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Abstract - We give an introduction to the so—called atomic sphere approxi-
mation (ASA) for describing and computing band structures and ground-state

properties of closely packed crystals. The concepts of canonical bands,
potential parameters and partial pressures are explained. As an example we
discuss the band structures of the 3d-monoxides which exhibit ionic in-
sulating- (CaO), metallic- (TiO and VO) and antiferromagnetic insulating
(MnO) behaviour. The band structures have been calculated self-consistently
as functions of the lattice constants and para—, ferro-, and antiferro—
magnetic spin-polarizations have been allowed for within the local approxi-

!
mation to the spin-density functional formalism. We find good agreement
between the calculated and observed equilibrium lattice constants even for
the antiferromagnetic Mott insulators (MnO through NiO) , despite our in-
correct description of their ground state.

INTRODUCTION

The numerous band-structure calculations performed during the last two decades show that the
electronic structure of crystals, metals in particular, ,is described rather well in a one-
electron picture where the effects of exchange and correlation are treated in a statistical
way, as in the Slater exchange-, Xci-, or density-functional schemes (1-3). With the advent
of larger computers, improved programming and new, effective band—structure methods it has,
in the last decade, become possible to carry through such calculations to self—consistency
and hence, to obtain parameter-free estimates of ground-state properties such as cohesive
energies, lattice constants, compressibilities, magnetic moments, a.s.o. So far, calculations
of ground-state properties using the density-functional scheme (2,3) have been carried out
successfully for nearly all elemental metals (4-9), for a number of diatomic molecules (10)
and, most recently, for a few compounds with the simple CsCl- and NaC1-structures (11,12). The
latter calculation,performed for the series of 3d—monoxides,is the subject of the present paper.

Many of the above mentioned calculations (6-12) have been performed with some form of the
linear muffin-tin orbitals (LMTO) method (13,14) which is computationally very fast and con-
ceptually simple. The method may be employed at various levels of sophistication; the most
accurate, and cumbersome, is the one used in the calculations (10) for diatomic molecules
with their highly aspherical charge distributions. A level of great conceptual simplicity
is the so-called atomic sphere approximation (ASA) (14-17) where space is divided into over-
lapping atomic spheres inside which the electronic charge is assumed to be spherically
symmetric. This approximation is best for closely packed materials without directional bonds
and it has, for instance, been used successfully for elemental metals (6-9, 18), inter-

metallic compounds (19), A—15 materials (20), Laves phases (21), Chevrel phases (22,23),
ternary Rh-Borides (24), and U-pnictides (26).

In the present paper we shall explain some simple aspects of the ASA and discuss how it can
be used to calculate equilibrium lattice constants, compressibilities and magnetic moments.
As an example we consider the series of 3d-monoxides, CaO through NiO, together with CaS.

The monoxides of the 3d-elements all crystallize in the rocksalt structure but, otherwise,
they have very different physical properties (26): CaO is a diamagnetic, ionic insulator,
TiO and VO are paramagnetic metals, TiO is even a superconductor, and MnO through NiO are
antiferromagnetic Mott insulators (27). Therefore, as we proceed through the series, a Mott
metal-insulator transition takes place before reaching MnO. This view that there is a funda-
mental difference between the lighter and the heavier monoxides has found further support
from the behaviour of. the lattice constants which, as shown in Fig. 1, are substantially
contracted for the metallic compounds as compared with the insulating ones (28). In addition,
the binding energy is considerably enhanced for the metallic compounds (29). Apparently, when
metallic, the 3d-electrons give rise to an additional cohesion beyond the ionic binding for
the insulating monoxides.
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Fig. 1. Experimental and theoretical lattice constants for the
3d—monoxides.

It is well known that the usual band picture cannot properly describe the ground state of a
Mott insulator and, hence, the electronic structure of MnO through NiO. For these systems we

I however, focus our attention on the experimental fact that they are all antiferro-
magnetic (30) and, in our self-consistent band calculations, we will therefore allow for
ferro- and antiferromagnetic spin—polarization. With this approach we do correctly find that,
for MnO through Ni0, antiferromagnetic solutions with completely separated d-subbands are
stable and that, with these solutions, the lattice constants are well reproduced. This is
shown in Fig. 1. Nevertheless, as anticipated (30), the antiferromagnetic band structures
incorrectly yield Fermi surfaces for all the Mott insulators except MnO where the d-band is
half full.

There exists a vast literature on the electronic structure of the 3d-monoxides and references
may be found in the review by Adler (26) and the more recent article by Brandow (30). As re-
gards previous band—structure calculations we shall mention three. Ten years ago Wilson (31)
performed a non—self—consistent, antiferromagnetically spin-polarized calculation for MnO at
the observed lattice constant and he found that the Mn d-subbands were completely separated.
In 1971 Mattheiss (32) performed non-self-consistent calculations for the entire series with-
out allowing for spin-polarization and using Slater exchange. For the antiferromagnetic in-
sulators he constructed Wannier functions from his bands and extracted crystal-field para-
meters. By comparing these with experimental values he concluded that his d-bands were about
30 per cent too narrow, i.e. that they should be about 0.3 Ry wide. From the calculated
d-bandwidths Heine (28) estimated the size of the d-electron contribution to the binding and,
using the experimental value for the compressibility, he concluded that this was roughly con-
sistent with the hump observed in the lattice constant when the d-electrons undergo the Mott
localization (Fig. 1). In 1976 Neckel and coworkers (33) presented self-consistent, Xcx-
energy bands for the lighter monoxides ScO, TiO and VO at the observed lattice constants.
These bands were about 30 per cent wider than those of Mattheiss, and Schwarz et al. (34)
used them to calculate K- and L-edge emission and absorption spectra which they found were
in good agreement with the experimental results.

Our self-consistent energy bands for the lighter monoxides are rather similar to those of
Neckel et al. We use the Hedin-Lundquist and Barth-Hedin (3) forms of the exchange-correlation
potential and we perform the calculations for a range of lattice constants. The variation in
the total energy is evaluated and the equilibrium lattice constants determined.

ATOMIC SPHERE APPROXIMATION AND BAND STRUCTURES OF THE 3d-MONOXIDES

We shall now give an introduction to the ASA(14-17) in which w concentrate on the conceptual-
ly most simple aspects and leave out technical details.

Let us first suppose that we want to solve Schrödingers equation for one electron moving in a

a
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potential having the so-called muffin-tin form indicated in Fig. 2. This form is spherically

symmetric inside non—overlapping mtiffin—tin spheres surrounding the atoms and flat in between.
For any prescribed energy, E, one can always solve Schrödingers differential equation for one
isolated muffin-tin sphere embedded in the flat potential, v Z' by numerically integrating
the radial Schrödinger equation outwards from the sphere cenre and, at the sphere boundary,
attach continuously and differentiably a linear combination of the free-space spherical
Bessel- and Neumann functions with the appropriate wavenumber K =

(E_Vm
1/2. This solution

is a phase-shifted spherical-, or partial, wave. For the crystalline muin-tin÷potentia1 one
may now centre a linear combination of such partial waves on each atomic site, R, in the
crystal and ask whether one can determine the linear combination in such a way that it con—.
stitutes a solution of Schrödingers equation for the entire crystal. The condition must be
that, inside any sphere, the sum of the partial-wave tails coming from all the other spheres
must interfere destructively. If formulated mathematically this gives rise to the so-called
KKR-(35)or scattered-wave (36) method which is fairly complicated to handle.

Fig. 2. Atomic cels, muffin-tin

A great simplification arises if proper advantage is taken of the circumstance that the one-
electron energies of interest for describing chemical binding are those for which the electron
can just about pass, or tunnel through, the potential barrier between the atoms. This means
that the wave'ength in the interstitial region is much larger than the extent of the region so
that by the uncertainty principle the exact value of the wavelength and the detailed shape
of the region are irrelevant. In this situation it is a reasonable and most convenient appro-
ximation to eliminate the interstitial region through substitution of the muffin-tin spheres

by overlapping atomic Wigner-Seitz spheres (Fig. 2), which fill the volume, and to choose the
wave-number, K, for the interstitial region equal to zero. This is the atomic sphere appro-
ximation, and it works well for closely packed structures.

The mathematics of the tail-cancellation condition may be written in such a way that it is
equivlnt to the LCAO formalism but instead of atomic orbitals we haemuffi1n-tin orbitals,

(R-r), with tails decaying like multi-pole fields, that is like IR—r11 , and which,
insTde the spheres, are constructed from the solutions of the radial Schrddinger equations
for the crystalline atomic-sphere potential. The subscripts, tim, on the orbital refer to the
relevant type of atom and angular momentum. The effective one-electron Hamiltonian matrix is

(17, 22)

H + = o+ ÷ o + 1/2 ÷ ÷ 1/2
R'l'm';Rlm ti R'R 1,1 m'm t'i' R'l'm';Rlm ti (1)

which is seen to have the two-centre form (37). The transfer integrals factorize into struc-
ture constants, S, which only depend on the positions of the atoms but not on the scale of
the lattice, and bandwidth- or overlap- parameters, Li. The latter,

= (1/2)sX(s) = (2)

is given by the amplitude squared of the radial part of the muffin-tin orbital evaluated at
some distance, s, characteristic of the lattice, i.e. s is proportional to the lattice
constant, a. The width parameter is furthermore related to an effective electron—mass para-

meter, .t , as shown in the second part of (eq.2). s is the radiu of the spheres of type t.
The parameters C and Li, determining respectively the position and width of the band arising
from the atoms of type t and angular momentum 1, depend on the potential in the appropriate

spheres and, in the form given in the present paper, they are slightly energy-dependent (see

spheres and one atomic sphere.
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Ref. 22, eqs. (11)—(14) andFig. 2).

Due to our choice of zero wavenumber for the tails of the muffin-tin orbitals the structure.

constants, S, are just multi—pole expansion coeffci*nts and therefore have an inverse—power—
law dependence on the interatomic distance, R IR' -RI. Through multiplication by the appro-
priate power of s we achieve that this dependence is on R/s rather than on R and, hence, that
the structure constants become independent of the scale, s, of the lattice. Expressed in the
usual way as two-centre integrals (37), the transfer integrals are simply

dd(ci,ir,5) = lO(s/R)5Ld (—6,4,—i)

pd(ci,ir) = (6/5)(s/R)4(i/tpL1d)(_/31)
pp(a,lr) = 6(s/R)3t(2,—1)

sda = (_2/5)(s/R)3(v't5Ea)

spa = (2/3)(s/R)2(V'i)
ssa = —2(s/R)5

where the dependence on the lattice constant exclusively enters through the potential para-
meters, t. In this connection it should be noted that, since the atomic spheres are supposed
to be space-filling, the sphere radii, s, should scale with the lattice constant, i.e. st/s
should be kept constant.

For a crystal with lattice translations, T, the structure constants, of course, become

Siismi1m(k) = £exP(ikT)S,l,m,(+)lm (5)

÷ + ., ÷
and the Hamiltonian in (eq. 1) becomes H, 1 'm' (k). Here, k is the Bioch vector and R only
denotes atomic positions within the primiive'cePi.

The factorization seen in (eq.1) into potential parameters and structure constants, and the
scale-independence of the latter, lead to the concept of canonical bands. These are just
another representation of the structure constants and, hence, they are independent of the
potential and the lattice constant; they are characteristics of the crystal structure. Let
us first neglect the t'l'-tl hybridizations and define the unhybridized canonical bands:
Since the potential parameters only depend on the type, t, of atom and the magnitue, 1, of
local angular momentum it is obvious that the ti-diagonal block, H, (t)lm' (t) im' is

diagonalized by the same unitary transformation that diagonalizes S, (t) im' (t) lm The

eigenvalues, StiCk), of the latter form the unhybridized canonical ti-band. The unhybridized

ti-energy band, Eid), is obtained by centering the canonical band at the energy C1 and

scaling it by £1. Specifically, from (eq.i),

Eti.
= + (it) i = 1

,Nti
(6)

where i is the subband index and Nti is (21+1) times the number, Nt, of type t atoms in the
primitive cell. It might be reemphasized that C and i for s—bands, and to a minor degree for
p-bands, are energy-dependent and that (eq.6) therefore may contain a (k-independent) dis-
tortion.

Including now the hybridization it may, for instance, be shown (22) that there exists a canon-
nical number-of states function, n(), which is a characteristic of the crystai structure
and in terms of which the ti-projected density of states may be obtained as

Nti(E) = (dpti/dE)
(7)

Here,

pti S (E_Cti)/sti
(8)

+is the ti-component of the vector p and is called the potential function. The spherical ave-
rage of the electron density in a sphere of type t is

i EF 2
n Cr) = (4vN ) E I (E,r)N (E)dE (9)
t t

1
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Fig. 3. The unhybridized canonical bands, S1(i), for the fcc structure.

Fig. 4. The energy band structure of TiO at the observed lattice constant.
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where is the solution, normalized to unity in the sphere, of the radial Schrödinger equa-
tion. The potential function p, and hence the potential parameters C and L, may be expressed
in terms of the radial logarithmic-derivative function s (E,5t)/t1(E,5t) as explained in
4Ref. 22, eq. 2). tl

The Na- and Cl-sublattices in the NaC1-structure are f cc and in Fig. 3 we show the unhybri-
dized canonical s-, p- and d-bands for that structure. For comparison we show in Fig. 4 the
fully hybridized energy band structure of TiO. The lowest three bands constitute the 0 2p-
band which is separated by a gap of about 0.2 Ry from the five Ti 3d-subbands. Above the 3d-
band is finally the Ti 4s4p-band. The density of states of TiO is shown in Fig. 5.

Let us first consider the unhybridized d-band in Fig. 3. This is fairly simple to cAlculate
because, according to (eq. 4), the lattice summation in (eq.5) converges after including just
a few shells of neaest neighbours, and the only obstacle to performing the calculation by
hand for a general k-point is the diagonalization of a 5x5 matrix. The overall bandwidth,
Wd, is trivial to calculate using the expression

W1 = (12Nt 2)1/2 tl (9)

involving the second moment, IsI2, of the density of states for the unhybridized canonical
tl-band. The general expression or

Nti1, Nt1

Is1,
2

S+,1,,-
2 =

1s1l (10)
Rm Rm

is given in (Ref. 22, eq. 22) and it simply yields

IsI2 = 7000 (s/R)1° = (11)

Here, in Fig. 3, and in the following we have chosen the characteristic distance, s, such
that it equals the Wigner-Seitz radius of the fcc lattice, i.e.

s (3/16Tr)3a = 0.3908 a (12)

where a is the lattice constant. In the evaluation (eq. 11) we have only needed to sum over
the 12 nearest neighbours placed at the distance a/12 and, as a result for the fcc sublattice,

Wd=23Ld (13)

This is in good agreement with the canonical d-bandwidth read off from Fig. 3. The value

TABLE 1. 3d-Bandwidths

Crystal
structure

a

()
d
(y)

Wd
(mRy)

d-Bandextrema

(mRy)

Ca fcc 5.58 13 300 330

Ni fcc 3.52 11 260 280
CaO NaCl 4.44 20 460 600

NiO NaCl 4.27 4.4 100 280

° d for fcc Ca- and Ni-metal (7) and for Ca- and Ni-monoxide are shown in Table 1.

For the metals the lattice constants used are the observed ones but this is not quite true
for the monoxides. When going from the metal to the monoxide the lattice constant increases
in the case of Ni but it decreases in the case of Ca. This is seen in Fig. 8 . The bandwidth
parameter therefore decreases for Ni and increases for Ca. For Ni we realize that the width
parameter nearly scales as the lattIce constant to the power -5 = -(21+1). This means that
the self-consistent Ni d muffin-tin orbitals in the metal and the monoxide are nearly iden-
tical and that the value, p = 14, of the mass parameter (eq. 2) for the metal tabulated in
(7) and (16-17) applies to he monoxide as well, provided that the value of s in (eq. 2) is
set equal to the value of the Wigner-Seitz radius in the metal. For Ca, however, the d-band
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in the metal is much more free-electron like than in Ni. In fact d = • as listed in (7),

and from Table 1 we realize that Ld nearly scales as the lattice constant to the power —2
which is free—electron scaling.

The d-bandwidth with hybridization neglected, Wd, ny now be obtained from (eq. 13) and it is
listed in Table 1 together with the hybridized d-bandwidths read off from the extrema of the
calculated (nonmagnetic) band structures. It is obvious that, while in the elemental metals
the hybridization of the d-band with the metal sp-band has a negligible effect on the d-band-
width, in the monoxides the covalent hybridization with the 0 2p-band increases the d-band-
width by factors ranging from about 1.3 in CaO to 2.8 in Ni0. The profound effect of the 0
2p-hybridization on the shape of the metal 3d-band is clearly seen by comparison of the un-
hybridized d-band in Fig. 3 with the hybridized Ti 3d-band in Fig. 4. In the latter all sub-
bands labelled with the same irreducible representation as an 0 2p-subband are pushed up sub-

stantially in energy.

In Fig. 6 we show for all the monoxides the extents of our self-consistently calculated (non-
magnetic) bands as functions of the lattice constants. The band extrema are denoted by B
(bottom) and T (top) and the potential parameter for the centre of the unhybridized band is,
as usual, denoted by C. As we proceed through the series we see how Cd-Cp decreases and that
the hybridization pushes the p-band centre below C and the d-band centre above Cd. The rea-
son why Cd-Cp decreases through the series is that the d-band falls in energy as it gets
filled because the added electron cannot fully screen out the attraction by the added proton.
Exactly the same trend is, for instance, observed in the series of elemental transition me-
tals. At the same time as the 3d-band falls in energy the 3d-orbital contracts. Consequently,
as we proceed through the series of 3d-monoxides, the width of 3d-band, calculated for a
fixed lattice constant, decreases as shown in Fig. 7. Considered at the experimental equili-
brium lattice constants the 3d-bandwidth is fairly constant within the group of early- and
the group of late monoxides. For a given compound the 3d-bandwidth scales as the lattice con-
stant to a power which varies linearly from -4.0 in ScO to -5.1 in Ni0.

C
U)

a)
U
U)
a)
a
U)

w
z

Fig. 5. Density of states in TiO.

We can rather easily estimate the strength of the covalent pd-hybridization: In (eq. 6) the
effect of weak t'l'—hybridization is taken approximately into account by addition of the term

Nt'lI
-1

lSt1t,1,e(k)I tl '1t'l' (Ct1_Ct111)
(14)

on the right-hand side. This causes the tl-band to shift its position by the amount

Nt IsJ1, 2 tl t'l' (Ct1_Ct,1,)1
(15)

as obtained by performing the average over the Brillouin zone and the Ntl subbands labelled
by i, and by using the notation in (eq. 10) for the average hybridization structure constant.
The value of the latter is readily estimated for the NaC1—structure from the expression given
in (Ref. 22, eq. 22):

IsI2
= 9QQ ) (S/)8 = 900•6• (0 3908.2)8 = 750 (16)

R
where R now runs over all 0 positions, measured from one metal position, and we have only in—
c.luded the 6 nearest neighbours at the distance a/2. The values of the combination of poten-

-oil 0.8
E CRy)
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tial parameters entering (eqs. 14 and 15) are

-1
20.21.9001 inRy = 0.47 for CaO

'Md OpMd%p = 4 . 4 •2 1 ' 2301mRy 0 •40 for NiO ( 17)

We have here used the values of Ed given in Table 1 plus the self-consistently obtained result
that is 21 inRy in both CaO and NiO, and that the energy difference between the centers of
the d- and p-bands is 900 mRy in CaO but only 230 mRy in NiO. By combining the results of
(eqs. 15-17) we thus realize that the pd-hybridization üshes the d-band upwards by approxi-
mately 5750'0.44 mRy = 70 mRy, and the p-band downwards by approximately 3 750.0.44 y
= 100 mRy, in both ,CaO and NiO. Hence, the strength of the pd-hybridization, measured in this
way, is rather constant through the series.

The inclusion of (eq. 14) as the right-hand side of (eq. 6) not only causes the tl-band to
shift but also to widen. The expression for the width of the d-band, obtained by taking se-
cond moments like in (eq. 9), now has the form

W2 + s • 2 2 —c )—2 1/2 (18)
Md 4 Md Qp(CMd Op

where S4 is independent of the potential and the lattice constant and involves the fourth mo-
ment of the hybridization structure constants. With S4 = 5•1o, and using the values of the
potential parameters given in Table 1 and (eq. 17), we find that the d-bandwidths including
pd-hybridization are 570 mRy in CaO and 300 mRy in NiO. These estimates are in good agree-
ment with the values listed in the last column of Table 1.

The most direct and convenient measure o the strength of the tl-t'l' hybridization is the
number of electrons from the entire ti—band which are located in spheres of type t' and there
have local angular momentum 1'. In the limit of weak hybridization this number is (22)

—2 tl 2 —2_ t'l'
Nt,1, — .'i' i 'i' c — Nti

and the factor 2 accounts for the spin-degeneracy.Using the numbers quoted in (eqs. 16-17)
we estimate that in CaO the 0 2p-band contributes 0.8 electrons with d-character to the Ca-
sphere and that in NiO the corresponding number is 2.6. Measured in this way the pd-hybridi-
zation thus increases substantially as we proceed through the series of monoxides.

Fig. 6. Self-consistent energy bands for the 3d-monoxides as functions of
the lattice constant, a. For each compound the experimental equilibrium
lattice constant is indicated on one of the horizontal axes Jy a black dot.
The zero of energy is the electrostatic zero for the infinite crystal. The
O 2p-band extends from B to the metall 3d-band from Bd to Td, and the
metal 4s4p-band from Bs and upwards! EF is the Fermi energy, and occupied
bands are shaded. V51 C and Cd are potential parameters: the metal 4s square—
well pseudopotential, the 0 2p-band centre and the metal 3d-band áentre,

respectively.

The 0 2p-band not only hybridizes significantly with the metal 3d-band but also with the metal

s-band. The potential parameter, V51 indicated in Fig. 6, is the spuare-well pseudopotential
for the s-wave in the metal sphere and it is the energy separating the metal 3s— from the



Fig. 7. The variation of the

fully hybridized 3d-bandwidth
through the series of 3d-mono-
xides. The dots indicate the
widths obtained at the experi-
mental lattice constants.

Fig. 8. Comparison of the experimental and theo-

retical (6—8) equilibrium lattice spacings, a,
for the 3d—monoxides and the 3d- and 5f-metals.
For the monoxides, having the rocksalt structure,
a is the lattice constant while for the elemen-

tal metals, having various closely packed cry-
stal structures, a is the lattice constant of
the fcc structure with the proper atomic volume.

metal 4s-thgion in the sense that bands falling below V5 hybridize with the metal 3s-band and
bands falling above V5 hybridize with the metal 4s-band. As seen in Fig. 6 the s-pseudopoten-
tial approximately follows the same falling trend as Cd. Hence, Cd-Vs is nearly constant
through the series of 3d-monoxides while in the elemental 3d-metals it decreases substantially.
This difference is caused by the differentbehavioursof the lattice.constants shown in Fig. 8.
In the monoxides the covalent hybridization from the metal s-band therefore tends to push the
0 2p-band upwards for small lattice constants at the beginning of the series and downwards at
the end of the series. (The same is true of the hybridization.from the metal p-band.) This is
the reason for the increasing downwards shift seen in Fig. 6 of the 0 2p-band with respect to
C as one proceeds through the series.

Due to the long range of the s- and p-orbitals the sp-hybridization is strong in general (see
eqs. 4). One of the unhybridized canonical p-bands in Fig. 3 (A1-A1-E1) is seen to be dis-
continuous at the centre of the Brillouin zone. It may be shown (14) that the discontinuity
will always be removed by hybridization with s-waves but the fact remains that this p-subband
is extremely soft. If, as in the earliest monoxides, the 0 2p-band hybridizes with the lower
lying metal 3s-bamd the soft p-band ispushedupwards and may even lie higher than the other
p-subbands near the centre of the zone. If, as in the later monoxides, the 0 2p-band hybri-
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dizes with the higher lying metal 4s-band the soft p-band is pushed substantially downwards.
This is a reason for the increased broadening of the 0 2p-band seen in Fig. 6 as we proceed
through the series.

The bottom, Bs, of the metal 4s-band (the level in Fig. 4) does not coincide with V as in
the elemental metals but is pushed near to, or above, the top of the 3d-band by the covalent
hybridization with the 0 2p-band.

The bandstructures of the ionic insulators CaO and CaS are compared in Fig. 9. In the sulphide
the equilibrium lattice constant is larger, is larger, Ca—Co is smaller and th.e pd—gap is
smaller than in the oxide. Therefore, in the sulphide the cova'ent hybridization is larger
and the ionicity smaller than in the oxide. This is borne out even more clearly by comparison

Fig. 9. Self-consistent energy bands of the ionic insulators Ca0 and CaS as
functions of the lattice constant. The experimental equilibrium lattice constants
are respectively 4.80 and 5.69

of the two first panels in Fig.lo. Here we show the number of s-, p- and d-electrons contri-
buted by the chalcogen p-band to the metal sphere. For CaO the number of metal d-electrons was
estimated in (eq. 19) and we realize that this number is confirmed by the full calculation.
For the ionic compounds where only the chalcogen p—band is occupied the charge, q, of the
metal sphere, which equals the excess electronic charge in the chalcogen sphere, is of course
given by

q=2_(NM5+NMP Md+N
Xp Xp Xp (20)

and from Fig. 10 we realize that, with our choice of relative sphere sizes, q is about 0.8 in
CaO and 0.1 in CaS. This is far from the usual ionic picture, where the charge is 2. As we now
proceed from CaO through the series of nonoxides we realize that the pd-hybridization, ex-

pressed as N, increases. This was already discussed in connection with (eq. 19) and.
here we need only point out that for the later monoxides the pd-hybridization is so large that
the previously used estimate (eq. 19) becomes very inaccurate; the number of Ni d-electrons
contributed by the 0 2p-band is 1.3 rather than 2.6. The charge, q, is seen from Fig. 8 to
first increase slightly as we proceed from CaO and then after TiO to decrease towards a value
of about 0.5 at NiO. This trend is a balanced result of two trends: the increasing covalent

hybridization of the 0 2p-band, not only with the metal d- but also with the metal sp-band,
and the opposing trend caused by the filling of the d-band. The latter trend, which is the
weaker, would cause the charge to increase through the series because when the fraction, f,
of the d-band is occupied this approximately contributes f'N electrons to the oxygen sphere
and this contribution should be added on the right hand side of (eq. 20 ).

0.0

>
w

o(A)
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Fig. 10. Charge transfer, q, and number of s-, p-
to the metal sphere by the chalcogen p-band. The
were chosen to occupy respectively 62 and 38 per

and d-electrons contributed
metal and chalcogen spheres
cent of the cell volume.

Until now we have carefully avoided mentioning how we have chosen to share the cell volume, V,
between the chalcogen and metal spheres, in other words, how for a fixed s we have chosen

The structure constants, and hence the canonical bands and number-of-states function,
do not depend on this choice but the potential parameters do, to a certain extent. It is ob-
vious that only in such cases, where the calculated energy bands and derived physical quanti-
ties are essentially independent of how we chose to share the volume, is the atomic approxi-
mation a reasonable one. At the bottom of Fig.ll we show the self-consistently calculated
batid structure of CaS for a fixed lattice constant and as a function of the relative volume
occupied by the Ca sphere, i.e. VCa/V = 1-VS/v. From this we verify that there is a range
around 0.6 where the band structure is essentially independent of VCa/V• Consistent herewith

is our finding that the spherically averaged electron densities are identical at the boundaries
of the Ca and S spheres when VCa/V = 0.60. In the upper half of Fig.11 is shown a physical
observable to which we shall return in the following section, the pressure, and we realize
that the calculated pressure (tot) is nearly constant around VCa/V = 0.65. Similar results
have been found for TiO, and these investigations led us to choose VM/V = 0.62 throughout the
present work.

Iii -0.4

-nR

CaS

0.4 0.5 0.6 0.7 0.8

Va/V

Fig.11. CaS. Partial and total pressures (upper figure) and self-consistent
energy bands (lower figure) calculated for different relative sphere sizes,
VCa/V = l-V5/V, and for constant cell volume, V. (a = 5.69

CoO ScO 110 VO Cr0 MnO FeO CoO Ni0CaS

4,

o1.0

0.5

5.3 '5.8 &0 4.3

N
Md

q•

M
M5

a (A) 4.0 4.3

0.5

0.0

-0.5

>
Ix

>
a-
cv.,

Stot

iic
" Model

totCQd
/Bd



104 0. K. ANDERSEN, H. L. SKRIVER, H. NOHL and B. JOHANSSON

Although physical observables calculated with the ASA should be fairly independent of the re-
lative sphere volumes this is of course not so for such quantities as the nunber of electrons
in the various spheres, the charge transfer, q, etc. One might naturally ask whether it would
be possible to choose VCa/V 50 small that q = 2 whereby our description presumably would come
as close as possible to the classical ionic description. In an attempt to do so for CaB we met
the difficulty seen in Fig. 11 that for Vs/V exceeding 0.55 the bottom of the S 3d-band moves
below the bottom of the Ca 3d-band and hence closes the gap. This might be due to unwarranted
approximations in our calculations such as the freezing of the Ca -core and the neglect of the
f- and higher partial waves, or it might indicate abeakdown of the ASA for such large sulphur
spheres. We are presently investigating these various possibilities and, if the later turns
out to be true, this seems to indicate that, if one insists on a highly ionic (Ca S ) des-
cription, then the charge density of the sulphurion cainot be spherically symmetric.

GROUND-STATE PROPERTIES ; ELECTRONIC PRESSURE AND SPIN-POLARIZATION .

In this second part of the paper we shall try to explain how chemical binding or, more speci-
fically, the variation of the total energy'with lattice spacing is related to the band struc-
ture. In order to calculate the equilibrium lattice constants for the late 3d—monoxides in the
present framework we shall find that it is crucial to include the possibility of spin-polari-
zation with the proper antiferromagnetic order.

The basis for our one-electron description of ground-state properties is the density-functio-
nal formalism of Hohenberg, Kohn and Sham (2) . These authors, quite generally, considered a
system of interacting electrons moving in some external potential, vext, which for instance
includes the potential from the nuclei. The Hamiltonian thus comprises the operators for the
kinetic energy, the electron-electron interaction and the external potential. Hohenberg and
Kohn first showed that, for specified kinetic energy- and electron—electron interaction ope—
rators, the ground-state is a unique functional of the electron density, n(r). It is obvious
that if we know the ground-state we can find the density by integrating over all but one of
the electron coordinates. The less trivial point is that the density uniquely specifies the
external potential, and hence the entire Hamiltonian and thus its ground-state. Since the
ground-state is a unique functional of the density, so is the energy, U, of the ground-state
(provided it is non-degenerate), and Hohenberg and Kohn secondly showed that the energy func-
tional, U n () }, attains its minimum, the ground-state energy, for the proper ground-state
density. If we knew the energy functional explicitly we could thus rather easily estimate the
ground-state energy and density be seeking the minimum of the functional for various trial
densities. However, the energy functional is not known and the complexity of the many—elec-
tron problem is associated with its determination.

Guided by the success of the one-electron picture, going back to Bohrs explanation of the
periodic system of the elements and including the recent use of Slaters n()V3_exchange for
one-electron calculations in atoms and solids, Kohn and Sham proposed to write the energy
functional in a form for which the minimalization proceedure leads to a self-consistent one—
-electron problem: Together with the system of real electrons they considered a system on non—
-interacting electrons moving in an external potential, v(r). For v() specified, the corres-
ponding one—electron Schrödinger equation may be solved and it yields the one—electron states,

and energies E. The ground—state for the system of non—interacting electrons is then
the Slater determinant obtained by occupying the lowest-lying one-electron states, the den-
sity is

n() = ) Ij()I2 (20)

and the kinetic energy is

= E
<ip -V2 IjLj>

= Z E - fv()n()dr (21)

By application of the Hohenberg—Kohn theorem to the non—interacting system one can always find
an external potential, v(), which through the above-mentioned proceedure will generate a
specified ground-state density, n(). This density may therefore be used as the trial density
for the system of properly interacting electrons and, for the latter, Kohn and Sham noJ ex-
pressed the energy functional as

= T{n()} + G{n()} (22)

where T ( n(r)} is given by (eq. 21). The non-interacting systems are thus used to generate
trial densities for the proper system and to define a kinetic energy term, T, of the functional
(eq. 22). The second term, G, is the sum of the interaction with the external potential (the
nuclei)

Ivt()n()dr (23)
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the classical Coulomb interaction energy

4. -—1 4 -* 3(1/2) ff 21r'—rI n(r')n(r)d r'd r (24)

and a remainder, the so called exchange—correlation energy functional,

E {n()} (25)xc

This is the sum of two differences: the difference between the kinetic energy functional of
the proper system and that (eq. 21) of the non-interacting system, and the difference between
the true electron-electron interaction energy and that (eq. 24) of the electronic charge
clouds. The many-elctron problem is thus hidden in the exchange-correlation part of the ener-

gy functional. We may now try to adjust the one-electron potential, v() , in such a way that
the density generated through (eq. 20) minimizes the energy functional (eq. 22) and, hence,
equals the ground-state density. This leads to the self-consistency condition

v() = —6Tn(r)} I 6n() =
-3. -+. -3. .+ -* — 1 9• —)-6G(n(r)} I Sn(r) = vt(r) + f21r'—rI n(r')d r' + cSExcn(r)} I ón(r) (26)

where we have used (eq. 21) in the first equation, (eq. 22) in the second and (eqs. 23-25) in
the third. On the right-hand side the first two terms are the Coulomb potentials from the nu-
clei and the electronic charge cloud and the third term is the (unknown) exchange—correlation

operator.

In the present calculation we have used the following local approximation to the exchange—
—correlation energy functional

-3. .* .4.
E {n(r)} = f C (n(r))n(r)d r (27)xc xc

with Cxc(n) being the estimate given by Hedin and Lundqvist (3) of the exchange plus correla-
tion energy per electron for a homogeneous electron gas of density n. This approximation is
exact in the limit of slowly varying densities and, in contrast to the Thomas-Fermi approxi-
mation, it is also correct in the limit of high densities because there it includes the kine-
tic energy correctly. In the so called local, spin-density scheme (3) the exchange—correlation
energy density in (eq. 27) is substituted by Cxc(n+,n+) which applies to a homogeneous elec-
tron gas with density, n S n+ + n+, and spin density, m S n+ - n+, as created by an external
magnetic field. In the local approximation the operator óExc/n is an ordinary potential

v() = d{nt c(nf/dn S p(n()) (28)

namely the exchange-correlation part of the chemical potential in a homogeneous electron gas.
The exchange-only part of this potential is proportional to the cube root of the density and
equals the so called Xcx-potential with cx = 2/3.

It should be emphasized that the self—consistent one—electron scheme presented above is de-
signed to yield ground-state properties such as the total energy and the electron (and spin)
density. The many—electron wavefuction is not aimed at. Rather, the effects of exchange and
correlation are built into the energy fun4tional and the one—electron energies and wavefunc—
tions have no direct meaning. Nevertheless, as we shall show in the following, they are use-
ful concepts for understanding cohesive and magnetic properties. Energies and lifetimes of
quasiparticle excitations, on the other hand, should be obtained from a one-electron equation
containing the Dyson self-energy operator instead of SExc/6n but, at the Fermi level, these
two are identical and the Fermi surface obtained in a ground-state calculation is therefore
the correct one.

The ground-state energy in the local approximation is seen to be

+ +—1 + + 3U = E E. - (1/2)ff2Ir'—rI n(r')n(r)d rd r'
J

:i

+ + + 3 + .+—1+ f[c (n(r))—i (n(r))]n(r)d r + (1/2)E E 21R'—RI Z Z' (29)xc xc
R5R

in terms of the self—consistent one—electron energies and density and where we have included
the repulsion between the nuclei. We are not particularly interested in the total energy but
rather in differences between total energies as we change the positions of the atoms. In such
differences large energies associated with the core electrons cancel and the sum of the one-
-electron energies is substantially reduced by the double-counting terms in (eq. 29). We shall
now show that, for an infinitesimal change of the atomic positions, the change of the total
energy, that is the force on the nuclei, may be expressed as the electrostatic force between
atomic cells plus the change in the sum of the valence-electron energies for rigidly shifted
cellular potentials (17). Hence by considering the force rather then the total energy, the
problems associated with core—electrons and double—counting are avoided and a conceptually
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simple picture emerges.

For the sake of the argument we consider a diatomic molecule. Suppose that we have solved the
one-electron problem self-consistently for the internuclear distance, R, and have obtained
the one-electron energies and -potential, vsc, as well as the ground-state density, nsc, and
-energy, u{n5C}. For later use it will proove practical to imagine a cut between the nuclei
whiôh divides space into two atomic cells, a and b. The potential and the density have thus
been cut into the cellular functions

sc+ sc+ sc+ sc
v (1a) vb ' n (r) and nb (rb) ' (30)

+ + . . .where ra and rb are local coordinates centered at the nuclei. Let us now increase the distance
between the nuclei by dR and ask for the first-order change of the total energy, that is the
inter-nuclear force. This may be estimated as

dU =
UR÷dR nR+dR} - UR {n} .

(31)

where, by virtue of the stationary property of the energy functional, the trial density for
the distorted system may differ to first order from the self-consistent density for that sys-
tem. The trial density we obtain from (eq. 20) by solving Schrödingers equation for a poten-
tial which equals the rigidly shifted ones in cells a and b (eq. 30) and equals their con-
tinuous interpolation into the cut which has now been opened up. The kinetic-energy contri-
bution to (eq. 31) is then

sc + sc4 + sc4 sc+6T = 6 E E. - fv ()6n(r)d3r - fvb (r)b(r)d3r - f v (r)n (r)d3r (32)

j a b cut

as may be seen from (eq. 21) by breaking the integral over all space into integrals over cells
plus an integral over the infinitesimal cut-region. We have used the symbol, 6, instead of,d,
to indicate changes which correspond to the rigidly shifted, rather than self-consistently
relaxed, one-electron potential. The contribution to (eq. 31) from the term G in (eq. 22),
now including the internuclear repulsion, may be divided into three terms arising from: 1) the
density changes 6na and ónb, 2) the change of the nuclear positions entering the electron-
nuclear and internuclear interactions, and 3) the integrals over the cut-region. The double-
counting term 1) simply cancels the second and third terms in (eq. 32) because vsc = 6G/6n
according to (eq. 26). The term 2) is the electrostatic force between the charge densities
in cells a and b, and 3) is a surface integral. We therefore obtain the so called force-re-
lation (17):

dU = 6 E E. + intercellular electrostatic force • (-dR)

2÷ / [c (n(r))—t (n(r))]n(r)d rdR (33)
xc xc

cut

The total force, of course, only depends on the virtual displacement of the nuclei and, where
in the region between the nuclei we choose to make the cut, only effects the relative weight
of the three terms in (eq. 33). If the cut is made right around one nucleus only the electro-
static term survives; this is the well-known (rather impractical) Hellnann-Feynnan result.
If, on the other hand, we make the cut through regiois of low electron density the electro-
static term is relatively simple to compute and only the energies of the valence electrons
enter the one-electron energy term. The use of a rigidly shifted potential ensures that the
chemical shift of the core-electron energies and, as previously mentioned, the double-coun-
ting term do not enter the force relation.

We now wish to consider an infinite crystal and study the change of the total energy for a
uniform expansion; this is the electronic pressure:

PE-dU/dV (34)

We here neglect the contribution from the zeropoint motion. The pressure-volume relation, P(V),
which is shown schematically in Fig. 12, is the equation of state at zero temperature. In
terms hereof the equilibrium cell volume, Veqi is determined by

P(V ) = 0 , (35)
eq

the bulk modulus, or inverse compressibility, by

B=_dP/dlnVlv , (36)
eq
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and the cohesive energy per cell by

U = - / PdV = - / 3PV dln(a/a ) (37)coh Veq 0 eq

The force relation yields a most useful expression for the pressure if we perform the cuts
along the boundaries of, suitably chosen, atomic cells. Furthermore, in the atomic sphere
approximation, the differentiation with respect to the lattice constant of the one-electron
energies may be performed analytically because the structure constants are independent of the
lattice Constant,The electrostatic term just yields the usual monopole Madelung term because
the charge densities are spherically symmetric.

P=dE/dV

Eéoh

Fig. 12. Equation of state and partial s- and d-pressures for a typical
transition metal.

In the preceeding chapter we introduced the ASA as an approximate scheme for performing self-
-consistent one-electron calculations. The approximate energy functional which leads to. a
self-consistent ASA calculation is, in fact, given by

ASA EF 3T = / EN(E)dE - E / v(r)n (r)d r , (38)
Rt

where N is the density of states per cell calculated in the ASA, the sum is over all atomic
spheres in the primitive cell and the integral is in a sphere of type t. Moreover,

GASA = (1/2) - E / 2r1Zn(r)d3r
+ (1/2) E 1/ I_I'n(r')n(r)d3rd3r' + E /c (n(r))n(r)d3r (39)

Here, S, is an ss-structure constant in the limit of zero Block vector, i.e. a Madelung con-
stant.

We now evaluate the pressure relation (eq. 33) in the ASA and first consider the change in
the sum of the one-electron energies for a uniform expansion of the lattice. In terms of the
integrated density-of-states function, n(E), we obtain by partial integration

E . E E/ = ô {EFn - / Ffl(E)] = - / F[6(E)J (40)

because the total number of electrons, n(EF), is constant. The structure constants and hence
the canonical number-of-states function, defined in connection with (eq. 7), are independent
of the scale of the lattice; only the potential functions in (eq. 8) depend hereon. Conse-
quently

EF E
S / EN(E)dE = — / F E (n/p ) cSp (E) dE (41)

tl
tl tl

= EF [6C +(EC )lL I Nti(E)dE tl n1 [6Ct1 + titll1tlI
In the second equation we have neglected the energy dependence of the potential parameters,
which is a reasonable approximation for narrow p-, d-, and f-bands, and the change of the
energy bands is therefore simply the sum of a term involving the change of the potential pa-
rameter for the centre of the band and a term involving the change of the bandwidth parameter.
(The exact expressions may be found in (17-18)) The ASA pressure-relation is thus

P.A.A.C. 52/1—H
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3PV = - r1 [cSCt1/5lnst + 1_C1)Slr1 &1/6lns} + UMDL

= [Ep1+p LIVti MD (42)

which shows how the total pressure may be written as a sun of partial pressures. The electro-
static term is the Madelung energy because it is inversely proportional to the lattice con-
stant and therefore

[3PV]MDL = - ÔUMDL/ôlna = (43)

Furthermore, the surface term of (eq. 33) has been included in the one-electron term in (eq.
42) as will be explained below.

The dependence of the potential parameters on the lattice constant and hence on the sphere

, s, for a rigid atomic-sphere potential is simply given by the radial Schrädinger
equation for that potential. Outside its sphere a muffin tin orbital decays as if the kinetic
energy, C-v(), were zero. The change of the orbital energy, C, as the sphere size is in-
creased is therefore

st+dst 2 2 2 2= / [—C+v(r)] (r)r dr. = — [C—v(s )] X (s )s ds (44)

st
t ttt

by first order perturbation theory. For the purpose of substitution in (eq. 42) we must in-
clude the surface term of (eq. 33) and hence

ôC1/Slns = — [ci — vt(st) + xctt — tt1 2iJ (45)

The value of Cxc - -txc at the sphere boundary is of the order of 0.2 Ry. This is so because,

neglecting correlation, - = -/4 and, by assuming that the exchange-correlation hole
is spherically symmetric and centered at the nucleus, l-1xc = -2/st. In (eq. 45) we have used
the expression for the band mass (not to be confused with the exchange-correlation potential)
given in (eq. 2) For the width parameter, defined in the same equation, we find

tl / ôln5 = 1 + 26Xt1(s)/tSlns
= — (21+1) — 2Pt + ... (46)

The first term is due to the r decay of the muffin-tin orbital, the second is the correc-
tion due to the renormalization of the orbital to the larger sphere, and the third is due to
the correction of the orbital curvature on the sphere boundary. This third term, proportional
to Cr+PxcCxc, may be found in. (17-18).

Fig. 13., Partial pressures in the 3d-monoxides
calculated for the paramagnetic phases and the
lattice constant 4.2 L The relative sphere
volumes were chosen as in Fig. 10.

>
>0
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The partial pressures in the 3d-monoxides calculated for the paramagnetic phase and the lattice
constant 4.2 are shown in Fig. 13. These results as well as those shown in the other figures
of the present paper were obtained including the proper energy dependence of L in (eq. 8). In
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Fig. 13 the metal d- and 0 p-partial pressures have been separated into their respective cen-
tre (C) and bond (is) contributions. The centre contributions are seen to be positive, that
is repulsive, and this means that the energies, C, under compression move upwards with re—
spect to the rigid potential. For paramagnetic NiO we find, by evaluation of (eq. 45) that

ôCd/ôlna = —260 mRy 2 I 14 = —37 mRy (47)

and by comparison with Fig 6 this is seen to be about 50 times smaller than the derivative
dC/dma, which includes the self—consistent relaxation of the one—electron potential. Had we
thus based our pressure relation on the self-consistent changes of the one—electron energies
the double—counting terms would have been almost as large but of opposite sign . In .NiO there

are 8.6 electrons with d-character in a Ni-sphere and we therefore obtain a repulsion of
about 0.32 Ry as shown in Fig. 13. The d-centre contribution is seen to decrease from CaO to
NiO although the number of d-electrons in the metal sphere increases from 0.70 in CaO, where.
they are all contributed by the 0 2p-band, to 8.6 in NiO, where the 1.3 hereof are contri-
buted by the 0 2p-band. This is because C-v+pxc-Cxc falls from 1.05 to 0.26 Ry and because
the d—mass increases from. 2.7 to 14. The upwards movement of the 0 p—centre under compression

is given by .

SC/ôlna = —110 mRy • 2 I 3.5 = —63 mRy (48)

in paramagnetic NiO, and this is about 20 times smaller than the self-consistent change seen
in Fig. 6. With 4.3 p-electrons in the 0-sphere this yields the repulsion of 0.26 Ry seen in
Fig. 13 The repulsion from the 0 p-centre falls through the series because C_v+)lxc_Cxc falls
from 0.26 to 0.11 Ry; the 0 p-mass and the number Qf p-electrons in the 0-sphere are rather
constant.

A bond-contribution to the pressure is negative, that is attractive, provided that the occu—
pied.c.entre of gravity, E, lies below the potential.parameter, C; in other words, that rela-
tively to.C there. are more., bonding than antibonding states occupied. This is so because the
band always widens under compre.ssion, as expressed by (eq. 46). Therefore all states below C,
the bonding states, fall in energy relatively to C while those above C, the antibonding sta-
tes, rise their energy relatively to C. For the dependence of the metal d- and 0 p-bandwidth

parameters, L, on the sphere radius we find powers close- to respectively -5 and -3 for rigid,
(eq. 46), as well as for self-consistently relaxed potentials.

The 0 2p-band is full for all the monoxides and were it not for hybridization effects and
distortion of the p-band due to a slight energy dependence. of LIp (see .(22), Fig. 2) the 0 p
bonding pressure would be zero. As seen in Fig. 6, in CaO the major part of the p-band lies
above C due to the energy dependence of LID, and the 0 p-bonding pressure is therefore 1ight-
ly positive. As we proceed through the series the 0 2p-band starts to hybridize with the un-
occupied metal 4s- and 4p-bands. This pushes the 0 2p-band downwards with respect to C1 so
much, that the 0 p-bond pressure eventually becomes negative. This effect is somewhat wea-
kened by the filling of the metal d-band which causes an occupation of the antibonding 0 p-
projected state density in the d-band region far above C. In order to discuss the metal d-
bonding pressure let us consider a simplified model for the effects of pd-hybridization and

d-band filling.

We assume that the p— and d—bands have rectangular, non-overlapping densities of states which
without pd-hybridization would be centered at respectively C and Cd. The d-bandwidth, inclu-
ding the hybridization-broadening considered in (eq. 18), is Wd. The p-band can hold Np = 6
electrons of which N - Npd are p—projected electrons in the 0-sphere and Npd are d-projected
electrons in the metal sphere. Similarly, the d-band can hold Nd = 10 electrons of which
Nd-Npd are d-electrons in the metal sphere and Npd are p-electrons in the 0-sphere. N is gi-
ven by (eq. 19) and measures the strength of the hybridization. In terms hereof, and according
to (eq. 15), the displacements of the p- and d-bands are respectively (Cp-Cd)Npd/N and

(CdCp)Npd/Nd.

In the case of CaO the p-band is full and the d-band is empty. The centre of gravity of the p-
band, the occupied p-projected, and the occupied d-projected state densities therefore coinside
and lie lower than C by the amount (Cd-Cp)Npd/N. Actording to (eq. 42) this sets up the p-
bond pressure

[3Pv1:ond =_N(C_Ca) (N/N) (-3)
=

_3Npd(Cd_Cp)
= -30.7o.9 Ry = -1.9 Ry for CaO (49)

The p-bond pressure in Fig. 13 is lightly possiti.ve due to th above-mentioned additional ef-
fects. In (eq. 49) and in the following we only work to fist order in the hybridization. The
d-bond pressure in our simplified model is
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[3PV1d _Npd(Cp_Cd)
=

-50.70.9 : -3 y for CaO (50)

which compared with the result in Fig. 13 is somewhat too attractive.

We now start to fill the d-band. If the fractional d-band occupancy is f, then the occupied
cent,re of gravity for the d-band.lies (1-f)Wd/2 below the centre of the d-band and the number
of p-and d-projected electrons in the d-band is fNpd and f(NN) respectively. The p-bond
pressure will, in addition to the bonding contrthution (eq. 49) from the p-band, have an
antibonding contribution from the d-band and the sum of these is

E3PVIp_bond = -3Npd [(Wd/2) f + (CdCp)] (1f) (51)

The contibution from the d-band increases with the filling and eventually cancels the pr-band
contribution. This trend was mentioned previously. The d-bonding pressure will, in addition
to the contribution (eq. 50) from the p-band, have a bonding contribution from the d-band
and the sum of these is

[3PV]dbd = -5 { (N-N) (Wd/2) f +
Nd(cd_Cp)] (1-f) (52)

As a function of the d-band filling, and for constant potential parameters, the trend follo-
wed by the d-bond pressure is parabolic. Without hybridization the trer.d is symmetric with
minimum for a half-full band and zero for empty and full bands. This is the trend found in
calculations for the elemental 3d-metals as shown in Fig. 14. In theprence of hybridization
the parabola is skew. The pressure still vanishes for f=1 but it is negative for f=0, as we
have seen in (eq. 50). The minimum occurs for

f = 0.5 -
(Cd_Cp)(Npd/Nd)Wd'

= 0.5 - 0.5.(1/10)0.51 = 0.4, for Cr0 (53)

The minimum is thus displaced by an amount equal to the ratio between the hybridization shift
and the width of the d-band. For the 3d-monoxides the decrease of the d-bandwidth shown in
Fig. 7 causes the minimum to be further displaced as is seen in Fig. 13. We may conclude by
adding (eq. 51) and(eq. 52). We thereby obtain the result that the pressure created by the
metallic dd-bond is approximately

[3PVIdd bond =
-25 Wd f (1-f), (54)

where we have neglected a small term proportional to Npd and where Wd includes the indirect
dpd-interaution met in (eq. 18). In addition, the pressure created by the pd-covalent bond is
approximately

[3PV}dbd =
_8Npd(Cd_Cp)

(1-f) (55)
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Fig. 14. Partial pressures calculated (7) for the elemental 3d-metals as functions
of the Wigner-Seitz radius. The experimental and theoretical (th) equilibrium lat-
tice constants are shown in Fig. 8..

We have sofar not discussed the Madelung and the metal sp— and 0 sd—pressures shown in Fig.

13. The Madelung pressure, (eq. 43), equals

—1 E
-4 0 .4 0
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3PVIMd = q2/a ,

•
(56)

where X is the Madelung constant, and it thérfore follows the slowly decreasing trend of the
charge transfer discussed in connection with Fig. 10.

The metal s- and p-, and the 0 s- and d-bands lie far outside the region of interest and
those bands which are occupcbed are so narrow that they do not contribute to the pressure. The
metal sp- and 0 sd-pressures therefore arise from the corresponding projected densities of
states in the region of the 0 2p-bañd and the occupied part of the metal 3d-band. The poten-
tial functions of these partial waves, w]tich are only used to augment the tails of the 0 2p-
and metal 3d-orbitals inside neighbouring , do not follow (eq. 8) but rather , (14,22),

tl
= r1 ,'

(Vt1_E)
I (57)

where V is the square-well pseudopotential met in connection with Fig. 6,. and where approxi-

mately

r1 2(2l+1)2(2l+3)s2(s/st)211
(58)

The corresponding partial pressures are given by

13PV]t1 = ti IôVt1/Slns + (59)

where

tSV /5lns = — (21+3) (V —v+t —e ) (60)tl t tl xc xc
and

ST1/Slns = —2 (61)

There are very few 0 s- and d-electrons and the corresponding partial pressures may therefore
be neglected. As seen in Fig. 10 the number of metal s- and p-electrons is about 0.2 and 0.4
in CaO and these numbers increase slightly through the series. The metal s- and p-pseudopo-
tentials are nearly equal and follow the trend shown in Fig. 6. For the sake of the argument
we may consider the metal p-pressure only and neglect the second term in (eq. 59). For CaO
we then find

[3PV] = —0.4 (—51 Ry) = 2 Ry (62)

which by comparison with Fig. 13 is seen to have the correct order of magnitude. As we now
proceed through the series of 3d-monoxides the metal cores shrink and the pseudopotential fa-
lls drastically in energy as shown in Fig. 6. The metal sp-pressure falls accordingly and
even changes sign when the covalency between the metal 4s4p-band and the 0 2p-band starts to
develop. This explains the trend seen in Fig. 13.

Having discussed all the partial pressures we may sum them up and obtain the total pressure
shown in Fig. 13. This total pressure, evaluated at the same lattice constant for all the no-
noxides, must follow the same trend as the equilibrium lattice constant (eq. 35), provided
that the bulk modulus (eq. 36) does not change too much. This is indeed the case as may be
seen by comparison of Figs. 13 and 1. The equilibrium lattice constants in Fig. 1 were ob-
tamed by computing the pressure as a function of the lattice spacing and the results of such
a series of self-consistent calculations are shown in Figs. 15 and 16. We shall return to the
effects of magnetism 2) in a moment, and for the non-magnetic (P) bands the dependence of the
pressure on the lattice spacing may be explained in the same way as we explained the trends
through the series in terms of the band structures and occupancies shown in Figs. 6, 7 and 10.

In conclusion, the pd-covalent bond, the dd-metallic bond and the ionic bond provide a soft
attraction which is counter-balanced by a stiff repulsion caused by the volume-dependence of
the centres of the 0 p- and metal d-bands and the metal 3s3p-core. As the metal d-band is
filled up the attraction from the pd-covalent and the dd-metallic .bonds weaken. At the same
time the repulsion from the metal 3s3p—core changes into a metal 4s4p - oxygen 2p covalent
attraction. The ionic bond remains rather constant through the series. The trend followed by
the lattice constants of the non-magnetic 3d-monoxides shown in Fig. 1 is the result of the
parabolic trend followed by the pd—covalent and dd-metallic attraction, expressed in (eqs. 54
and 55), and the strongly decreasing trend followed by the metal sp-pressure. The fact seen
in Fig. 8 that the (calculated, paramagnetic) minimum lattice constant occurs at MnO (f0.5)
in the series of monoxides while at Co (f=0.9) in the series of elemental 3d-metals is an ef-
fect of covalency. Compared with the common picture of bonding in the 3d-monoxides the one
presented here is far more covalent and far less ionic. By choosing larger chalcogen and smal-
ler metal spheres it is possible to shift the weight towards the ionic picture but we doubt
whether a fully iotiic ASA description is possible.
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In thepresentpaper we have only considered how the total energy depends on one degree of
freedom, namely the scale of the lattice, and our separation of the total pressure into par—
tial pressures was done merely because we felt that the trends followed by the partial prés—
sures were simple to understand. We must therefore warn against interpreting the partial
pressures as individual pressures. For instance does the fact that the chalcogen pressure is
positive and the metal pressure negative notmean that the total energy is lowered if the
chalcogen cell is expanded and the metal cell contracted. The total energy is, of course, in—
dependent of the relative cell sizes; it only depends on the positions ofthe nuclei. Another
point worth mention is that, whereas the total' pressure is' independent of the relative cell
sizes (in the ASA, nearly independent), this does not hold for the partial pressures. The re-
lative weight given in our description to variouS terms such as c&e repulsion and ioiicity
therefore to some extend depend on the choise of sphere sizes. This is illustrated in the up-
per part of Fig. 11.

Fig. 15. Partial and total pressures of the
ionic insulators CaO and CaS calculated as
functions of the lattice constant. V /V=O.62.

Ca

We see from Fig. 1 that the anomalous large lattice constants found in the second part of the
series of monoxides are not reproduced by the non—magnetic band structures considered so far
and we shall therefore include the possibility of spin-polarization. The density-functional
formalism can, in principle, yield a ground state with net spin but, in practice, this requi-
res an approximation far more sophisticated than the local approximation expressed by (eq. 27).
Itis a rather simple matter, however, to generalize the formalism to a spin-density formalism
(3) in which the element n(tci,ta') of the density matrix is the independent variable and in
which the external potential has the form vext(tU'. In the local approximation, the ex-
change—correlation energy density,c, only depends on the diagonal elements, n+(r) and n+(),
and this so-called local spin density scheme therefore leads to seperate one—electron Schrö-
dinger equations for down- and up-spin electrons. The resulting two band structures must be
filled up to a common Fermi level such that the total number of electrons, n = n++n+, is the
proper one • In this way the spin-up band structure yields the spin-up density, n+ (i), and the
spin-down band structure yields the spin-down density, n+(). The self-consistency condition
for the one-electron potential, v+ (), experienced by a spin-up electron depends on both the
electron, n() n+() + n+(), and spin-, m() = n+() - n+(t), densitieS. The spin-density
enters the exchange—correlation part of the potential only (in the absence of an external
magnetic field, spin—orbit coupling etc.) and, to first order in m(),

-* + 1 + .*vt(r) = v(r) — m(r) (63)

where the n-independent part of the potential is the one considered in (eqs. 26 and 28). The
self-consistency condition for v+() is (eq. 63) with the minus sign exchanged by a plus.

Using the spin-polarized form of the exchange-correlation potential suggested by von Barth
and Hedin (3) and allowing for ferromagnetic (F) polarization we have repeated the self-con-
sistent calculations for the 3d-monoxides as functions of the lattice constant. This requires
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twice as many calculations as previously. We find that, for Cr0 through NiO, within the range
of lattice constants considered, the solutions with ferromagnetic polarization are favoured
over the solutions without polarization. In none of the cases considered is the spin—plari-
zation, however, complete; this means that the Fermi level always cuts through the spin-up
as well as the spin-down metal 3d-band. The values of the spin-polarization, m, obtained for
the lattice constant 4.2 , are shown in the first column. of Table 2. Had the polarization

TABLE 2. Spin-polarized 3d-bandparameters for a = 4.2 A

nh
m

Cd+_Cd+

(u'y)

I

u17)

Wd
(mRy)

%W/5
(mRy)

%Wd/5v'
(mRy)

Cr0 4 3.35 215 64 415 330 235
MnO 5 4.16 270 65 370 370 260

FeO 4 3.44 220 64 335 270 190

CoO 3 2.40 155 64 305 180 130

NiO 2 0.30 27 280 110 80

been complete m would be equal to the number, n, of electrons (Cr0) or holes (MnO - NiO)
in the d-band. In the table we have, furthermore, listed the exchange splittings, CdCd+, of
the 3d-bands, the 3d-bandwidths, Wd, and the occupied (Cr0) or unoccupied (MnO-NiO) bandwidths
nhWd/S as naively estimated for a retangular density-of-states shape. In all cases do the
latter exceed Cd+_ Cd+ in accordance with the fact that m is smaller than h• The eqüili-
brium lattice constants obtained from the ferromagnetic calculations are shown in Fig. 1 and
they are seen not to account fully for the experimental situation. We shall now try to explain
these results because,later on, we shall use them in an extrapolation to the antiferromagne-
tic case.

0
a (A)

Fig. 1.6.Partial and total pressures calculated as functions of the lattice
constant for the 3d-monoxides in the non-magnetic (P) and antiferromagnetic (AF)
phases. The experimental equilibrium lattice constants are indicated by dots and
the theoretical lattice constants are where the total pressures vanish. These
lattice constants are'shown in Fig. 1.
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If we use the approximate (eq. 63) for the one—electron potential :and further treat the spin-
-dependent second term by first-order perturbation theorywe find that the exchange splitting
between the up- and down-spin 3d-band structures is given by

-*. 4. -9- 1 -3- 4- 4
. E d+ Ed+(k) m<1)d(k) tPxcmmmN1)d>

= mf Xd(r)T1xc(n(r))[m(r)/mIr dr =mI (64)

Here, the Stoner exchange (-correlation) parameter, I, is only strictly independent of if
we assume, as done in the third equation, that the electron- and spin densities are spherical-
ly symmetric inside the atomic sphere and if hybridization is neglected. If we divide the ex-
change splitting, Cd_Cd+, listed in Table 2 with the spin-polarization, m, we obtain the va-
lues of I listed in fourth coluxnn Except for NiO, where the numbersinvolved are very small
and their ratio therefore uncertain, I appears to be constant through the series. Moreover, we
find that I is essentially independent of the lattice constant. For a k-independent exchange
splitting the self-consitency condition for the spin-polarization, m, is that it equals the
integral of the (non-polarized) state density, N(E) (per spin), over the range LiE. A sufficient
condition for a ferromagnetic solution is therefore that

IN(EF) > 1 (65)

The density-of-states curves for the monoxides look like the one shown for TiO in Fig. 5, only
do the 3d-parts parts scale with Wd as given in Fig. 7. The Fermi level rises as we proceed
through the series and, with i1 16 states/cell spinRy, we can understand why the ferro-
magnetic instability is being reached at Cr0. The exchange interaction is, however, not strong
enough to push the long tail at the bottom of the d-band above the Fermi level for the spin-
-down electrons and the spin-polarization is therefore not complete. For non-polarized Nb the
Fermi level falls above the peak in the state density but, thanks to the small d-bandwidth,
the Stoner criterion (eq. 65) is still satisfied although the resulting spin-polarization is
small.

In order to explain how ferromagnetic spin-polarization infihuences the electronic pressure,
and in order to prep3re ourselves for the antiferromagnetic case, we shall use the simplified
pd-model introduced earlier. We first consider the case of MnO where the d-band is half full
(f=0. 5) and assume that the polarization is complete (f+ = 1 and f+ =0). For a half-full band
without spin-polarization the dd-bonding pressure (eq. 54) reaches its maximum value

[3PVbd = _(25/4)Wd
= -2.3 Ry, for MnO at 4.2 , (66)

and this is completely lost if, instead, we create a full spin-up band and an empty spin-down
band. This is the dominating effect of spin-polarization. The pd-covalent bond pressure

(eq. 55) is only reduced slightly through the upwards shift of t1spin-down d-band by 1/2 ml
and the resulting decrease of the pd-hybridization. Specifically:

_8N.4, (Cd_Cp+) = —4N(Cd_Cp) [1 + 1/2 ml / (Cd_Cp) 1 , (67)

as seen from (eq. 19) and neglecting the exchange shift of C, which in all cases was found
to be an order of magnitude smaller than the exchange shift of Cd. There are similar, small
changes caused by the shifts of the d-bands,in the metal and oxygen centre pressures. The spin

-polarization thus, first of all, influences the pressure by changing the d—band occupancies
such that f+ f+ and, secondly, by shifting the d-subbands by the amounts ± 1/2 ml.

Considering now the general case we use the d-band occupation parameters

f = (f++f+)/2 and g = (f+—f+)/2 (68)

where, as before, the total number of electrons is n=N +fN = 6+iOf and, in the case of
ferromagnetism, the net polarization is m=gN= lOg. Thelater does not hold in the case of
antiferromagnetism and we shall therefore in the following keep m and g separated. For the
dd-bond pressure we obtain from (eq.54)

[3PvJ =-12.5 W {f+(1-f+) + f+(1-f+)I =-25 W [f(1-f)-g21 (69)
dd-bond d d

The polarization thus causes a repulsion proportional to g2 which, for the case of complete
polarization and a half-full band (f=g=0.5) cancels the first term as seen above. For ferro-

magnetic MnO our self-consistent calculations (Table 2) gave g=0.416 and therefore a repulsion
of 1.6 Ry out of the possible 2.3 Ry. For the pd-bond pressure we obtain from (eq.55), and
to first order in 1/2 mI/(C -C ),dp

[3PVIpd_bond=_4Npd+ (Cd+_Cp) (1-f 1') (Cd+_Cp) (1-f +)

(70)
=_8Npd[(Cd_Cp) (1-f)- 1/2 mlg]
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Here, the polarization gives a small repulsion proportional to mg. According to the
discussion following (q.2O) the charge transfer is approximately

=2_N(l_f+)_N4(l_f+)= 2_N[(1_f)_mIg/(C_C)J
(71)

The charge transfer thus increases proportionally to mg and thereby causes a small attractive
Madelung pressure proportional to mg. Finally, it may be realized that, due to thespin- 2
polarization, the metal and oxygen centre contributions have small terms proportional to m

The antiferromagnetic (AF) structure of MnO through NiO is such that the spins on the metal
sites in each (1 1 1) -plane are aligned and the spins in neighbouring (1 11) -planes have,
oposite directions. All the oxygen sites. are equivalent and have three metal+ nearest
neighbours and three metal+ nearest neighbours; consequently, there is no net polarization
on the oxygen sites and, in the atomic sphere approximation, the spin-density vanishes in
the oxygen spheres. The AF structure has four atoms per primitive cell; two oxygen atoms,
a metal+ and a metal4' atom. The band structure for a spin-up electron is shown in Fig.17
and consists of six oxygen 2p-bands, five metal+ 3d-bands, five metal+ 3d-bands and two
hybridized metal+ - metal+ 4s-bands. All the bands, of course, hybridize with each others.
The band structure for a down-spin electron is identical with the one shown in Fig.17 but,
in the assignment of'wave functions to the various bands, the metal+ and metal+ sites should
be interchanged. While the ferromagnetic (F) band—structure problem involves twice as many
calculations as the non-magnetic (P) problem, the AF band—structure problem involves matrices
of twice the size as those considered previously.This has prevented us from repeating the
self—consistent calculations for the AF case and thus to examine the relative stability of
the F and AF phases. Instead, we have estimated the equilibrium lattice constants in the AF
phase by extrapolation of our findings from the P and F phases.

Fig. 17 Antiferromagnetic band-structure
for up-spin electrons in MnO as calculated
from the self—consistent ferromagnetic atomic—
sphere potentials. The [111]—direction' is
perpendicular to planes of equal spin—direc-

MntUs
tion. a=4.4

Mn3d

Mn t 3d

0 2p

Suppose that, for the AF phase, we knew the self—consistent value of thenat spin—polarization
in a metal sphere, that is the sublattice magnetization, m. The self-consistent potentials
in the spin-up and spin-down metal spheres could then with good accuracy be estimated a
extrapolation, linear in m, of the P- and F-potentials obtained self-consistently for the
same lattice constant. From our previous calculations the spin-up and spin—down potentials
in the oxygen sphere are almost identical and their average is nearly identical to the oxygen
potential in the P phase. Also the oxygen potential in the AF phase is therefore well
estimated from the extrapolation linear in m of the (average) oxygen potential in the F and
P phases. In terms of the pd — model considered above this means that all potential para-
meters t and (C+C+)/2 are identical in the three phases and only C,- C+ for the metal-sphere
orbitals scale linearly with m, i.e. the exchange parameter, I, is he same in the F and AF
phases. Now, our aim is to evaluate the elctronic pressure—curves in the AF phase and, for
that purpose, the important parameter is the polarization of the d-band occupancies,
5f+-5f+=lOg, which is to be determined self-consistently with m.If it turns out that the
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exchange splitting is so large and the d—subbands so narrow that one d-subband is full or
empty, that is, we have strong antiferromagnetism, then it is not so iiportant to determine
the exact self-consistent value of m because the crucial parameter, log, then attains its
maximum value, namely the number of holes in the d-band. This is, for instance, the case for
the PS band structure of MaO shown in Fig.17. In MnO the number of electrons in the d-band
is 5 and when, as in Fig.17, there is no overlap between the MM' and Mn+ d-subbands, the
lower band will be full and the upper empty such that log attains its maximum value of 5.
Due to the hybridization between the Mn+ and Mn+ bands the sublattice magnetization, m, is
not 5, as it would have been for ferromagnetic bands, but smaller. For the case considered
in Fig.17 the sublattice magnetization is 4.34 l3ohr magnetons and this is made up of the
following contributions: The nuriberof up-spin electrons contributed to the Mn+-sphere is 4.10
from the five Mn+ 3d-subbands and I .03 from the six 0 2p-ubbands . In addition, from • the
spin-down band structure, the number of down-spin electrons contributed to the Mn+-sphere
is 0.23 from the Mn+ 3d-subbands and 0.56 from the 0 2p-subbands.

As shown in Table 2, the self-consistently obtained magnetizations in the F phase are, exçept
for NiO, less than one Bohr magneton below their maximum possible values, and, hence,
quite close to the value we expect for the AF phase. We have therefore set up band calcula-
tions for the AF phase using the atomic-sphere potentials obtained in the ferromagnetic
calculations for the same lattice constant and have read off the sublattice magnetization
m, and the d-band polarization, g. For MnO we obtain the result shown in Fig.17 and dis-
cussed above. The facts that the d-subbands are well separated and the sublattice mangnetiza-
tion is self-consistent within 10 per cent is for. us a proof that the strongly AF solution
is stable, i.e. that

log =
rib (72)

The reason why the AF-, in contrast to the F, solutions are strongly polarized is that the AF
d—subbands are more narrow than the F d—subbands. As seen from the discussion around (eq.9—13)
we realize that the narrowing amounts to nearly a factor I because the number of Mn+ atoms
neighbouring a given Mn+ atom is 6 rather than 12. This estimate, which is seen to hold
quite well for the full calculation shown inFig.17, neglects the hybridization between the
Mn+ and Mn+ d-subbands. The condition for strong antiferromagnetism is essentially that the
exchange splitting must exceede %Wd/(5v'). The latter numbers have been given in the last

column of table 2 and they may be compared with the exchange splitting listed in the third
column. (It might be remarked that both numbers are too small because of the neglected band—
widening and band-repulsion caused by the hybridization between the subbands). Nevertheless'
the numbers listed do support our belief that the strongly antiferromagnetic solutions are the
stable ones for MnO through CoO and that the sublattice magnetizations are not too far from
the ferromagnetic magnetizations. In Cr0 the stable solution seems to b the ferromagnetic
one but this has not been experimentally verified because the compound has never been prepared.
Our ferromagnetic solution for NiO is weakly magnetic and cannot be used for an axtrapola-
tion to the AF-phase.

The pressure curves estimated for the AF phases of MnO through CoO and shown in Fig. 16 have
been obtained as follows. Assuming that we can take m over from the ferromagnetic calculations.,

and that g is given by (eq.7 ) rather than by lOg=m as in the ferromagnetic case, we simply
obtain the AF partial pressures by extrapolation from2the corresponding p and F partial
pressures: The dd-bond pressure should be scaled by g (eq.69) and then divided by V', the
pd-bond and the Madelung pressures should be scaled by g (eqs. 70. and 71), and all the other
partial pressures are taken over from the ferromagnetic calculation. Unfortunately our cal-
culations yield the centre- and bond corttributions to the p- and d-pressures rather than the
dd-bond and pd-bond pressures which are only defined in the simplified model. In this situa-
tion we have therefore scaled the p- and d-bond pressures by g and divided the
d-bond pressure by v'. It turns out that the lattice constants obtained,and shown in Fig. 1,
are rather independent of such details. The important contribution is the strong reduction of
the metal d—bond pressure caused by the complete filling of one subband and, in the cases of
FeO and CoO, the reduction of the remaining contribution by band—narrowing.

This completes the present review of the calculation of electronic structure and ground—state
properties using the atomic sphere approximation. As an example we have considered the lattice
constants of the 3d transition-metal rnonoxides. A similar story could be told about the
lattice constants shown in Fig.8 of the actinide metals, but not here.
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