INTERNATIONAL UNION OF PURE AND APPLIED CHEMISTRY

PHYSICAL CHEMISTRY DIVISION COMMISSION ON MOLECULAR STRUCTURE AND SPECTROSCOPY*

TEST DATA FOR NORMAL COORDINATE CALCULATIONS

Prepared for publication by M. TASUMI and M. NAKATA Department of Chemistry, University of Tokyo, Japan

in conjunction with

J. R. DURIG¹, R. N. JONES², C. J. H. SCHUTTE³ and G. ZERBI⁴

¹University of South Carolina, Columbia, S.C. 29208, USA ²National Research Council, Ottawa, Ontario, Canada K1A 0R6 ³University of South Africa, POB 392, 0001 Pretoria, RSA ⁴Politecnico di Milano, 20133 Milano, Italy

*Membership of the Commission for 1983–85 is as follows:

Chairman: J. R. Durig (USA); Secretary: H. A. Willis (UK); Titular Members: A. M. Bradshaw (FRG); B. G. Derendjaev (USSR); S. Forsen (Sweden); J. F. J. Todd (UK); Associate Members: R. D. Brown (Australia); J. G. Grasselli (USA); R. K. Harris (UK); H. Kon (USA); Yu. N. Molin (USSR); W. B. Person (USA); H. Ratajczak (Poland); C. J. H. Schutte (R.S. Africa); M. Tasumi (Japan); National Representatives: R. Colin (Belgium); Y. Kawano (Brazil); G. Herzberg (Canada); J. Lu (Chinese Chemical Society); Z. Luz (Israel); S. Ng (Malaysia); B. Jezowska-Trzebiatowska (Poland).

Republication of this report is permitted without the need for formal IUPAC permission on condition that an acknowledgement, with full reference together with IUPAC copyright symbol (© 1985 IUPAC), is printed. Publication of a translation into another language is subject to the additional condition of prior approval from the relevant IUPAC National Adhering Organization.

Test data for normal coordinate calculations

Prepared for publication by

M. TASUMI and M. NAKATA

Department of Chemistry, Faculty of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113, Japan

in conjunction with

J.R. DURIG,¹ R.N. JONES,² C.J.H. SCHUTTE³ and G. ZERBI⁴

¹Department of Chemistry, College of Science and Mathematics, University of South Carolina, Columbia, S.C. 29208, U.S.A.

²Division of Chemistry, National Research Council, 100 Sussex Drive, Ottawa, Ontario, Canada K1A OR6.

³Department of Chemistry, University of South Africa, POB 392, 0001 Pretoria, Republic of South Africa.

⁴Dipartimento di Chimica Industriale e Ingegneria Chimica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italia

CONTENTS

- A. ABSTRACT
- B. INTRODUCTION
- C. DEFINITION OF TERMS
- D. INPUT AND OUTPUT DATA
 - I. H₂O (Water)
 - II. CH_4 (Methane)
 - III. CH₃CN (Methyl cyanide)
 - IV. Cl₂CCH₂ (1,1-Dichloroethylene)

A. ABSTRACT

Input data for testing normal coordinate analysis programs and the results of calculation (**G** and **F** matrices, eigenvalues, normal frequencies in cm^{-1} , eigenvectors, potential energy distributions and the Jacobian matrix) are given for four representative molecules, namely, H₂O, CH₄, CH₃CN and Cl₂CCH₂.

B. INTRODUCTION

Today normal coordinate analyses (NCA) are being carried out routinely in many laboratories all over the world. Various computer programs which have been developed independently are in use for this purpose. In 1979, however, no one seemed to be sure as to whether the different programs gave exactly the same results from the same input data. Therefore, it seemed desirable to develop a set of reference input data for testing independent programs. Publication of such input data and the results of calculation (normal frequencies, eigenvector matrices, potential energy distributions, etc.) must be of value for many investigators who wish to test their own programs.

In 1979 the late Professor T. Shimanouchi and one of the present authors (MT) submitted a proposal for developing test data for NCA programs to the Commission on Molecular Structure and Spectroscopy. This proposal was approved by the Commission at the Davos meeting in 1979. A working group consisting of J. Durig, R.N. Jones, C.J.H. Schutte and G. Zerbi was then formed to choose the most suitable molecules and input data and to compare the results which were calculated by their own programs. The following four molecules, namely, H_{20} , CH_4 , CH_3CN and Cl_2CCH_2 were chosen, so that the treatment of all kinds of internal coordinates (bond stretch, angle bend, linear bend, out-of-plane bend and torsion) could be tested. These molecules belong to different point groups having degenerate and nondegenerate symmetry species. The results calculated independently by the members of this working group agreed with each other satisfactorily.

We wish to dedicate this report to Professor Takehiko Shimanouchi who passed away in May, 1980.

C. DEFINITION OF TERMS

The normal coordinate calculations reported were carried out using the Wilson GF matrix method.¹⁻³ The internal coordinates were defined according to the IUPAC recommendations.^{4,5}

The input and output data given in Section D for the four molecules are mostly self-explanatory, but some additional descriptions may be in order. Case I (H_2O) will be taken below as an example. The data neccessary for NCA are given in Sub-sections 1-6. In Sub-section 3 the three internal coordinates (R_1 , R_2 and R_3) are defined for the H_2O molecule. R_1 and R_2 are the stretchings of the two OH bonds, and R_3 represents the bending of the HOH angle. In Sub-section 4 the symmetry coordinates are derived from the internal coordinates; S_1 (symmetric stretch) and S_2 (bend) belong to the symmetry species a_1 , and S_3 (antisymmetric stretch) to b_1 . In Sub-section 5 the information on force constants is provided. For H_2O , the potential energy function V is expressed as

$$V = (1/2)F(R1R1)R_1^2 + (1/2)F(R2R2)R_2^2 + (1/2)F(R3R3)R_3^2 + F(R1R2)R_1R_2 + F(R1R3)R_1R_3 + F(R2R3)R_2R_3$$
(1)

where F(R1R1), F(R2R2), etc correspond to the force constants given in Subsection 7, and F(R1R1) = F(R2R2) and F(R1R3) = F(R2R3) by definition. The force constants are given in units of 10^2 N m⁻¹ (= mdyn Å⁻¹) for stretchstretch, 10^{-8} N (= mdyn) for stretch-bend, and 10^{-18} N m (= mdyn Å) for bendbend. For the other three molecules, V is expressed as

$$V = (1/2)F(1,1)S_1^2 + (1/2)F(2,2)S_2^2 + \cdots$$

+ F(1,2)S_1S_2 + \cdots (2) (2)

using S_i 's instead of R_i 's. The force field of this type is called the symmetrized valence force field.

In Sub-section 7 the symmetrized B, G and F matrices (B_s , G_s and F_s) are given. These matrices are defined as follows. In the first place,

$$\mathbf{S} = \mathbf{B}_{\mathbf{S}}\mathbf{X} \tag{3}$$

where **S** stands for a vector consisting of the symmetry coordinates and **X** a vector consisting of the Cartesian displacements of all the atoms. Using the B_s matrix the kinetic energy matrix G_s is derived as

$$\mathbf{G}_{\mathrm{S}} = \mathbf{B}_{\mathrm{S}} \mathbf{M}^{-1} \mathbf{\widetilde{B}}_{\mathrm{S}} \tag{4}$$

where M is a diagonal matrix whose elements consist of the atomic masses. The potential energy V is expressed as

$$\mathbf{V} = (1/2)\mathbf{\tilde{S}F}_{\mathbf{S}}\mathbf{S}.$$
 (5)

The matrices G_s , F_s , Λ (a diagonal matrix whose elements are the eigenvalues) and L_s (a matrix consisting of the eigenvectors) are related by the secular equation

$$\mathbf{L}_{\mathbf{S}}^{-1}\mathbf{G}_{\mathbf{S}}\mathbf{F}_{\mathbf{S}}\mathbf{L}_{\mathbf{S}} = \boldsymbol{\Lambda}.$$
 (6)

The vector (Q) consisting of normal coordinates (Q $_{
m i}$) and ${f S}$ are linked by L $_{
m s}$ as

$$\mathbf{S} = \mathbf{L}_{\mathbf{S}} \mathbf{Q}. \tag{7}$$

Likewise, X is linked with Q by a matrix called $\mathbf{L}_{\mathbf{x}}$ as

$$\mathbf{X} = \mathbf{L}_{\mathbf{X}}\mathbf{Q}.$$
 (8)

In this report the transposed matrix $\mathbf{\tilde{L}}_{\mathbf{X}}$ is given for each molecule. An eigenvalue $\lambda_{\mathbf{a}}$ (calculated using atomic weights in the atomic mass unit and force constants in the units described above) can be converted to a normal frequency $v_{\mathbf{a}}$ (in cm⁻¹) by the relation

$$v_a = 1302.78\sqrt{\lambda_a}$$
 (9)

(Avogadro constant N_A = 6.022045 X 10^{23} mol⁻¹ and the speed of light in vacuum c = 2.99792458 X 10^8 m s⁻¹ were used to calculate the conversion coefficient.) The elements of potential energy distribution (PED) for the a-th normal frequency v_a correspond to

$$[(\mathbf{F}_{s})_{ii}(\mathbf{L}_{s})_{ia}^{2}/\lambda_{a}] \times 100,$$
(10)

where i refers to the i-th symmetry coordinates. Summation of the PED elements over i usually gives a value close to 100. In this report this sum is not normalized to 100. In the last place the Jacobian matrix is given. Its element $\partial v_a / \partial F_{ij}$ gives the expected change of the normal frequency v_a (in cm⁻¹) per unit change of the F-matrix element F_{ij} (the unit of $\partial v_a / \partial F_{ij}$ itself is variable according to the unit of F_{ij}).

References

- E.B. Wilson, Jr., J.C. Decius and P.C. Cross, "Molecular Vibrations," McGraw-Hill, New York (1955).
- T. Shimanouchi, "Computer Programs for Normal Coordinate Treatment of Polyatomic Molecules," University of Tokyo (1968).
- L.A. Woodward, "Introduction to the Theory of Molecular Vibrations and Vibrational Spectroscopy," Oxford University Press, Oxford (1972).
- IUPAC Commission on Molecular Structure and Spectroscopy, Pure Appl. Chem. 50, 1707 (1978).
- H. Matsuura and M. Tasumi, "Force Fields for Large Molecules," in "Vibrational Spectra and Structure," ed. by J.R. Durig, Vol. 12, Chapter 2, pp. 69-143, Elsevier, Amsterdam (1983).

D. INPUT AND OUTPUT DATA

- I. H₂O (Water)
- 1. Numbering of atoms and the cartesian axes.

2. Structural parameters.

3. Internal coordinates.


```
4. Symmetry coordinates.

a_1: S_1 \text{ SYM STR} = (R_1 + R_2)/\sqrt{2}

S_2 \text{ BEND} = R_3

b_1: S_3 \text{ ANTI STR} = (R_1 - R_2)/\sqrt{2}
```

- 5. Force constants. Valence force field (VFF). See the output data.
- 6. Reference. T. Oka and Y. Morino, J. Mol. Spectrosc., <u>8</u>,9(1962).

7. Output data.

PROGRAM NCTB PROBLEM NO. 1

H2OCALCULATION OF FREQUENCY REPORTED BY M. NAKATA AND M. TASUMI (THE UNIVERSITY OF TOKYO)

INTRAMOLECULAR PARAMETER

LENGTH

ANGLE

NO. 1 0.9572000 NO. 2 104.500000

CARTESIAN COORDINATE

		X –	Y -	Z
ATOM NO.	1	0.0	0.0	0.0
ATOM NO.	2	0.586014	0.756848	0.0
ATOM NO.	3	0.586014	-0.756848	0.0

ATOM DISTANCE CHECK

		ATOM 1	ATOM 2	ATOM	3
ATOM	1	0.0			
ATOM	2	0.957200	0.0		
ATOM	3	0.957200	1.513696	0.0	

MASSES OF ATOMS

ATOM	1	15.994909
ATOM	2	1.007825
ATOM	3	1.007825

SYMMETRIZED B MATRIX

ROW	1	-0.865806	0.0	0.0	0.432903	0.559102	0.0
		0.432903	-0.559102	0.0			
ROW	2	1.652089	0.0	0.0	-0.826045	0.639592	0.0
		-0.826045	-0.639592	0.0			
ROW	3	0.0	-1.118204	0.0	0.432903	0.559102	0.0
		-0.432903	0.559102	0.0			

SYMMETRIZED G MATRIX

			S 1	S 2	S 3
S	1	SYM STR	1.039102		
S	2	BEND	-0.089428	2.336547	
S	3	ANTI STR	0.0	0.0	1.070409

FORCE CONSTANTS

1	F(R1R1)	8.4540	2	F(R1R2)	-0.1000
3	F(R1R3)	0.2240	4	F(R3R3)	0.6970

SYMMETRIZED F MATRIX

			S 1	S 2	S 3
s	1	SYM STR	8.35400		
S	2	BEND	0.31678	0.69700	
S	3	ANTI STR	0.0	0.0	8.55400
S S	2 3	BEND ANTI STR	0.31678	0.69700 0.0	8.554

EIGENVALUES, EIGENVECTORS AND FREQUENCIES

	EIGENVALUE	8.652075	1.600506	9.156281
	FREQUENCY	3832.197	1648.225	3942.279
	ASSIGNMENT	SYM STR	BEND	ANTI STR
	PED	100	102	100
1	SYM STR	1.017721	-0.057841	0.0
2	BEND	-0.000996	1.528578	0.0
3	ANTI STR	0.0	0.0	1.034606
	1 2 3	EIGENVALUE FREQUENCY ASSIGNMENT PED 1 SYM STR 2 BEND 3 ANTI STR	EIGENVALUE 8.652075 FREQUENCY 3832.197 ASSIGNMENT SYM STR PED 100 1 SYM STR 1.017721 2 BEND -0.000996 3 ANTI STR 0.0	EIGENVALUE 8.652075 1.600506 FREQUENCY 3832.197 1648.225 ASSIGNMENT SYM STR BEND PED 100 102 1 SYM STR 1.017721 -0.057841 2 BEND -0.000996 1.528578 3 ANTI STR 0.0 0.0

POTENTIAL ENERGY DISTRIBUTION

		FREQUENCY	3832.197	1648.225	3942.279
S	1	SYM STR	100.01	1.75	0.0
S	2	BEND	0.00	101.75	0.0
S	3	ANTI STR	0.0	0.0	100.00

TRANSPOSED LX MATRIX

3832.20	1	-0.049349	0.0	0.0
	2	0.391602	0.568718	0.0
	3	0.391602	-0.568718	0.0
1648.22	1	0.067539	0.0	0.0
	2	-0.535950	0.415545	0.0
	3	-0.535950	-0.415545	0.0
3942.28	1	0.0	-0.067572	0.0
	2	0.415174	0.536205	0.0
	3	-0.415174	0.536205	0.0

JACOBIAN MATRIX(FREQUENCY)

	FREQU	JENCY	3832.197	1648.225	3942.279
	ASSI	GNMENT	SYM STR	BEND	ANTI STR
]	PED	100	102	100
1	F(R1R1)	8.4540	229.381	1.723	230.435
2	F(R1R2)	-0.1000	229.381	1.723	-230.435
3	F(R1R3)	0.2240	-0.635	-128.765	0.0
4	F(R3R3)	0.6970	0.000	1203.111	0.0

II. CH_4 (Methane)

1. Numbering of atoms and the cartesian axes.

2. Structural parameters.

3. Internal coordinates.

ATOM DISTANCE CHECK

		ATOM 1	ATOM 2	ATOM 3	ATOM 4	ATOM	5
ATOM	1	0.0					
ATOM	2	1.090100	0.0				
ATOM	3	1.090100	1.780126	0.0			
ATOM	4	1.090099	1.780125	1.780125	0.0		
АТОМ	5	1.090099	1.780125	1.780125	1.780126	0.0	

MASSES OF ATOMS

ATOM	1	12.00000
АТОМ	2	1.007825
АТОМ	3	1.007825
АТОМ	4	1.007825
АТОМ	5	1.007825

SYMMETRIZED B MATRIX

ROW	1	0.000000	-0.000000	0.0	0.408248	0.288675	0.0
		-0.408248	0.288675	0.0	-0.000000	-0.288675	0.408249
		-0.000000	-0.288675	-0.408249			
ROW	2	-0.000000	-0.000002	0.0	0.458674	-0.648662	0.0
		-0.458674	-0.648662	0.0	0.00000	0.648663	0.458674
		0.00000	0.648663	-0.458674			
ROW	3	0.0	0.0	0.0	0.0	0.0	-0.794447
		0.0	0.0	0.794447	-0.794447	0.0	0.0
		0.794447	0.0	0.0			
ROW	4	-0.816496	0.0	-0.816497	0.408248	0.288675	0.0
		0.408248	-0.288675	0.0	-0.000000	-0.288675	0.408249
		0.000000	0.288675	0.408249			
ROW	5	0.816496	0.0	-0.816497	-0.408248	-0.288675	0.0
		-0.408248	0.288675	0.0	-0.000000	-0.288675	0.408249
		0.000000	0.288675	0.408249			
ROW	6	-0.000000	-1.154700	0.0	0.408248	0.288675	0.0
		-0.408248	0.288675	0.0	0.000000	0.288675	-0.408249
		0.000000	0.288675	0.408249			
ROW	7	1.498022	0.0	1.498023	-0.187253	0.264815	-0.561759
		-0.187253	-0.264815	-0.561759	-0.561759	-0.264816	-0.187253
		-0.561759	0.264816	-0.187253			
ROW	8	-1.498022	0.0	1.498023	0.187253	-0.264815	-0.561759
		0.187253	0.264815	-0.561759	0.561759	-0.264816	-0.187253
		0.561759	0.264816	-0.187253			
ROW	9	0.000000	2.118523	0.0	0.374506	-0.529631	0.0
		-0.374506	-0.529631	0.0	-0.000000	-0.529632	-0.374506
		-0.000000	-0.529632	0.374506			

SYMMETRIZED G MATRIX

			S 1	S 2	S 3	S 4	S 5	S 6
S	1	SYM STR	0.992236					
S	2	E BEND A	0.0	2.504976				
S	3	E BEND B	0.0	0.0	2.504979			
S	4	F STR X	0.0	0.0	0.000000	1.103346		
S	5	F STR Y	0.0	0.0	0.000000	0.000001	1.103346	
S	6	F STR Z	-0.000000	0.000000	0.0	0.0	0.0	1.103346
S	7	F BEND X	0.0	0.0	0.0	-0.203855	-0.000000	0.0
S	8	F BEND Y	0.0	0.0	0.0	-0.000000	-0.203855	0.0
S	9	F BEND Z	0.000000	-0.000003	0.0	0.0	0.0	-0.203855
			S 7	S 8	S 9			
s	7	F BEND X	2.043994					
S	8	F BEND Y	0.000001	2.043994				
S	9	F BEND Z	0.0	0.0	2.043997			

FORCE CONSTANTS

1	F(1,1)	5.5029	2	F(2,2)	0.5775
3	F(4, 4)	5.3845	4	F(7,7)	0.5443
5	F(4,7)	0.2246			

SYMMETRIZED F MATRIX

			S 1	S 2	S 3	S 4	S 5	S 6
S	1	SYM STR	5.50290					
S	2	E BEND A	0.0	0.57750				
S	3	E BEND B	0.0	0.0	0.57750			
S	4	F STR X	0.0	0.0	0.0	5.38450		
S	5	F STR Y	0.0	0.0	0.0	0.0	5.38450	
S	6	F STR Z	0.0	0.0	0.0	0.0	0.0	5.38450
S	7	F BEND X	0.0	0.0	0.0	0.22460	0.0	0.0
S	8	F BEND Y	0.0	0.0	0.0	0.0	0.22460	0.0
S	9	F BEND Z	0.0	0.0	0.0	0.0	0.0	0.22460
			S 7	S 8	S 9			
s	7	F BEND X	0.54430					
S	8	F BEND Y	0.0	0.54430				
S	9	F BEND Z	0.0	0.0	0.54430			

EIGENVALUES, EIGENVECTORS AND FREQUENCIES

		EIGENVALUE FREQUENCY ASSIGNMENT	5.460173 3044.325 SYM STR	1.446624 1566.988 E BEND A	1.446624 1566.988 E BEND B	5.876997 3158.388 F STR X	5.876997 3158.388 F STR Y
S	1	SVM STR	0 996110	0 0	0 0		
s	2	E BEND A	0.0	1 582712	0.0	0.0	0.0
s	3	E BEND B	0.0	0.0	1.582712	0.0	0.0
ŝ	4	F STR X	0.0	0.0	0.0	1.049621	0.0
s	5	F STR Y	0.0	0.0	0.0	0.0	1.049621
s	6	F STR Z	0.0	0.0	0.0	0.0	0.0
s	7	F BEND X	0.0	0.0	0.0	-0.139341	0.0
s	8	F BEND Y	0.0	0.0	0.0	0.0	-0.139341
S	9	F BEND Z	0.0	0.0	0.0	0.0	0.0
		EIGENVALUE FREQUENCY ASSIGNMENT PED	5.876985 3158.385 F STR Z 101	1.084925 1357.024 F BEND X 102	1.084925 1357.024 F BEND Y 102	1.084925 1357.024 F BEND Z 102	
S	1	SYM STR	0.0	0.0	0.0	0.0	
s	2	E BEND A	0.0	0.0	0.0	0.0	
S	3	E BEND B	0.0	0.0	0.0	0.0	
S	4	F STR X	0.0	-0.040481	0.0	0.0	
S	5	F STR Y	0.0	0.0	-0.040481	0.0	
S	6	F STR Z	1.049620	0.0	0.0	-0.040481	
S	/	F BEND X	0.0	1.422875	0.0	0.0	
S	8	F BEND Y	0.0	0.0	1.422875	0.0	
S	9	F BEND Z	-0.139341	0.0	0.0	1.422876	

POTENTIAL ENERGY DISTRIBUTION

	FREQUENCY	3044.325	1566.988	1566.988	3158.388	3158.388
S 1	SYM STR	100.00	0.0	0.0	0.0	0.0
S 2	E BEND A	0.0	100.00	0.0	0.0	0.0
S 3	E BEND B	0.0	0.0	100.00	0.0	0.0
S 4	F STR X	0.0	0.0	0.0	100.94	0.0
S 5	F STR Y	0.0	0.0	0.0	0.0	100.94
S 6	F STR Z	0.0	0.0	0.0	0.0	0.0
S 7	F BEND X	0.0	0.0	0.0	0.18	0.0
S 8	F BEND Y	0.0	0.0	0.0	0.0	0.18
S 9	F BEND Z	0.0	0.0	0.0	0.0	0.0

$\begin{array}{c cccc} & & & FREQU}{FREQU} \\ S & 1 & SYM STR \\ S & 2 & E BEND \\ S & 3 & E BEND \\ S & 4 & F STR X \\ S & 5 & F STR Y \\ S & 6 & F STR Y \\ S & 6 & F STR Z \\ S & 7 & F BEND \\ S & 8 & F BEND \\ S & 9 & F BEND \\ \end{array}$	ENCY A B X Y Z	3158.385 0.0 0.0 0.0 0.0 100.94 0.0 0.0 0.18	1357.024 0.0 0.0 0.81 0.0 101.57 0.0 0.0	1357.024 0.0 0.0 0.0 0.81 0.0 101.57 0.0	$1357.024 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.81 \\ 0.0 \\ 0.0 \\ 101.57 $
TRANSPOSED LX	MATRIX				
3044.32	1 2 3 4 5	0.00000 0.40666 -0.40666 -0.00000 -0.00000	00 -0. 50 0. 50 0. 00 -0. 00 -0.	000000 287552 287552 287552 287552 287552	0.0 0.0 0.0 0.406660 -0.406660
1566.99	1 2 3 4 5	-0.00000 0.28755 -0.28755 0.00000 0.00000	$\begin{array}{cccc} 0 & -0 \\ 52 & -0 \\ 52 & -0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{array}$	000000 406660 406660 406661 406661	0.0 0.0 0.287552 -0.287552
1566.99	1 2 3 4 5	0.0 0.0 0.0 -0.49805 0.49805	0. 0. 0. 0. 0. 0. 0. 0.	0 0 0 0 0	0.0 -0.498056 0.498056 0.0 0.0
3158.39	1 2 3 4 5	-0.06167 0.38233 0.38233 -0.01516 -0.01516	$\begin{array}{cccc} 74 & 0. \\ 86 & 0. \\ 86 & -0. \\ 66 & -0. \\ 56 & 0. \\ \end{array}$	0 281076 281076 281076 281076	-0.061674 -0.015166 -0.015166 0.382336 0.382336
3158.39	1 2 3 4 5	0.06167 -0.38233 -0.38233 0.01516 0.01516	74 0. 86 -0. 86 0. 66 -0. 56 0.	0 281076 281076 281076 281076	-0.061674 -0.015166 -0.015166 0.382336 0.382336
3158.39	1 2 3 4 5	-0.00000 0.39750 -0.39750 0.00000 0.00000	$\begin{array}{cccc} 00 & -0. \\ 02 & 0. \\ 02 & 0. \\ 00 & 0. \\ 00 & 0. \end{array}$	087220 259629 259629 259629 259629 259629	0.0 0.0 0.0 -0.397502 0.397502
1357.02	1 2 3 4 5	0.08169 -0.09313 -0.09313 -0.39322 -0.39322	95 0. 88 0. 88 -0. 95 -0. 95 0.	0 212193 212193 212193 212194 212194	0.081695 -0.393225 -0.393225 -0.093139 -0.093139
1357.02	1 2 3 4 5	-0.08169 0.09313 0.09313 0.39322 0.39322	95 0. 88 -0. 88 0. 25 -0. 25 0.	0 212193 212193 212194 212194 212194	0.081695 -0.393225 -0.393225 -0.093139 -0.093139
1357.02	1 2 3 4 5	0.00000 0.30008 -0.30008 -0.00000 -0.00000	$\begin{array}{cccc} 0 & 0 & 0 \\ 87 & -0 & 0 \\ 87 & -0 & 0 \\ 00 & -0 & 0 \\ 00 & -0 & 0 \end{array}$	115534 343911 343911 343912 343912 343912	0.0 0.0 0.0 -0.300087 0.300087

JACOBIAN MATRIX(FREQUENCY)

	FREQ ASSI	UENCY GNMENT	3044.325 SYM STR	1566.988 E BEND A	1566.988 E BEND B	3158.388 F STR X	3158.388 F STR Y
		PED	100	100	100	101	101
1	F(1,1)	5.5029	276.612	0.0	0.0	0.0	0.0
2	F(2,2)	0.5775	0.0	1356.704	1356.704	0.0	0.0
3	F(4,4)	5.3845	0.0	0.0	0.0	296.037	296.037
4	F(7,7)	0.5443	0.0	0.0	0.0	5.217	5.217
5	F(4,7)	0.2246	0.0	0.0	0.0	-78.600	-78.600
	FREO	UENCY	3158.385	1357.024	1357.024	1357.024	
	ASSĨ	GNMENT	F STR Z	F BEND X	F BEND Y	F BEND Z	
		PED	101	102	102	102	
1	F(1,1)	5.5029	0.0	0.0	0.0	0.0	
2	F(2,2)	0.5775	0.0	0.0	0.0	0.0	
3	$\mathbf{P}(\mathbf{A}, \mathbf{A})$	5 3845	296 036	1.025	1.025	1.025	
5	r(4,4)	J.JU4J	200.000	1.025			
4	r(4,4) F(7,7)	0.5443	5.217	1266.173	1266.173	1266.174	

III. CH₃CN (Methyl cyanide)

1. Numbering of atoms and the cartesian axes.

2. Structural parameters.

3. Internal coordinates.

134

CARTESIAN COORDINATE

			X-	Y	Z –
атом	NO.	1	0.00000	0.0	0.0
ATOM	NO.	2	0.0	0.0	1.159000
ATOM	NO.	3	0.0	0.0	2.614000
ATOM	NO.	4	-1.026823	0.0	2.982667
ATOM	NO.	5	0.513411	-0.889255	2.982667
АТОМ	NO.	6	0.513411	0.889255	2.982667

ATOM DISTANCE CHECK

		ATOM 1	ATOM 2	АТОМ З	ATOM 4	ATOM 5	ATOM	6
ATOM	1	0.0						
ATOM	2	1.158999	0.0					
ATOM	3	2.613999	1.455000	0.0				
ATOM	4	3.154468	2.092875	1.090999	0.0			
ATOM	5	3.154468	2.092875	1.091000	1.778508	0.0		
ATOM	6	3.154468	2.092875	1.091000	1.778508	1.778509	0.0	

MASSES OF ATOMS

ATOM	1	14.003075
ATOM	2	12.000000
ATOM	3	12.000000
ATOM	4	1.007825
ATOM	5	1.007825
ATOM	6	1.007825

SYMMETRIZED B MATRIX

ROW	1	0.0	0.0	0.0	0.0	0.0	0.0
		0.000000	0.0	-0.585290	-0.543388	0.0	0.195097
		0.271694	-0.470588	0.195097	0.271694	0.470588	0.195097
ROW	2	0.0	0.0	0.0	-0.000000	0.0	0.0
		0.000001	0.0	2.123978	-0.254196	0.0	-0.707993
		0.127098	-0.220140	-0.707993	0.127098	0.220140	-0.707993
ROW	3	0.0	0.0	0.0	0.0	0.0	-1.000000
		0.0	0.0	1.000000	0.0	0.0	0.0
		0.0	0.0	0.0	0.0	0.0	0.0
ROW	4	0.000000	0.0	-1.000000	-0.000000	0.0	1.000000
		0.0	0.0	0.0	0.0	0.0	0.0
		0.0	0.0	0.0	0.0	0.0	0.0
ROW	5	0.0	0.0	0.0	0.0	0.0	0.0
		1.152700	0.0	-0.000000	-0.768467	0.0	0.275908
		-0.192117	0.332756	-0.137954	-0.192117	-0.332756	-0.137954
ROW	6	0.0	0.0	0.0	0.0	0.0	0.0
		0.0	1.152700	0.0	0.0	0.0	0.0
		0.332756	-0.576351	0.238944	-0.332756	-0.576351	-0.238944
ROW	7	0.0	0.0	0.0	0.0	0.0	0.0
		1.486469	0.0	0.000000	0.127745	0.0	0.355799
		-0.807108	-0.539737	-0.177900	-0.807108	0.539737	-0.177900
ROW	8	0.0	0.0	0.0	0.0	0.0	0.0
		0.0	1.486470	0.0	0.0	-1.118725	0.0
		-0.539737	-0.183872	0.308131	0.539737	-0.183872	-0.308131
ROW	9	0.0	0.0	0.0	0.841749	0.0	0.0
		-1.221092	0.0	-0.000000	0.252895	0.0	0.704370
		0.063224	-0.109507	-0.352185	0.063224	0.109507	-0.352185
ROW	10	0.0	0.0	0.0	0.0	0.841750	0.0
		0.0	-1.221092	0.0	0.0	0.0	0.0
		-0.109507	0.189671	0.610002	0.109507	0.189671	-0.610002
ROW	11	0.862813	0.0	-0.000001	-1.550098	0.0	0.000001
		0.687285	0.0	-0.000001	0.0	0.0	0.0
		0.0	0.0	0.0	0.0	0.0	0.0
ROW	12	0.0	0.862813	0.0	0.0	-1.550098	0.0
		0.0	0.687285	0.0	0.0	0.0	0.0
		0.0	0.0	0.0	0.0	0.0	0.0

SYMMETRIZED G MATRIX

		S 1	S 2	S 3	S 4	S 5	S 6
S 1 S 2 S 3 S 4 S 5 S 5 S 5 S 7 S 8 S 7 S 8 S 10 S 11 S 12	ME S STR ME BEND CC STR CN STR ME STR A ME STR B ME BND A ME BND B ME RCK A ME RCK B CCN A CCN B	$\begin{array}{c} 1.020782 \\ -0.103595 \\ -0.048774 \\ 0.0 \\ 0.000000 \\ -0.000000 \\ -0.000000 \\ -0.000000 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \end{array}$	2.060365 0.176998 0.000000 - 0.000000 - 0.000001 0.000000 -0.000001 - 0.000000 - 0.000000 - 0.000000 - 0.0	0.166667 0.083333 0.000000 0.0 0.000000 0.0 0.000000 0.0 0.000000	0.154746 0.0 0.0 0.0 -0.000000 - 0.0 0.000000 0.0	1.102962 0.000000 0.142788 - 0.000000 0.117296 0.0 - 0.066019 0.0	1.102962 0.000000 0.142788 0.0 0.117296 0.0 0.066019
S 7 S 8 S 9 S 10 S 11 S 12	ME BND A ME BND B ME RCK A ME RCK B CCN A CCN B	S 7 2.259574 -0.000000 0.269825 0.0 0.085136 0.0	S 8 2.259574 0.000000 0.269825 0.0 - 0.085136	S 9 1.016916 0.000000 0.178669 0.0	S 10 1.016916 0.0 -0.178669	S 11 0.292760 0.0	S 12 0.292760
FORCE C	ONSTANTS						
1 3 5 7 9 11 13 15 17 19	F(1,1) F(1,3) F(2,2) F(2,4) F(3,4) F(5,5) F(5,9) F(7,7) F(7,711) F(9,11)	$5.3310 \\ 0.2130 \\ 0.6090 \\ -0.0490 \\ 0.1680 \\ 5.3320 \\ 0.1000 \\ 0.5370 \\ 0.0030 \\ -0.0890$	2 F(4 F(6 F(8 F(10 F(12 F(14 F(16 F(18 F(20 F(1,2) 1,4) 2,3) 3,3) 4,4) 5,7) 5,11) 7,9) 9,9) 11,11)	$\begin{array}{c} -0.0510\\ -0.0720\\ -0.3740\\ 5.1560\\ 18.3300\\ -0.1440\\ -0.2570\\ 0.0280\\ 0.6800\\ 0.3570\end{array}$		
SYMMETR	IZED F MAT	RIX					
S 1 S 2 S 3 S 4 S 5 S 6 S 7 S 8 S 10 S 11 S 12	ME S STR ME BEND CC STR CN STR ME STR A ME STR B ME BND A ME BND B ME RCK A ME RCK B CCN A CCN B	S 1 5.33100 -0.05100 0.21300 -0.07200 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	S 2 0.60900 -0.37400 -0.04900 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	S 3 5.15600 0.16800 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	S 4 18.33000 0.0 0.0 0.0 0.0 0.0 0.0 0.	S 5 5.33200 0.0 -0.14400 0.0 0.10000 0.0 -0.25700 0.0	S 6 5.33200 0.0 -0.14400 0.0 0.10000 0.0 -0.25700
S 7 S 8 S 9 S 10 S 11 S 12	ME BND A ME BND B ME RCK A ME RCK B CCN A CCN B	S 7 0.53700 0.0 0.02800 0.0 0.00300 0.0	S 8 0.53700 0.0 0.02800 0.0 0.00300	S 9 0.68000 0.0 -0.08900 0.0	S 10 0.68000 0 0.0 -0.08900	s 11 0.35700 0.0	s 12 0.35700

EIGENVALUES, EIGENVECTORS AND FREQUENCIES

	EIGENVALUE FREQUENCY ASSIGNMENT PED ASSIGNMENT	5.451035 3041.776 ME S STR 100	3.083927 2287.914 CN STR 90 CC STR	1.189502 1420.922 ME BEND 104	0.497265 918.716 CC STR 87 CN STR	5.809691 3140.250 ME STR A 101
S 1 S 2 S 3 S 4 S 5 S 6 S 7 S 8 S 9 S 10 S 11 S 12	ME S STR ME BEND CC STR CN STR ME STR A ME STR B ME BND A ME BND B ME RCK A ME RCK B CCN A CCN B	1.009740 -0.148280 -0.049148 -0.004881 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	0.011837 -0.033239 -0.255322 0.389919 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	0.032599 1.426596 0.122288 0.010203 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	-0.000383 -0.045633 0.290011 0.050805 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	0.0 0.0 0.0 1.049490 0.0 0.094474 0.0 -0.103842 0.0 0.048418 0.0
	EIGENVALUE FREQUENCY ASSIGNMENT PED ASSIGNMENT PED	5.809691 3140.250 ME STR B 101	1.287027 1478.024 ME BND B 87 ME RCK B 11	1.287026 1478.024 ME BND A 87 ME RCK A 11	0.664491 1062.019 ME RCK B 81 ME BND B 14	0.664490 1062.018 ME RCK A 81 ME BND A 14
S 1 S 2 S 3 S 4 S 5 S 6 S 7 S 8 S 10 S 11 S 12	ME S STR ME BEND CC STR CN STR ME STR A ME STR B ME BND A ME BND B ME RCK A ME RCK B CCN A CCN B	0.0 0.0 0.0 1.049490 0.0 0.094474 0.0 -0.103843 0.0 0.048418	0.0 0.0 0.0 0.0 0.023748 0.0 1.442422 0.0 0.449551 0.0 -0.008579	0.0 0.0 0.0 0.023748 0.0 1.442422 0.0 0.449551 0.0 -0.008579 0.0	0.0 0.0 0.0 0.0 -0.023950 0.0 -0.411673 0.0 0.888965 0.0 -0.253742	0.0 0.0 0.0 -0.023950 0.0 -0.411674 0.0 0.888965 0.0 -0.253742 0.0
S 1 S 2 S 3 S 4 S 5 S 5 S 7 S 8 S 9 S10 S11 S12	EIGENVALUE FREQUENCY ASSIGNMENT PED ASSIGNMENT PED ME S STR ME BEND CC STR CN STR ME STR A ME STR A ME STR B ME BND A ME BND B ME RCK A ME RCK B CCN A CCN B	0.078045 363.965 CCN A 103 ME RCK A 12 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	$\begin{array}{c} 0.078045\\ 363.965\\ CCN & B\\ 103\\ ME & RCK & B\\ 12\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.$			
POTEN	TIAL ENERGY DI	STRIBUTION				

		FREQUENCY	3041.776	2287.914	1420.922	918.716	3140.250
s	1	ME S STR	99.71	0.02	0.48	0.00	0.0
s	2	ME BEND	0.25	0.02	104.20	0.26	0.0
s	3	CC STR	0.23	10.90	6.48	87.21	0.0
s	4	CN STR	0.01	90.37	0.16	9.51	0.0
s	5	ME STR A	0.0	0.0	0.0	0.0	101.09
s	6	ME STR B	0.0	0.0	0.0	0.0	0.0
s	7	ME BND A	0.0	0.0	0.0	0.0	0.08
s	8	ME BND B	0.0	0.0	0.0	0.0	0.0

COMMISSION ON MOLECULAR STRUCTURE AND SPECTROSCOPY

S 9 S10 S11 S12	ME RCK A ME RCK B CCN A CCN B	0. 0. 0.	. 0 . 0 . 0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.13 0.0 0.01 0.0
S 1 S 2 S 3 S 4 S 5 S 6 S 7 S 8 S 9 S10 S11 S12	FREQUENC ME S STR CC STR CN STR ME STR A ME STR B ME BND A ME BND B ME RCK A ME RCK B CCN A CCN B	CY 3140.2 0. 0. 0. 0. 0. 0. 101. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	250 1478 0 0 0 0 0 0 0 0 0 0 0 13 1 0 01	3.024 0.0 0.0 0.0 0.0 0.23 0.0 36.81 0.0 0.68 0.0 0.00	1478.024 0.0 0.0 0.0 0.23 0.0 86.81 0.0 10.68 0.0 0.00 0.00	$1062.019 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.46 \\ 0.0 \\ 13.70 \\ 0.0 \\ 80.87 \\ 0.0 \\ 3.46$	$1062.018 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.46 \\ 0.0 \\ 13.70 \\ 0.0 \\ 80.87 \\ 0.0 \\ 3.46 \\ 0.0 \\$
S 1 S 2 S 3 S 5 S 5 S 5 S 5 S 7 S 8 S 9 S 10 S 11 S 12	FREQUENC ME S STR ME BEND CC STR CN STR ME STR A ME STR B ME BND A ME BND A ME BND B ME RCK A ME RCK A CCN B	CY 363.9 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	965 363 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .00	3.965 0.0 0.0 0.0 0.0 2.63 0.0 0.40 0.0 12.00 0.0 0.3.36			
TRANS	POSED LX M	ATRIX					
304	1.78	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	000000 000000 000000 526480 263240 263240	0.0 0.0 0.0 0.0 -0.4	55945 55945	0.002138 -0.002744 -0.051892 0.206947 0.206947 0.206947	
228	7.91	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	000000 000000 000000 001455 000727	0.0 0.0 0.0 0.0	001260	-0.164529 0.225391 -0.029932 -0.013760 -0.013760	

3041.78	1	-0.000000	0.0	0.002138
	2	0.000000	0.0	-0.002/44
	3	0.000000	0.0	-0.051892
	4	-0.526480	0.0	0.206947
	5	0.263240	-0.455945	0.206947
	6	0.263240	0.455945	0.206947
2287.91	1	0.000000	0.0	-0.164529
	2	-0.000000	0.0	0.225391
	3	0.000000	0.0	-0.029932
	4	-0.001455	0.0	-0.013760
	5	0.000727	-0.001260	-0.013760
	6	0.000727	0.001260	-0.013760
1420.92	1	0.000000	0.0	-0.008123
	2	-0.000000	0.0	0.002079
	3	0.000000	0.0	0.124369
	4	-0.231332	0.0	-0.464245
	5	0.115665	-0.200339	-0.464245
	6	0.115665	0.200339	-0.464245
918.72	1	0.000000	0.0	-0.141061
	2	0.000000	0.0	-0.090256
	3	-0.000000	0.0	0.199757
	4	0.007041	0.0	0.218714
	5	-0.003520	0.006098	0.218714
	6	-0.003520	-0.006098	0.218714
3140.25	1	-0.002576	0.0	0.000000
0.111110	2	0.005795	0.0	-0.000000
	3	0.086754	0.0	-0.000000
	4	-0.730496	0.0	0.259636
	5	-0.167842	0.324849	-0.129818
	6	-0.167842	-0.324849	-0.129818

Test data for normal coordinate calculations

3140.25	1 2 3 4 5 6	0.0 0.0 0.0 0.324849 -0.324849	-0.002576 0.005795 0.086754 0.019710 -0.542945 -0.542945	0.0 0.0 0.0 0.224851 -0.224851
1478.02	1 2 3 4 5 6	0.0 0.0 0.0 -0.364302 0.364302	-0.002147 0.023535 0.043292 -0.675947 -0.044957 -0.044957	0.0 0.0 0.0 0.344159 -0.344159
1478.02	1 2 3 4 5 6	-0.002147 0.023535 0.043292 0.165372 -0.465618 -0.465618	0.0 0.0 0.0 -0.364302 0.364302	0.000000 -0.000000 0.000000 0.397401 -0.198701 -0.198701
1062.02	1 2 3 4 5 6	0.0 0.0 0.0 0.0 0.098258 -0.098258	-0.015280 0.096760 -0.131782 0.323227 0.153039 0.153039	0.0 0.0 0.0 0.500055 -0.500055
1062.02	1 2 3 4 5 6	-0.015280 0.096760 -0.131782 0.096310 0.266498 0.266498	0.0 0.0 0.0 0.0 0.098258 -0.098258	0.000000 -0.000000 -0.000000 0.577415 -0.288707 -0.288707
363.97	1 2 3 4 5 6	0.121690 -0.220263 0.042087 0.128803 0.150950 0.150950	0.0 0.0 0.0 0.0 0.012787 -0.012787	-0.00000 0.000000 -0.000000 0.288952 -0.144476 -0.144476
363.97	1 2 3 4 5 6	0.0 0.0 0.0 0.0 0.012787 -0.012787	0.121690 -0.220263 0.042087 0.158333 0.136186 0.136186	0.0 0.0 0.0 0.250240 -0.250240

JACOBIAN MATRIX(FREQUENCY)

	FREQUENCY		3041.776	2287.914	1420.922	918.716	3140.250
	ASSIGNMENT		ME S STR	CN STR	ME BEND	CC STR	ME STR A
		PED	100	90	104	87	101
	ASS	IGNMENT		CC STR		CN STR	
		PED		11		10	
1	F(1,1)	5.3310	284.471	0.052	0.635	0.000	0.0
2	F(1,2)	-0.0510	-83.549	-0.292	55.554	0.032	0.0
3	F(1,3)	0.2130	-27.693	-2.242	4.762	-0.205	0.0
4	F(1, 4)	-0.0720	-2.750	3.424	0.397	-0.036	0.0
5	F(2,2)	0.6090	6.135	0.410	1215.565	1.924	0.0
6	F(2,3)	-0.3740	4.067	6.296	208.398	-24.451	0.0
7	F(2,4)	-0.0490	0.404	-9.615	17.387	-4.283	0.0
8	F(3,3)	5.1560	0.674	24.182	8.932	77.695	0.0
9	F(3,4)	0.1680	0.134	-73.858	1.490	27.222	0.0
10	F(4, 4)	18.3300	0.007	56.397	0.062	2.384	0.0
11	F(5,5)	5.3320	0.0	0.0	0.0	0.0	297.673
12	F(5,7)	-0.1440	0.0	0.0	0.0	0.0	53.592
13	F(5,9)	0.1000	0.0	0.0	0.0	0.0	-58.907
14	F(5,11)	-0.2570	0.0	0.0	0.0	0.0	27.466

15 16 17 18 19 20	F(7,7) F(7,9) F(7,11 F(9,9) F(9,11 F(11,1	0.5370 0.0280) 0.0030 0.6800) -0.0890 1) 0.3570	0.0 0.0 0.0 0.0 0.0 0.0	$\begin{array}{c} 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0$	0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0	2.412 -5.303 2.472 2.914 -2.718 0.634
	FR AS AS	EQUENCY SIGNMENT PED SIGNMENT	3140.250 ME STR B 101	1478.024 ME BND B 87 ME RCK B	1478.024 ME BND A 87 ME RCK A	1062.019 ME RCK B 81 ME BND B	1062.018 ME RCK A 81 ME BND A
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	F(1,1) F(1,2) F(1,3) F(2,2) F(2,3) F(2,4) F(3,3) F(4,4) F(5,5) F(5,7) F(5,7) F(5,9) F(5,11) F(7,7) F(7,9) F(7,9) F(7,9) F(7,9) F(7,9) F(7,9) F(7,9) F(7,9) F(7,11) F(9,9) F(9,11) F(11,1)	5.3310 -0.0510 0.2130 -0.0720 0.6090 -0.3740 -0.0490 5.1560 0.1680 18.3300 5.3320 -0.1440 0.1000) -0.2570 0.5370 0.0280) 0.0030 0.6800) -0.0890 1) 0.3570	$\begin{array}{c} 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0$	$\begin{array}{c} 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0$	$\begin{array}{c} 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0$	$\begin{array}{c} 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0$	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.458 15.758 -34.027 9.713 135.432 -584.901 166.952 631.516 -360.514 51.452
1 2 3 4 5 6 7 8 9 10 11 2 3 4 15 6 17 18 17 18	F(1,1) F(1,2) F(1,2) F(1,2) F(1,3) F(1,4) F(2,2) F(2,3) F(2,4) F(2,3) F(2,4) F(3,3) F(3,4) F(5,5) F(5,5) F(5,5) F(5,5) F(5,7) F(5,5) F(5,7) F(5,7) F(5,7) F(7,7) F(7,9) F(7,11) F(7,9) F	EQUENCY SIGNMENT PED SIGNMENT PED 5.3310 -0.0510 0.2130 -0.0720 0.6090 -0.3740 -0.0490 5.1560 0.1680 18.3300 5.3320 -0.1440 0.1000) -0.2570 0.5370 0.0280) 0.0030 0.6800	363.965 CCN A 103 ME RCK A 12 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	363.965 CCN B 103 ME RCK B 12 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.		51.152	5111352
19 20	F(9,11 F(11,1) -0.0890 1) 0.3570	260.155	260.155 526.880			

2. Structural parameters.

3. Internal coordinates.

$R_1 = \Delta r_{12}$	$R_4 = \Delta r_{25}$	$R_6 = \Delta \alpha_{23}$	$R_9 = \Delta \alpha_{15}$	$R_{12} = \Delta \rho_{34}$
$R_2 = \Delta r_{13}$	$R_5 = \Delta r_{26}$	$R_7 = \Delta \alpha_{24}$	$R_{10} = \Delta \alpha_{16}$	$R_{13} = \Delta \rho_{56}$
$R_3 = \Delta r_{14}$		$R_8 = \Delta \alpha_{34}$	$R_{11} = \Delta \alpha_{56}$	$R_{14} = \Delta \tau_{12}$

4. Symmetry coordinates.

a₁: S₁ (C=C) = R₁
S₂ S(C-CL) =
$$(R_2 + R_3)/\sqrt{2}$$

S₃ S(C-H) = $(R_4 + R_5)/\sqrt{2}$
S₄ S(CLC=C) = $(-R_6 - R_7 + 2R_8)/\sqrt{6}$
S₅ S(HC=C) = $(-R_9 - R_{10} + 2R_{11})/\sqrt{6}$
a₂: S₆ TORSION = R₁₄
b₁: S₇ A(C-CL) = $(R_2 - R_3)/\sqrt{2}$
S₈ A(C-H) = $(R_4 - R_5)/\sqrt{2}$
S₉ A(CLC=C) = $(R_6 - R_7)/\sqrt{2}$
S₁₀ A(HC=C) = $(R_9 - R_{10})/\sqrt{2}$
b₂: S₁₁ OP(CL) = R₁₂
S₁₂ OP(H) = R₁₃

5. Force constants. Symmetrized valence force field. See the output data.

6.	Reference.								
	Υ.	Yamaoka	and 1	К.	Machida,	J.	Mol.	Spectrosc.,	<u>83</u> ,21(1980).

7. Output data.

PROGRAM NCTB PROBLEM NO. 4

CL2C=CH2CALCULATION OF FREQUENCY REPORTED BY M. NAKATA AND M. TASUMI (THE UNIVERSITY OF TOKYO)

INTRAMOLECULAR PARAMETER

		ANGLE			
1	1.326000	NO.	4	122.900000	
2	1.720000	NO.	5	119.450000	
3	1.076000	NO.	6	0.0	
		NO.	7	180.000000	
	1 2 3	1 1.326000 2 1.720000 3 1.076000	ANGLE 1 1.326000 NO. 2 1.720000 NO. 3 1.076000 NO. NO.	ANGLE 1 1.326000 NO. 4 2 1.720000 NO. 5 3 1.076000 NO. 6 NO. 7 NO. 7	

CARTESIAN COORDINATE

			X-	Y	Z –
АТОМ	NO.	1	0.0	0.0	0.0
ATOM	NO.	2	0.0	0.0	1.326000
ATOM	NO.	3	1.444150	0.0	-0.934260
ATOM	NO.	4	-1.444146	-0.000000	-0.934260
ATOM	NO.	5	0.936965	0.0	1.855030
ATOM	NO.	6	-0.936965	-0.000000	1.855030

ATOM DISTANCE CHECK

		ATOM 1	ATOM 2	ATOM 3	ATOM 4	ATOM 5	ATOM 6
ATOM	1	0.0					
ATOM	2	1.325999	0.0				
ATOM	3	1.720003	2.682226	0.0			
ATOM	4	1.719999	2.682224	2.888296	0.0		
ATOM	5	2.078230	1.076000	2.835026	3.667399	0.0	
ATOM	6	2.078230	1.076000	3.667402	2.835025	1.873929	0.0

MASSES OF ATOMS

ATOM	1	12.000000
ATOM	2	12.000000
ATOM	3	34.968857
АТОМ	4	34.968857
ATOM	5	1.007825
АТОМ	6	1.007825

SYMMETRIZED B MATRIX

ROW	1	0.0	0.0	-1.000000	0.0	0.0	1.000000
		0.0	0.0	0.0	0.0	0.0	0.0
		0.0	0.0	0.0	0.0	0.0	0.0
ROW	2	-0.000000	0.00000	0.768164	0.0	0.0	0.0
		0.593701	0.0	-0.384082	-0.593701	-0.000000	-0.384082
		0.0	0.0	0.0	0.0	0.0	0.0
ROW	3	0.0	0.0	0.0	0.0	0.00000	-0.695318
		0.0	0.0	0.0	0.0	0.0	0.0
		0.615738	0.0	0.347659	-0.615738	-0.000000	0.347659
ROW	4	0.000002	-0.000000	-1.195721	-0.000000	-0.000000	0.0
		0.386772	0.000000	0.597860	-0.386773	0.000000	0.597861
		0.0	0.0	0.0	0.0	0.0	0.0
ROW	5	0.0	-0.000000	0.0	0.0	-0.000000	1.982320
		0.0	0.0	0.0	0.0	0.0	0.0
		0.559631	0.000000	-0.991161	-0.559631	0.00000	-0.991161

142

ROW	6	0.00000	-0.000002	0.0	-0.000000	0.000001	0.0
		0.0	-0.346224	0.0	-0.000000	0.346226	0.0
		0.0	0.533638	0.0	0.000000	-0.533638	0.0
ROW	7	-1.187403	-0.000000	-0.000001	0.0	0.0	0.0
		0.593701	0.0	-0.384082	0.593701	0.000000	0.384082
		0.0	0.0	0.0	0.0	0.0	0.0
ROW	8	0.0	0.0	0.0	-1.231476	-0.000000	0.0
		0.0	0.0	0.0	0.0	0.0	0.0
		0.615738	0.0	0.347659	0.615738	0.000000	-0.347659
ROW	9	1.513134	0.000000	-0.000000	-1.066527	-0.000000	0.0
		-0.223303	0.0	-0.345175	-0.223304	-0.000000	0.345175
		0.0	0.0	0.0	0.0	0.0	0.0
ROW	10	-1.066527	-0.000000	0.0	1.712733	0.000000	0.0
		0.0	0.0	0.0	0.0	0.0	0.0
		-0.323103	0.0	0.572247	-0.323103	-0.000000	-0.572247
ROW	11	0.000000	-1.664175	0.00000	-0.000000	0.687873	-0.000000
		-0.000000	0.488150	0.0	0.0	0.488152	0.0
		0.0	0.0	0.0	0.0	0.0	0.0
ROW	12	0.000000	-0.645752	-0.000000	-0.000000	2.264311	0.00000
		0.0	0.0	0.0	0.0	0.0	0.0
		0.000000	-0.809279	0.0	0.0	-0.809279	0.0

SYMMETRIZED G MATRIX

			S 1	S	2		s	3	S	4	ł		S	5		S	6	
ទ ទ ទ ទ ទ ទ ទ ទ ទ ទ ទ ទ ទ ទ ទ ទ ទ ទ ទ	1 2 3 4 5 6 7 8 9 0 1	(C=C) S(C-CL) S(C-H) S(CLC=C) S(HC=C) TORSION A(C-CL) A(C-CL) A(C-CH) A(CLC=C) A(HC=C) OP(CL)	$\begin{array}{c} 0.166667\\ -0.064014\\ -0.057943\\ 0.099643\\ 0.165193\\ 0.0\\ 0.000000\\ 0.0\\ 0.000000\\ 0.0\\ -0.000000\\ 0.0\\ \end{array}$	0.07 0.0 -0.07 -0.00 -0.00 0.0 -0.00 0.00 -0.00 0.00 -0.00	2777(26542 0000(0000(0000(0000(0000($\begin{array}{c} 0 \\ 1 \\ 2 \\ -0 \\ 0 \\ -0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$.03 .00 .11 .00 .0 .00 .00	2524 2000 4862 2000 2000	0.1 0.0 -0.0 0.0 -0.0 -0.0 -0.0	481 000 000 000 000 000 000	44 00 00 00 00 00 00	2. -0. 0. 0. 0. 0.	898 000 000 000 000	3519 0000 0000	0 -0 0 -0 0	.57 .00 .00 .00	1972 0000 0000 0000 0000	2)))))
S 1	2	OP(H)	0.000000	-0.00	0000) ()	.00	0000	0.0	000	000	-0.	000	0000	0	.00	0000)
S S S 1 S 1 S 1	7 8 9 0 1 2	A(C-CL) A(C-H) A(CLC=C) A(HC=C) OP(CL) OP(H)	S 7 0.146090 0.0 -0.149725 0.105533 0.000000 0.000000	S 1.11 0.10 -0.17 -0.00 0.0	8 8613 9450 5760	3 0 0 5 -0 0 -0 0	S .29 .28 .00	9 5254 6706 0000	1.1 0.0 0.0	962 000 000	262	0. 0.	S 1 283 219	11 3849 9350	1	S .76	12	3
FORCE	cc	ONSTANTS																
	1 5 7 9 11 13 15 17	F(1,1) F(3,3) F(5,5) F(1,4) F(2,4) F(6,6) F(8,8) F(10,10) F(8,10) F(12,12)	$\begin{array}{r} 8.4300 \\ 5.5800 \\ 0.4260 \\ -0.0900 \\ 0.0270 \\ 0.4790 \\ 5.5500 \\ 0.5280 \\ 0.1610 \\ 0.2430 \end{array}$		2 4 8 10 12 14 16 18	F(2 F(4 F(1 F(3 F(7 F(7 F(7 F(1	,2) ,4) ,3) ,5) ,5) ,7) ,9) ,9) 1,1	1)	4.3 1.0 0.1 -0.2 0.0 3.6 0.7 0.6 0.4	500 700 700 930 920 330 880))))							
SYMME	TRI	ZED F MATI	RIX															
S S S	1 2 3	(C=C) S(C-CL) S(C-H)	S 1 8.4300 0.0 0.1700	0 4. 0 0	350 0	00	S 5 -	3 5800	n	S	4		S	5		S	6	

s	4	S(CLC=C)	-0.09000	0.02700	0.0	1.07000		
S	5	S(HC=C)	-0.20500	0.0	0.09300	0.0	0.42600	
S	6	TORSION	0.0	0.0	0.0	0.0	0.0	0.47900
s	7	A(C-CL)	0.0	0.0	0.0	0.0	0.0	0.0

S	8	А(С-Н)	0.0	0.0	0.0	0.0	0.0	0.0
S	9	A(CLC=C)	0.0	0.0	0.0	0.0	0.0	0.0
S	10	A(HC=C)	0.0	0.0	0.0	0.0	0.0	0.0
S	11	OP(CL)	0.0	0.0	0.0	0.0	0.0	0.0
S	12	OP(H)	0.0	0.0	0.0	0.0	0.0	0.0
			S 7	S 8	S 9	S 10	S 11	S 12
S	7	A(C-CL)	3.69000					
S	8	A(C-H)	0.0	5.55000				
S	9	A(CLC=C)	0.63300	0.0	0.79200			
S	10	A(HC=C)	0.0	0.16100	0.0	0.52800		
S	11	OP(CL)	0.0	0.0	0.0	0.0	0.48800	
S	12	OP(H)	0.0	0.0	0.0	0.0	0.0	0.24300

EIGENVALUES, EIGENVECTORS AND FREQUENCIES

	EIGENVALUE FREQUENCY ASSIGNMENT PED ASSIGNMENT PED ASSIGNMENT BED	5.754456 3125.287 S(C-H) 100	1.581854 1638.593 (C=C) 81 S(HC=C) 15 S(C-CL)	1.153808 1399.441 S(HC=C) 86	0.221493 613.151 S(C-CL) 73 (C=C) 14 S(CLC=C)	0.055540 307.038 S(CLC=C) 83 S(C-CL) 16
S 1 S 2 S 3 S 4 S 5 S 6 S 7 S 8 S 9 S 10 S 11 S 12	(C=C) S(C-CL) S(C-H) S(CLC=C) S(HC=C) TORSION A(C-CL) A(C-H) A(C-CL) A(CCC) A(HC=C) OP(CL) OP(H)	$\begin{array}{c} -0.065531\\ 0.004280\\ 1.015689\\ -0.006525\\ -0.087553\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.$	0.389071 -0.173716 0.016119 0.253581 0.749999 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	$\begin{array}{c} -0.084723\\ 0.091879\\ -0.024802\\ -0.131005\\ 1.525048\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.$	-0.061580 -0.192723 -0.003914 0.153956 0.050486 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	-0.005132 0.044612 -0.000514 0.207207 0.006082 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
	EIGENVALUE FREQUENCY ASSIGNMENT PED ASSIGNMENT PED ASSIGNMENT PED	0.273974 681.935 TORSION 100	6.175879 3237.704 A(C-H) 101	0.724194 1108.703 A(HC=C) 72 A(C-CL) 28 A(CLC=C) 16	0.385175 808.569 A(C-CL) 88 A(HC=C) 24 A(CLC=C)	0.081414 371.739 A(CLC=C) 91
S 1 S 2 S 3 S 4 S 5 S 6 S 7 S 8 S 7 S 8 S 10 S 11 S 12	(C=C) S(C-CL) S(C-H) S(CLC=C) S(HC=C) TORSION A(C-CL) A(C-H) A(C-H) A(CLC=C) A(HC=C) OP(CL) OP(H)	0.0 0.0 0.0 0.756288 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.001200 1.057534 0.101609 -0.151449 0.0 0.0	0.0 0.0 0.0 0.0 0.233264 -0.012759 -0.385442 0.995024 0.0 0.0	0.0 0.0 0.0 0.0 0.0 -0.302626 -0.005822 0.207856 0.420256 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.009717 -0.005614 0.305220 0.081434 0.0 0.0
	EIGENVALUE FREQUENCY ASSIGNMENT	0.446613 870.669 OP(H)	0.119999 451.312 OP(CL)			
S 1 S 2 S 3 S 5 S 5 S 5 S 5 S 5 S 9	(C=C) S(C-CL) S(C-H) S(CLC=C) S(HC=C) TORSION A(C-CL) A(C-H) A(CLC=C)	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0			

144

S10	A(HC=C)	0.0	0.0
S11	OP(CL)	0.227797	0.481620
S12	OP(H)	1.316701	-0.167332

POTENTIAL ENERGY DISTRIBUTION

S 1 S 2 S 3 S 4 S 5 S 5 S 7 S 8 S 9 S10 S11 S12	FREQUEN (C=C) S(C-CL) S(CC=C) S(HC=C) TORSION A(C-CL) A(C-CL) A(CC=C) A(HC=C) OP(CL) OP(H)	ICY	$\begin{array}{c} 3125.287\\ 0.63\\ 0.00\\ 100.03\\ 0.00\\ 0.06\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0$	$1638.593 \\ 80.67 \\ 8.30 \\ 0.09 \\ 4.35 \\ 15.15 \\ 0.0 $	$1399.441 \\ 5.24 \\ 3.18 \\ 0.30 \\ 1.59 \\ 85.87 \\ 0.0 \\$	$\begin{array}{c} 613.151\\ 14.43\\ 72.95\\ 0.04\\ 11.45\\ 0.49\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.$	$\begin{array}{c} 307.038\\ 0.40\\ 15.59\\ 0.00\\ 82.71\\ 0.03\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.$
S 1 S 2 S 3 S 4 S 5 S 6 S 7 S 8 S 9 S10 S11 S12	FREQUEN (C=C) S(C-CL) S(C-H) S(CLC=C) S(HC=C) TORSION A(C-CL) A(C-H) A(CLC=C) A(HC=C) OP(CL) OP(H)	ICY	$\begin{array}{c} 681.935 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 100.00 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \end{array}$	$\begin{array}{c} 3237.704 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.00 \\ 100.50 \\ 0.13 \\ 0.20 \\ 0.0 \\ 0.0 \end{array}$	$\begin{array}{c} 1108.703 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 27.72 \\ 0.12 \\ 16.25 \\ 72.18 \\ 0.0 \\ 0.0 \\ \end{array}$	808.569 0.0 0.0 0.0 0.0 0.0 87.74 0.05 8.88 24.21 0.0 0.0	$\begin{array}{c} 371.739\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.43\\ 0.21\\ 90.63\\ 4.30\\ 0.0\\ 0.0\\ \end{array}$
S 1 S 2 S 3 S 4 S 5 S 6 S 7 S 8 S 9 S 10 S 11 S 12	FREQUEN (C=C) S(C-CL) S(C-H) S(CLC=C) S(HC=C) TORSION A(C-CL) A(C-CH) A(C-CH) A(CLC=C) OP(CL) OP(H)	167	870.669 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	$\begin{array}{c} 451.312\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.$			
TRANS	POSED LX 1	MATRIX					
312	5.29	1 2 3 4 5 6	-0.0000 0.0000 0.0000 -0.0000 0.6064 -0.6064	$\begin{array}{cccc} 00 & -0 \\ 00 & 0 \\ 53 & -0 \\ 53 & -0 \\ 95 & 0 \\ 95 & -0 \end{array}$	000000 000000 000000 000000 000000 00000	0.005453 -0.060078 -0.000038 -0.000038 0.326529 0.326529	
163	8.59	1 2 3 4 5 6	0.0000 -0.0000 -0.0064 0.0064 0.1719 -0.1719	00 -0. 00 -0. 18 0. 08 0. 08 -0.	$\begin{array}{c} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 &$	-0.208522 0.180549 0.007703 0.007703 -0.100733 -0.100733	
139	9.44	1 2 3 4 5 6	-0.0000 0.0000 0.0045 -0.0045 0.3141 -0.3141	00 0. 00 -0. 82 -0. 82 -0. 03 0. 03 0.	000000 000000 000000 000000 000000 00000	0.106828 0.022105 -0.005698 -0.005698 -0.569874 -0.569874	

146	COMMISS	ION ON MOLECULA	AR STRUCTURE AND	SPECTROSCOPY
613.15	1 2 3 4 5 6	0.000000 -0.000000 -0.055700 0.055700 0.008493 -0.008493	$\begin{array}{c} -0.000000\\ -0.000000\\ 0.000000\\ 0.000000\\ 0.000000\\ 0.000000\\ 0.000000\end{array}$	-0.110681 -0.172261 0.054108 0.054108 -0.192934 -0.192934
307.04	1 2 3 4 5 6	0.000000 -0.000000 0.105517 -0.105517 0.000996 -0.000996	$\begin{array}{c} 0.000000\\ -0.000000\\ 0.000000\\ -0.000000\\ 0.000000\\ 0.000000\\ 0.000000\end{array}$	-0.075748 -0.080882 0.029278 0.029278 -0.083387 -0.083387
681.93	1	0.000000	-0.000000	0.0
	2	-0.000000	0.000000	0.0
	3	0.0	-0.013091	0.0
	4	-0.000000	0.013092	0.0
	5	0.0	0.700122	0.0
	6	0.0	-0.700122	0.0
3237.70	1	-0.000742	-0.000000	-0.000000
	2	-0.096206	-0.000000	0.0
	3	0.000105	0.0	-0.000252
	4	0.000105	0.000000	0.000252
	5	0.573530	0.0	0.334776
	6	0.573530	0.0	-0.334776
1108.70	1	-0.175939	-0.00000	-0.000000
	2	0.109815	0.00000	0.0
	3	0.015849	0.0	-0.007206
	4	0.015849	0.000000	0.007206
	5	-0.156258	0.0	0.452886
	6	-0.156258	-0.00000	-0.452886
808.57	1	0.193268	0.00000	0.000000
	2	0.078675	0.00000	0.0
	3	-0.042976	0.0	0.028782
	4	-0.042976	-0.00000	-0.028782
	5	-0.127840	0.0	0.357383
	6	-0.127840	-0.00000	-0.357383
371.74	1	0.059575	0.000000	-0.000000
	2	-0.174063	-0.000000	0.0
	3	0.028325	0.0	-0.060957
	4	0.028325	0.000000	0.060957
	5	-0.301199	0.0	0.217093
	6	-0.301199	-0.000000	-0.217093
870.67	1 2 3 4 5 6	$\begin{array}{c} 0.000000\\ -0.000000\\ 0.000000\\ 0.0\\ 0.0$	-0.073071 0.149449 0.003475 0.003475 -0.575275 -0.575275	-0.000000 0.000000 0.0 0.0 0.0 0.0
451.31	1	0.000000	-0.253386	0.000000
	2	-0.000000	0.048334	-0.000000
	3	-0.000000	0.027341	0.0
	4	0.0	0.027341	0.0
	5	-0.000000	0.272094	0.0
	6	0.0	0.272094	0.0

JACOBIAN MATRIX(FREQUENCY)

	FREQUENCY	3125.287	1638.593	1399.441	613.151	307.038
	ASSIGNMENT	S(C-H)	(C=C)	S(HC=C)	S(C-CL)	S(CLC=C)
	PED	100	81	86	73	83
	ASSIGNMENT		S(HC=C)			S(C-CL)
	PED		15			16
1	F(1,1) 8.430	0 1.166	78.403	4.353	5.249	0.073

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 9	F(2,2) F(3,3) F(4,4) F(5,5) F(1,3) F(1,4) F(1,5) F(2,4) F(3,5) F(6,6) F(7,7) F(8,8) F(9,9) F(10,10) F(7,9) F(8,10) F(11,11) F(12,12)	$\begin{array}{c} 4.3500\\ 5.5800\\ 1.0700\\ 0.4260\\ 0.1700\\ -0.0900\\ -0.2050\\ 0.0270\\ 0.0930\\ 0.4790\\ 3.6900\\ 5.5500\\ 0.7920\\ 0.5280\\ 0.6330\\ 0.1610\\ 0.4880\\ 0.2430\end{array}$	$\begin{array}{c} 0.005\\ 280.142\\ 0.012\\ 2.082\\ -36.149\\ 0.232\\ 3.116\\ -0.015\\ -48.297\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.$	$\begin{array}{c} 15.630\\ 0.135\\ 33.305\\ 291.338\\ 6.496\\ 102.200\\ 302.271\\ -45.631\\ 12.523\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.$	5.120 0.373 10.408 1410.455 2.549 13.462 -156.715 -14.599 -45.877 0.0	$51.410 \\ 0.021 \\ 32.807 \\ 3.528 \\ 0.667 \\ -26.245 \\ -8.606 \\ -82.137 \\ -0.547 \\ 0.0 \\ 0.$	$\begin{array}{c} 5.501\\ 0.001\\ 118.676\\ 0.102\\ 0.015\\ -5.878\\ -0.173\\ 51.102\\ -0.017\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.$
	FREQUENCY ASSIGNMENT PED ASSIGNMENT		681.935 TORSION 100	3237.704 A(C-H) 101	1108.703 A(HC=C) 72 A(C-CL)	808.569 A(C-CL) 88 A(HC=C)	371.739 A(CLC=C) 91
1 2 3 4 5 6 7 8 9 10 11 1 2 1 3 1 4 1 5 6 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 1 9	F(1,1) F(2,2) F(3,3) F(4,4) F(5,5) F(1,3) F(1,4) F(1,5) F(2,4) F(3,5) F(6,6) F(7,7) F(6,6) F(7,7) F(8,8) F(9,9) F(10,10) F(7,9) F(8,10) F(11,11) F(12,12)	PED 8.4300 4.3500 5.5800 1.0700 0.4260 0.1700 -0.0900 -0.2050 0.0270 0.0930 0.4790 3.6900 5.5500 0.7920 0.5280 0.6330 0.1610 0.4880 0.2430	$\begin{array}{c} 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0$	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	$\begin{array}{c} 28\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.$	$\begin{array}{c} 24\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.$	$\begin{array}{c} 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0$
1 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 14 15 6 17 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 10 11 12 13 14 5 10 10 11 10 10 10 10 10 10 10 10 10 10	FREQU ASSIC F(1,1) F(2,2) F(3,3) F(4,4) F(5,5) F(1,3) F(1,4) F(1,5) F(2,4) F(1,5) F(2,4) F(3,5) F(6,6) F(6,6) F(7,7) F(8,8) F(9,9) F(10,10) F(7,9) F(11,11) F(12,12)	JENCY GNMENT PED 8.4300 4.3500 5.5800 1.0700 0.4260 0.1700 -0.0900 -0.2050 0.0270 0.0270 0.0930 0.4790 3.6900 5.5500 0.7920 0.5280 0.6330 0.1610 0.4880 0.2430	870.669 OP(H) 94 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	451.312 OP(CL) 94 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.			