMAN and MORN LARSEN

Fig. 6. The concentration
right scale.

dependence of left scale, and

g÷(2R)oooo0000°
g(I.5R)

g (R)

ci n++(2R)/lOc

0.01 0.1 I

c/molar

Fig. 7. The concentration dependence of g÷(r) and n÷+(r) for r-values in
the triple-ion range. The results for g(R) are represented by the curve
so labeled, the other results by data points. The other curves are obtain-
ed by shifting the g÷4(R) curve upwards to facilitate the intercomparison
of these results.

The present results for g(r) also may be relevant to certain observations in experimental
chemical kinetics, for which we choose as an example the exchange of an electron between Fe2+
and Fe3+ in dimethyl sulfoxide (DMSO, c = 46.4 at 25°C). The experiments show (16) that the
rate of the electron exchange is independent of ionic strength in the range from 0.01 to O.2M,
where the ionic strength is varied by addition of NaC1O4. Letting g23(r) be the pair correla-
tion functions of species Fe2+, Fe3+ we see that the rate constant for this activation-con-
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trolled reaction will be proportional to g23(R23), where R23 is the distance of closest
approach of the two ions. If we may use the average Bjerruxn length b = 3l for the Fe2+,
Cl04 and Fe3+,Cl04 interactions in DMSO, and an effective diameter of R=5 for these
interactions then we have Tr=R/b=O.l6 compared to 0.1468 for the restricted primitive model
for aqueous 2-2 electrolytes. On this basis we expect that a primitive model calculation

for g23(r) would yield results that are qualitatively similar to g4(r) shown in Figs. 4
and 5. In particular we expect that over a wide range of ionic strength g23(R3) will be
nearly constant and much larger than its value at zero ionic strength; and that this
behavior is associated with the formation of an ion triple, Fe24, Cl04,Fe3+. On the other
hand Menashi, Reynolds, and Van Auken (16) concluded from the lack of dependence of the
rate constant upon ionic strength that Cl04 was not present in the transition state. It
seems that this conclusion can not be firmly held in view of the fact that the primitive
model calculations would predict this lack of dependence upon ionic strength even though a
triple ion is involved.

It may be concluded that Bjerrum's theory is remarkably accurate for calculation of the
osmotic coefficient but is less satisfactory for structural implications related to 4- ion
pairs. For ++ or -- pairs the HNC approximation method leads to remarkable conclusions that

are altogether missed by Bjerrum's theory.
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