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Abstract - A methodical approach to the critical evaluation of solu-
bility, vapor pressure and density data of saturated solutions is
proposed, If appropriate fitting equations are chosen, this approach
allows the extrapolation of solubility, vapor pressure and density
curves and the deduction of such missing data as phase change enthal-
pies, heat capacities, metastable equilibria, double saturation
points, etc. The choice is difficult, since fitting equations must
obey several conditions, and assumptions must be made concerning the
interactions between solvent and solute and their variation with
concentration and temperature. Some examples of critical evaluations
are examined for binary systems MCl—H20.

INTRODUCTION

The main purpose of the Solubility Data Project of the International Union of
Pure and Applied Chemistry is the collection of solubility data, the selec-
tion of best values, evaluation of errors and calculation of solubilities for
rounded values of temperature. However, the needs of users are much more ex-
tensive and it is necessary, when possible, to define the nature and stoichio-
metry of solid phases in equilibrium with liquid, to determine solubility in
the whole range of stability of solid phase, to state precisely the experi-
mental conditions for the measurements : temperature, composition, vapor pres-
sure of saturated solution (particularly, at the standard boiling point), to
evaluate density in order to convert volume units into mass units, to deduce
missing data (enthalpies, entropies of phase change, activity coefficients,
metastable equilibria...). Some of this information can be obtained by a
rational treatment of data based on appropriate models.

In this paper, a rational method of critical evaluation for solubility data
in binary mixtures MCl-H,O is considered and the criteria for the choice Ffor
fitting equations are analysed.

TREATMENT OF DATA

The principle of the proposed method is illustrated in Fig. 1. The data are
taken from three different sources : existing compilations, results taken
from original papers but not previously compiled (incomplete or graphical
data etc.) and thermodynamic data (phase change enthalpies, heat capacities,
mixing data and excess property data).

A graphical inspection of experimental data is first performed ; it is a
speedy way to detect anomalies : some obviously erroneous points are elimi-
nated (Fig. 2a) ; others are set aside for further inspection (Fig. 2b). The
graphical inspection permits also to distinguish between sets of data belong-
ing to very close but different solubility curves (Fig. 2c) while a mathema—
tical treatment will lead to the mean curve,

A statistical treatment of data is then performed. Accurate physico chemical
properties of phases are usually not known, so different fitting equations

can be proposed in order to describe the solubility curves. For each fitting
equations adjustable coefficients are calculated by an iterative method pre-
viously described by Tenu et al, (1) and summarized in the flow chart shown
in Fig. 3. At each iteration, coefficients An’Bn’Cn“' are calculated by the
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least squares method, using the experimental points selected in the previous
iteration by the conditions

vy - v(T;)] / v(T;) < p

(1
[Tj - T(YJ)] / T(YJ’) <
where p and 7 are fixed, a priori, and are the mean size of experimental
uncertainty stated by the authors of data,
' y. and T. are the coordinates of experimental point j expressed in
mole frdction 8f salt and temperature,

y(Tj), T(yj) are respectively the calculated mole fraction of salt
and temperature,
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Fig. 1. Treatment of data
(a) Incomplete data, graphical results etc.

{b) Solubility data, density and vapor pressure of saturated
solutions

(¢) Previously published or taken in existing compilation
(d) Rejected or set aside for further inspection
(e) Phase change enthalpies, specific heats etc.



The calculation is stopped when steady values are obtained for the coeffi-
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cients. The results for different possible fitting equations are then compa-
red., The fitting equation which lead to the most complete utilisation of the
data will be considered as the best., This choice is a very subjective one
and may be called into question, if new data are published.
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CHOICE OF MODELS

The different fitting equations are based on models which must take in account
all available data (activity coefficients, phase change enthalpies, heat
capacities, mixing or excess data,etc.) and never be in contradiction with
thermodynamic laws. In the particular case of binary systems MC1-HoO0, the
models must comply with the following constraints

- the aqueous solution is a strong electrolyte,
- the solid phases (ice, salt, hydrates) are stoichiometric,
- each phase is in equilibrium and any two phases are in mutual equilibrium :

© _ . a_ B . a _ 8
Fogup =0 5w = dup = duy (2)
where u% = chemical potential of component i in phase ¢
vi = stoichiometric coefficient of i in solid phase

- Raoult's and Stortenbaker's laws for the limiting slopes of the liquidus
and solidus must be satisfied

Lim, |ax®/dT - ax%/ar|= 1im. [aH, /(RT?)] (3)
for x » 0 or x = 1
where x = mole fraction of salt

- Gibbs-Konovalov's relation is satisfied at stable or metastable congruent
melting points,

- activities are consistent with the Gibbs-Duhem relation

5,dT + f x; dy = 0 (P constant) (4)

- the variation of phase change enthalpy follows Kirchhoff's law.

In expressing the chemical potentials as functions of the activities of the
constituents of the system, the liquidus curve can be written in the form :

Y -Y,=0U~-T0g4 (5)

Y is a function of activities expressed in different ways, according to the
nature of the solid phase

ice : Y =1n (a2) (6)
salt PY =1n (ay . ag) (7)
hydrate MCL.H,0 : Y = 1n (ay « a5 - ag) (8)

where a, is the activity of solvent and n the stoichiometric coeffi-
cient o? water in hydrate,

The subscript o concerns the coordinates of a particular point of the solu-~
bility curve taken as limit of integration (usually the congruent melting
point of solid phase).

U is a function of temperature

U= J [aH_/(RT®)] 4T (9)
It may be written in most cases
U-U, =4 (1/T - 1/To) + B ln(T/To) +Cc (T - T,) (10)

where A,B,C are, according to the case under consideration, deduced
from thermodynamical data (AHm,AC ) for the pure components or considered
: - s m
as adjustable coefficients.

In the same way, the vapor pressures of saturated solutions are constrained
by the liquid = vapor and solid = liquid equilibrium conditions. According to
the nature of the solid phase, one of the equations (6),(7) or (8) is satis-
fied and, at the same time

o
P=Dpa, (11)
po is the vapor pressure of pure water at the temperature of the system.
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ACTIVITY OF SOLUTIONS

In order to derive an appropriate expression for activities, the experimental
solubility curve is compared, when possible, to the liquidus curve obtained
in the ideal approximation : (£; = 1, a, = 1-X,, ay = a5 = X5, X, = mole
fraction of MCl in solution).

For instance, the solubility curves of ice in solutions of NH4Cl, CsCl and

LiCl are shown in Fig. 4. A comparison with ideal solubility curve of ice in
alkali chloride solution shows that two different situations are observed.

A TOC

——— Ideal solution
-------------- NH4CI

CsCl

LiCl

0 0.l .
Fig. 4. Solubility of ice in solutions of alkali chloride

% With NH,Cl or CsCl, the experimental curve is very close to the cal-
culated ideal one, The interactions between solute and solvent are assumed to
be weak and are expressed through rational activity coefficients fi

fyy =2y o (1 + x1) / Xy £ = agy - (1 + x1) / X, (12)
f2=a2 (1+X1)/(1—X1) (13)

Eq. 12 and 13 do not distinguish between free and bound solvent.
For dilute solution, fM and fCl are expressed by the Debye-HUckel relation.

For concentrated solutions several semi-empirical equations for activity
coefficients of salt have been proposed (Refs. 2-24), They apply in particu-
lar cases and definite ranges of concentration. Most of them were derived for
isothermal conditions so an additional hypothesis is necessary, concerning
the variation of the activity coefficients with temperature.

These considerations led us to search for more simple expressions and two
relations have been found suitable for the critical evaluation of data :

Solubility curve of salt or hydrate, 1n(£i) is expressed by (Ref. 25)
in(g;) = ai/T + Dby 1n(T) + ¢; T+ d; (14)
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Solubility curve of ice. The activity of water has the form :
2
1n(e,) = [x/(14x)1%2 g(x) (15)

Instead of using for @(xT) the relation of Margules which leads to an alter-
nating series, we have preferred to express ¢(xT) in the following way :

2

o(xT) = (a' + b'z + C'z” + arz3d & eee) /T (16)

where a', b', c¢', d' are adjustable coefficients and z = 1n[x1/(1+x1)].

* With LiCl a large deviation from ideality is observed due to the
solvation of ions, A good representation of solubility curve of ice is
obtained if we assume that the mean number of moles of water bound to an ion
varies slowly with the concentration of ions. Then :

2
XCl = X1 / [1 - (E—1)X1 b FX.]] (17)
Xy = [1- (1+E)x1 - Fx%] /1 - (E—1)x1 - Fx%]
where E and F are adjustable coefficients.

APPLICATION TO CRITICAL EVALUATION OF THE CsCl-—H20 SYSTEM
Few data are available for critical evaluation of the binary system CsCl-H,O
(Table 1) and the numerical values are essentially centred on two ranges of
temperature : between O and -10°C for the solubility of ice, and between O
and 120°C for the solubility of CsCl,cubic).

TABLE 1, Available data on binary system CsCl—H2O

ToC Available data Solid phase

0 AH, AC ice

0, =10 composition of sglgtion ice

0. 120 {Saneity” oo Eresonte
400 vapor pressure

450 vapor pressure

472 transition point cubic + f.c.c.
500 vapor pressure CcsCl, f.c.c.
638 vapor pressure csCl, f.c.c.
645 AH, AC, melting point CsCl, f.c.c.

In order to draw the phase diagram of the system, the solubility curve of the
high temperature, face centered cubic form CsCl has first been calculated in
the ideal approximation and the composition of the transition point has been
deduced. The solubility curve of CsCl cubic is represented by eq. 5 where Y
and U are expressed by eq. 7, 10 and 14 ; the transition point is taken as a
point of the liquidus curve and the coefficients of fitting equation are
evaluated by a two parameters linear regression.

The determination of the solubility curve of ice has been performed with ten
different models in order to compare the various approaches. Most of them
lead to very good interpolation results but are unable to represent correctly
the solubility curve out side the range where experiments have been done

(Fig. 5). To evaluate the quality of the fitting equations, the coordinates

of the eutectic point (x = 0.1126, t/°C = -22,3) have been determined by
thermal analysis and by drawing a Tammann diagram (Ref. 26). The best approach
for the solubility curve of ice is obtained by calculation of 1n(f2) using

Eq. 13.
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Fig. 5 Solubility of ice in aqueous solution of CsCl
Comparison of various fitting equations
Finally the solubility and vapor pressure curves have been drawn for the
whole range of concentrations (Figs. 6 and 7). The agreement between experi-
mental and calculated data is very good. Nevertheless, the results must be
considered tentative in the extrapolated regions.
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Fig. 7. CsCl—H20 solubilities and
vapor pressure of saturated
solution



262

R.COHEN-ADAD

CONCLUSIONS

In the binary system CsCl-HpO a great number of missing data may be obtained
by a rational treatment of available data.

Nonetheless, the method is still somewhat subjective and the results depend
on the choice of fitting equations,
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