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Abstract - Chemical analysis on a micro scale and at trace concentrations
demand the utmost of today's technical achievements. An essential condition
hereby is to design and select optimal measurement systems. Likewise, it is
necessary to extract maximum information from the analytical data. Chemo-
metrics uses and develops mathematical and statistical methods in order to
meet the requirements for the solution of todays analytical problems. An
overview will be given, first of the chemometric ''tools', whereafter three
examples will illustrate the potentials of the methods for (i) the
optimization of an analytical procedure, (ii) the obtaining of maximum
information from the analytical data and (iii) for the combination and
classification of analytical results.

INTRODUCTION

In spite of the incredible diversity of analytical methods and procedures it is not difficult
to discover a certain similarity in the way analytical problems are solved. The first action

is to translate the analytical problem into its analytical and economical terms (Fig. 1).

. ANALYTICAL Prog
< Sss

process
problem

combinati
bination analytical cost

problem benefit

conversion

interpretation

! sampling
strategies

enhancement > >
X measuremént

restoration

reduction

development selection

optimization calibration
quality control

Fig. 1. The analytical process.

The latter may sound a bit surprising, but one should realize that anyhow it is senseless to
produce analytical information which is less worth than the analysis costs. The analysis costs
are determined by the sampling proqramme in conjunction with the quality of the analytical
information. The analytical procedure is the tool for the production of the analytical
information.

Many operational conditions of the analytical nrocedure determine the quality of the produced
data. Under bad conditions the method will probably give inaccurate or imprecise results, or
it may take too long before obtaining the result. Classically, the best or optimal conditions
are determined by varying one parameter at a time. However, such univariate methods require
many experiments and often find a wrong optimun (Fiq. 2a). Instead, a multivariate approach
is necessary (Fig. 2b), which is discussed below.

With the ongoing revolutionary developments in micro electronics the era of 'self optimizing'
analytical instruments, controlled by built-in optimization algorithms is at the doorstep.

As calculation capability is growing sheaper one has to consider the costs of extracting more
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Fig. 2a. Univariate optimization
Fig. 2b. Simplex optimization

information from the data against the production of more data by carrying out additional
measurements (often requiring an additional and thus a more expensive sampling). For instance,
the experimental design of the measurements influences the amount of analytical information
which is obtained on the analyzed system. A good desiqn may yield more information from even
a smaller number of measurements in comparison to a bad design. In the field of calibration
for instance, parameters of the calibration function may be calculated in a recursive way:
i.e. after each measurement the parameters of the calibration function are re-estimated and
their values are fed back to the experimental design.

measurement of a
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calibration sample ]
undate the estimation
of the system parameters
measurement experimental design
of samples of the calibration

Fig. 3. Recursive on-line calibration

After the measurement proces, the enhancement and restoration of the unrefined data can be
started (e.g. a smoothing or deconvolution), which is followed by a proper data analysis.
Good data processing methods are essential in order to utilize the full capabilities of
analytical methods. In HPLC for instance, the potentials of a diode array detector are only
fully exploited when the proper multivariate methods are applied like a principal components
analysis followed by a curve resolution step. This is illustrated on an example given below.
The product of an analytical procedure is a set of analytical results (e.g. concentrations)
which are obtained for a number of samples. Such a set of results has to be combined into
chemical information (or knowledge) on the sampled system (the system under investigation).
For instance, the results of a water analysis of a drinking water production plant have to be
combined into one or more quality parameters,which allow proper control actions. In this
respect, the chemometrician plays an important role. Data structures are often so complex,
that advanced mathematical and statistical methods are necessary to recover the hidden
information. An illustrative example is the detection of a periodicity in data (or time)
series, by a relatively simple autocorrelation analysis (Fiq. 4). An analysis of variance is
another example. B

Many analytical problems are put in terms whether an object on which several parameters have
been measured, belongs to one or another category. An example is the classification (or
identification) of minerals on the basis of their X-ray spectra. Classification methods are
unified under the term Pattern Recognition. Many applications of pattern recognition in
analytical chemistry have been reported. A major operation in pattern recognition is to
provide displays for the analyst in a reduced 2-D space, with the conservation of as much as
possible of the original structure in the data (e.g. clusters). Develonments are ongoing now
to incorporate pattern recognizers in the analytical instruments for an on-line interpretation
and/or classification of the results. At our laboratory, the possiblities are investigated to
analyze surface images obtained with a raster-electron-microscope (R.E.M.), by digital image
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Fig. 4. Time series and its autocorrelation function.

processing. Two-dimensional data matrices (nxm) can be displayed under the form of an image of
nxm pixels, having a given grey level (or colour). Because the image is available in a
digitized form, many operations can be carried out on the image: e.g. an image enhancement

or an edge detection (to be compared with a peak detection in spectra).

Fig. 5a. SIMS Fe image (128 x 128 x 8) of a 5 x 5 mm Fe blade.
Fig. 5b. Image after a high emphasis spatial filtering.
Fig. 5c. Edge detection.

After the image processor has located the coordinates of interest (e.g. particles of a given
size when analyzing minerals in coal), a micro processor controlled sample table is moved to
that location, and an energy-dispersed X-ray (EDAX) spectrum is taken, whereafter the pattern
recognizer gives the mineral constitution.

Much work has still to be done in that respect, but it illustrates the track, chemometricians
are moving on: that is, to turn instruments into intelligent analyzers.

THREE APPLICATIONS

The on-line optimization and calibration of an analvtical procedure

Analytical chemists are right to be concerned whether analytical procedures operated on a
routine basis are optimally performing within the calibrated conditions. For the finding of
the optimal conditions one uses an optimization procedure and defines a criterion to be
optimized. An optimization method ought to be fast (small number of measurements) and to
lead to the right optimum. Figure 2a shows that the classical method of optimizing one
parameter at a time may fail in finding the ontimum. The reason is that the optimum for one
parameter may depend on the level of all other parameters. Multi variate sequential methods
(Ref. 1) vary all parameters at a time in a search of the steepest (and thus shortest)
route to the optimum (Fig. 2b). The measurements are arranged in geometrical figures
(Simplices which are triangles in the 2-d case). The coordinates of the corners of the figure
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represent a set of values of the parameters. By dropping the corner with the worst response
and by moving into the opposite direction, a new Simplex is constructed. The coordinates of
the new corner represent the values of the parameters for the next measurement. In the
neighbourhood of the optimum the Simplices start to turn about the optimum, but by taking
some special precautions the optimum can be further approached.

In practice, modified Simplex procedures are used which perform better than the above
mentioned symmetrical one (Ref. 2).

Implicitely it has been assumed that optimization was wanted for one criterion only. For
example, maximal sensitivity, or minimal analysis time, or maximal peak resolution per unit
of time etc. Although many analytical problems are of a multicriteria nature, optimization in
analytical chemistry has been mainly limited to unicriteria methods. Because of its sequential
nature, the Simplex algorithm is very efficient for on-line applications in so-called self
optimizing instruments. The principle is relatively simple. The analytical instrument is
hooked to a microprocessor loaded with a Simplex algorithm. The coordinates of the corners
of the starting Simplex are entered by the analyst. From that point the self-optimization
proceeds until the optimal settings of the instrumental parameters are found, without any
further human interaction. The microcomputer has a triple task in that respect: the control
of the Simplex, the calculation of the response by a processing of the unrefined data (e.g.
peak height) and the transfer of the new values of the instrument settings to the instrument.
As far as | know computer controlled self optimizing instrumentation has been realized in
flow injection analysis and furnace atomic absorption spectrometry. In FIA (Ref. 3) the
instrument sets the optimal flows of the reagents and carrier stream, in order to obtain
maximal sensitivity. In AAS (Ref. 4) the instrument ontimizes the temperatures and times of
the drying, ashing, atomizing and burning stages, using standards. However, in AAS, optimum
values found for a standard may be off-optimum for an unknown sample. Hence, more specific
intellegence has to be incorporated in advance in the instrument or should be acquired by

the instrument itself. A form of artificial intelligence may also be realized in calibration.
A calibration function which takes into account interferences and matrix effects is given by:
R =K. C, where R is the response vector of_the responses measured at NS sensors, C is the
concentration vector of the NA analytes and K is a NS x NA matrix of the sensitivities of the
NA analytes at NS sensors. In the case of matrix effects every element k.. of K is a function
of all concentrations Cigs '

Saxberg and Kowalski (5)7J developed the Generalized Standard Addition Method (GSAM) for the
calibration of such systems. All elements of K are determined by adding standard solutions of
all analytes to the sample, according to a given experimental design. After each addition the
responses are measured at all sensors. After completion of the additions K and Cs
(concentrations of the NA analytes in the unknown sample) are calculated. During the _
additions, however, the measurements contain already information on the system state (the K
matrix). In classical calibration one measures first all standard solutions, without using
that implicit information for an eventual adaptation of the calibration design. Recently
(Ref. 6), a recursive calibration method has been developed whereafter each measurement of

a standard, calibration constants are updated (Fig. 6a).
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Fig. 6a Calibration curve with non-linearity.

Fig. 6b Estimated k values.

Fig. 6c Cumulative innovation for detection of non-linearity.
The general expression of the recursive alqgorithm is (Ref. 6)

New estimate of K = old estimate of K + correction (1)

The correction term is a function of the value of the last measurement.
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The application of a recursive algorithm allows to calibrate according to the scheme given
in Fig. 3. Important features of this desiqgn are: '

(i) an on-line control of the validity of the underlying model by monitoring the innovation
which is the difference between the measured response, R, and the expected response R,
based on the old estimate k_. When the model deviates from linearity, the innovations will
keep equal signs, instead o? fluctuating about zero (Fig. 6¢c); _

(ii) the availability of real time information whether the estimates of K are known within
the desired limits.

In my opinion, future instrumentation will become the more and more intelligent. First
steps in that direction are the realisation of self-optimizing and self-calibrating
instruments.

The acquisition of maximal information from analvtical data

The upcoming of hyphenated methods, like GC-MS and recently, HPLC-UY/VIS, has enormously
augmented the potentials of chemical analysis. Gas chromatography, for instance, is a poor
qualitative method but is a powerful quantitative method for complex mixtures. On the other
hand mass spectrometry is a powerful qualitative method, when dealing with non-mixtures. The
combination of both methods unifies outstanding qualitative and quantitative capabilities.

As long as all analytes of interest are well separated, all desired analytical information

is easily acquired. In many instances, however, good resolution may be only achieved after a
time consuming optimisation, with a risk that even then the analytes remain poorly resolved.
In that situation, the limits of traditional qualitative and quantitative analysis have been
reached. However, by a multivariate approach, which is explained below, the number of
components in a poorly resolved elution profile can be estimated. More imnortant, however, is
the fact that the pure spectra of the analytes can be estimated also, provided that the
number of analytes in the frofile is less than four.

In this paper attention will be focussed on the HPLC/UV-VIS method. Contrary to the single

or dual wavelength HPLC, where one or two chromatoqrams are recorded, HPLC equipped with a
diode array detector may produce full spectra (e.g. 20 or more wavelengths) every second.

The resulting analytical data, obtained for a strongly overlapped system of 3 analytes (Fig.
7a; consists of a data matrix of, for instance, NS spectra recorded over NW wavelengths (Fig.
7b) .
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Fig. 7a 3-compound elution profile (Sampling interval: 1 sec.).
Fig. 7b Spectra recorded over elution profile.
Fig. 7c Determination of the number of components.

The absorbances at each wavelength during the elution are linear combinations of the
absorbances of every component present in the elution profile. This property allows to find
the number of independent factors (or comnounds). This can be illustrated on a simplified
example, where spectra are recorded at 3 wavelengths only (NW = 3). Every spectrum (i)
consists then of three absorbances (a.,, a.,, a..), which can be reoresented as a point in a
three dimensional space (Fig. 8a). Let us consﬂ&%r two cases:

(i) A1l spectra (i = 1, NS) are combinations of one component only. Then all points (spectra)
will lie on a straight line. Because of noise superposed on the data some random deviations
from that line will be observed in practice. Looking to the same data but in a little
different way, one can say that the line is pointed in the direction of maximal variation (or
variance) in the data (Fig. 8b). _

(ii) A1l spectra (i = 1, NS) are combinations of spectra of two compounds. It can be easily
checked that all points (spectra) lie now about a plane surface. In terms of variations, the
plane defines two orthogonal directions of variation (Fig. 8c).

In principle, when noise is present on the data, one will find three orthogonal directions
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Fig. 8a Representation of a spectrum in the NW-dimensional space (NW = 3).
Fig. 8b One-component spectra in the NW-dimensional space (NW = 3).
Fig. 8c Two-component spectra in the NW-dimensional space (NW = 3).

of variation in a three dimensional space. These directions are called the eigenvectors of the
variance-covariance matrix of the datamatrix. The eigenvalue of this matrix is a measure for
the variance spanned by its respective eigenvector. From the Fig. 8b and 8c it is readily seen
that the number of significant directions of variance (the other directions describe only the
noise which is present in the data) is also the number of factors (here compounds) in the data
The mathematical method is called principal components analysis (Ref. 7). Figure 7c gives a
plot of the eigenvalues obtained for the unresolved elution profile of three diphenyl amines
(Fig. 7a). The figure indicates that there are 3 components with a small fourth one (is a
slight overlap of a peak at the left wing).

The next problem is to calculate the spectra of the oure compounds and to reconstruct the
elution profiles for the determination of the sequence of the retention times.

Lawton and Sylvestre (Ref. 8) gave a solution for a two component system. Chen (Ref. 9)
developed an algorithm for a three component system of AC-MS data.

At our laboratory the algorithm of Chen has been adapted to handle HPLC/UV-VIS data up to
three unresolved components.

If three compounds are present, three significant eiqenvalues are found, associated with three
eigenvectors ¥ys X and 33. The coordinates of the spectra, first represented in a NW-th
dimensional space,” (MW is’the number of wavelengths) can be calculated in the ¥i» ¥y Y3 Space

M. = a,.v

—i i1=1 o

i2¥a * 2i3Y3 (2)
For an easy 2-d representation, one can use the orthogonal coordinates (9,0), where

M, = cos 0 ¥y + cos © sin O v, + sin O sin © vg (3)
A1l spectra (after being normalized on a norm = 1) can be represented as a vector (angle @ and
length ©) in a 0-©» plot. The next step is to extrapolate the measured spectra in onder to find
estimations of the pure spectra_§],§ and §3. For ® = 0 to 27, the value of O is calculated
for which one of the elements of Mi gecomes zero (and all other elements are positive). This
gives a plot as shown in Fig. 9.

Fig. 9 0-¢ plot of candidate pure spectra
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An algorithm, which will be published elsewhere, has been develoned at our laboratory in

order to select the three pure spectra from such a 0-0 plot. Simulations carried out at our
laboratory (Ref. 10) revealed that good qualitative and quantitative (after proper calibration)
information is obtainable also under conditions of poor chromatographical resolution of
compounds with very similar spectra. The strenqth of the method is well demonstrated when
comparing the estimated pure spectra and the real pure spectra:(Fig. 10a, 10b, 10c) of the
three compound system being eluted with the elution nrofile of Fig. 7a. The spectra are
perfectly recognizable allowing the identification of the compounds.

Fig. 10a, b, c Estimated pure spectra (—); nurest spectra (-«--- ) in the
mixture (spectra in the corner are the true spectra).

The elution profiles are calculated by solving the overdetermined set of equations at every
elution time t,:

In matrix notation: M. = §‘Ej’ where M. is the spectrum recorded at time t., c. is the

vector of the three unknown profiles ~at time t,, S is a 3 column matrix _of "the three
estimated pure spectra. The solution at t; is given as: < = [ST . §1-1 . §T | ﬁi.

Fig. 11 Calculated elution profiles of the compounds.

Confidence intervals of the elution profile are found by repeating the calculations with the
purest measured spectra (dots in Fig. 10a, b, c).

A comparison of the retention times found by the program, with the true retention times of
the model system, and a comparison of the estimated pure spectra with the true spectra

illustrate the promising capabilities of the method in view of the poor chromatographical
resolution.
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The combination and classification of analytical results

The formulation of the analytical information in many cases requires the combination of many
analytical results. A direct assignment of a property to an object is often very difficult.
An empirical approach instead is to measure certain variables or features on objects with a
known property. Thereafter one tries to derive a classification rule which attributes the
right property to certain regions in the multi dimensional space, spanned by the features.
The classification rule is thereafter used to classify the unknowns. The basic principle of
such pattern recognition method is that the features form the axes of a multi dimensional
feature space. Feature values of an object locate that object in that space. The basic
assumption is that the closer objects are located, the more similar they are. When the
common property of the objects is unknown, one tries to locate clusters in the feature space.
Analysis of the clusters may lead to the discovering of the common property. Pattern
recognition consists of a collection of algorithms for many types of operations: display of
the multi dimensional space; transformation of the axes (features) in order to enhance the
separation of the categories; modelling of the clusters, etc.

Pattern recognition has been successfully applied on a wide variety of analytical problems
for more than 10 years (Ref. 11, 12). It has been and still is one of the main subjects of
research of chemometricians. Patterns are somehow associated with images. An image consists
of a rasterof points, called pixels, having a given grey level. Every 2-dimensional matrix
can be represented as an image. Chemical images have been recently obtained in Secundary lon
Mass Spectrometry (SIMS) (Ref. 13). A narrow ion beam is moved over the sample surface,
causing the reflection of secundary ions. The mass of these ions is measured with a quadrupole
mass spectrometer. When the mass spectrometer is tuned on a fixed mass unit, a digitized
matrix is obtained of intensities as a function of the snatial coordinates. Such a matrix can
be displayed as an image, whereafter various image processing methods are applicable.

It is clear that the combination of image processing and pattern recognition may become a
powerful tool for the surface analyst. The image processing (IP) is the 2-dimensional
equivalent of the data processing of spectra, chromatograms etc. Peak-find procedures in
spectra become edge detectors in IP, deconvolution becomes image restoration and the 1-d
smoothing procedures are image enhancement techniques.

At our laboratory a system is under development for the automatic analysis of images of a
Raster Electron Microscope (R.E.M.) in order to find the spots of interest for a local
X-Ray analysis (RMA). ldeally, the analysis should be concluded by an automatical inter-
pretation of the X-Ray spectra. The aim is thus to carry out a surface analysis according to
the scheme shown in Fig. 12.

R.E.M.-image o= enhancement =—————————= recognition

next . selection of
coordinates

last spectrum =e- recognition e#———— RM analysis
of minerals

Fig. 12 Scheme of an intelligent R.E.M./R.M.A. instrument

The X-Ray spectra are recorded at a number of selected windows of energy. In our particular
case where the mineral constitution in coal is determined, these windows are for K, Ca, S, Fe,
Si, and Al. In the terminology of multivariate statistics, every spectrum is a point in the
6-th dimensional feature space. In order to investigate the possibilities of an automatical
analysis of the spectra, spectra were recorded at 400 spots arranged in a regular 20 x 20

grid over the sample surface. 160 of them were essentially null spectra (no mineral present
at that spot). In order to find the structure in the data, one needs a plot of all spectra

in one or more 2-dimensional plots. Referring to the previous paraaraph, a projection of all
points on a plane in the direction of the two principal orthogonal axes of variation (eigen-
vectors v,v, of the two largest eigenvalues) will conserve the most of the variance in the
data. Figuré 13 shows a plot of the data projected on the (gq,xy) plane after normalization.
It is obvious that some structure becomes visible in the data. =

Spectra are lined in triangles, to be compared with diagrams obtained for ternary mixtures.

The corners are the simpliest spectra and lines connectinig the corners renresent spectra
which are linear combinations of the spectra in the corners. The fact that spectra are nicely
lined up indicates that most spectra are pure snectra or are spectra of mixtures of 2 to 3
minerals only.

An obvious continuation is to cateqorize the spectra according to the windows, which give a
signal. In this way a total of 17 catagories were obtained: K; S; Si; K-Ca; Fe-S; Si-Al; Ca-S;
Ca-Si; S-Si, Ca-Si-S; K-Ca-S; S-Si-Fe; Si-S-Al; K-S-Si-Al; Ca-S-Si-Fe; S-Si-Fe-Al;
K-Si-S-Fe-Al; K-S-Si-Al. By performing a disjoint principal comoonents analysis on each of the
categories, information is obtained about the number of components present in each group (Table
1) of spectra and about the location, size and direction of the 17 categories of spectra in



Application of chemometrics 2015

the 6-d space. This information in fact is a model for each group, known as SIMCA (Ref. 14).

Al

K, S, Si, Fe, Al
S, Si, Fe, Al
Ca, S, Si, Al

o

S, Si, Al
S, Si, Fe
Al, Si
Ca, S
S, Si
Ca, Si
Ca, S, Si

<« OB D> P + x

Fe

Fig. 13 Karhunen-Loeve projection (l »V,) of X-ray spectra of minerals in
coal (spectra are categorized according to the combination of spectral
windows with a signal).

TABLE 1. Results of a disjoint principal components analysis on 17 categories
of line combinations

category information preserved with
1 2 3 4 5 6  vectors

K, Ca 93.6 100

Ca 100

Ca, S 93.2 100

Ca, Si 99.9 100

Si 100

S, Si, Fe 99.5 99.9 100

S, Si, Fe, Al 70.6 97.3 99.8 100

K, Ca, S 100

S, Fe 100

Ca, S, Si 82.5 98.3 100

Ca, S, Si, Fe 68.2 100

S, Si, Al 99.0 100

S, Si 100.0

K, S, Si, Fe, Al 77.4 91.4 96.8 99.9 100

Si, Al 98.5 100

Ca, S, Si, Al 97.1 99.3 . 100.0

K, S, Si, Al 92.3 100
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The SIMCA model is capable to classify unknown spectra in one of the categories and is
capable to recognize whether the unknown is a member of a new category. The classification,
however, is in this example a trivial matter as it classifies the spectra according to the
windows showing a signal. The data listed inTable 1, however, show that only a very limited
number of minerals is present in the system. One should be aware, however, that the maximal
number of compounds which can be detected in a category is equal to the number of windows
having a signal. Thus for a group of spectra with 3 signals a maximum of 3 components can

be found.

From Table 1 it follows that most 2 line spectra are mainly 1 compound. Three groups of 3
line spectra (K-Ca-Si; Si-S-Fe and S-Si-Al) are seen as one mineral (with a fairly constant
contamination of S). Two four line spectra are also seen as one mineral. All other categories
are mainly combinations of two minerals. At this point the study may proceed to curve
resolution as explained in the previous paragraph. In a further research, spectra of the pure
compounds will be estimated for each qroup, whereafter the composition of the mixtures can be
estimated, completing the interpretation of the spectra.
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