Chemoenzymatic synthesis of a gene for the interleukin-2 receptor

Joachim W. Engels, Wolfgang Becker *, Thomas Beckers, Dieter Hüsken and

Waldemar Wetekam

für Organische Chemie der Universität Frankfurt, Institut 6000 Frankfurt/Main 50, FRG *Hoechst AG, P.O.Box 800320, 6230 Frankfurt/Main 80, FRG

Abstract The hum

human interleukin-2-receptor is a glycopeptide of an apparent molecular weight of 55kD. By chemoenzymatic gene synthesis we constructed the underlying gene consisting of 753 nucleotide base pairs. 38 oligonucleotides varying in length from 27 to 51 bases were joined at their free overlapping ends of 6 to 9 bases by T4 ligase. The resulting gene, subcloned into three pieces was sequenced for its correctness. For subsequent modifications several restriction enzyme cutting sites were introduced synthetically. For sequenced for its expression of this gene in E. coli different ß-galactosidase fusion structions were tested. In addition the synthesis of the glycoprotein conwill be studied by introducing this gene into higher cells where it can be directly compared to the natural sequence in structure function studies.

INTRODUCTION

The human immune system is prepared to recognize an almost unlimited variety of antigens. Within this framework thymus-derived lymphocytes (T-cells) do get in contact with foreign antigens via the T-cell-receptor. A consequence of this event is the liberation of a T-cell growth factor, the so called lymphokine interleukin-2 (IL-2) (Ref.1,2). In order to be biologically active this IL-2 must interact with a specific membrane receptor on the surface of T-cells, the interleukin-2-receptor (IL-2-Rec) (Ref.3,4). This receptor is not present on resting T-cells but is rapidly expressed after activation with an antigen (Ref.5). Since neither IL-2 nor IL-2-Rec are expressed constitutively the induction of these two genes is of vital importance to the immune response. Recently by the help of anti-Tac (Ref.6) monoclonal antibody and recombinant DNA-techniques, the cDNA coding for IL-2-Rec was identified (Ref.7,8,9). This gene consits of 753 base-pairs which code for a glycopeptide of 55kD. The precursor protein a 33kD peptide is coor posttranslationally N- and O-glycosylated, phosphorylated (Ref.10) and sulfated (Ref.11) to the apparent molecular weight. In addition the genomic DNA-structure (Ref.12,13) consisting of eight exons on chromosome 10 was elucidated. This DNA includes a leader sequence of 63 base pairs which is cleaved off during maturation of the protein. In order to get some insight into the complicated events which govern the interaction of IL-2 and IL-2-Rec we have devised a synthetic gene allowing easy modifications by mutations to elucidate structure function relationsships of modified proteins.

CHEMOENZYMATIC GENE SYNTHESIS

Our gene synthesis is based on the chemical synthesis of the appropriate oligonucleotides which are joined enzymatically (Ref.14). On the basis of

the published DNA and protein sequence (Ref. 7,8,9) we constructed our gene but added some especially designed features for future handling. This results in a module system which allows for future modifications including exploratory and functional ones. The total gene consits of 753 base pairs and is divided into three DNA-segments (s.Fig.1) I, II and III.

	IL-2	Rec	: I Met	1 GLU	LEU	CYS	ASP	ASP	GLU	PRO	PRO	GLU	10 ILE	PRO	HIS	ALA	THR	PHE
5' 3'	AA	TTC G	ATG TAC	GAG CTC	CTC GAG	TGT ACA	GAC CTG	GAT CTA	GAG CTC	CCG GGC	CCA GGT	GAA CTT	ATC TAG	CCA GGT	САТ СТА	GCC CGG	ACA TGT	TTC AAG
	LYS	ALA	LEU	ALA	20 TYR	LYS	GLU	GLY	THR	ILE	LEU	ASN	CYS	GLU	30 CYS	LYS	ARG	GLY
	AAA TTT	GCT CGA	CTG GAC	GCC CGG	TAC ATG	AAG TTC	GAA CTT	GGT CCA	ACC TGG	ATC TAG	TTG AAC	AAC TTG	TGT ACA	GAA CTT	TGC ACG	AAG TTC	AGA TCT	GGT CCA
	рне	ARG	ARG	ILE	LYS	SER	40 GLY	SER	LEU	TYR	VAL	LEU	CYS	тнк	GLY	ASN	50 SER	SER
	TTC AAG	CGC GCG	AGA TCA	АТА ТАТ	AAG TTC	AGC TCG	GGA CCT	TCA AGT	CTC GAG	ТАТ АТА	GTG CAC	CTC GAG	TGT ACA	ACA TGT	GGA CCT	AAC TTG	TCT AGA	AGC TCG
	HIS	SER	SER	TRP	ASP	ASN	GLN	CYS	60 GLN	CYS	THR	SER	SER	ALA	THR	ARG	ASN	THR
1	CAT GTA	TCG AGC	TCC AGG	TGG ACC	GAC CTG	AAC TTG	CAA GTT	TGT ACA	CAA GTT	TGC ACG	ACA TGT	TCT AGA	AGC TCG	GCC CGG	ACA TGA	AGA TCT	AAC TTG	ACA
	70 Thr	LYS	GLN	VAL	THR	PRO	GLN	PRO	GLU	GLU	80 GLN	LYS	GLU	ARG	LYS	THR	THR	GLU
	ACG TGC	AAA TTT	CAG GTC	GTG CAC	ACC TGG	CCA GGT	CAA GTT	CCT GGA	GAA CTT	GAA CTT	CAA GTT	AAA TTT	GAA STT	AGG TCC	AAA TTT	ACC TGG	ACA TGT	GAA CTT
	LEU	GLN	90 Ser	PRO	ALA	GLN	PRO	VAL	ASP	GLN	ALA	SER	100 LEU	PRO	GLY	HIS	CYS	
	CTG GAC	CAA GTT	AGT TCA	CCA GGT	СТ CGA	CAA GTT	CCA GGT/	GTG CAC	GAC CTG	CAA GTT	GCG CGC	AGC TCG	CTT GAA	CCG GGC	GGT CCA	CAC GTG	тGC /	Α

IL-2 Rec II 110																		
					ARG	GLU	PRO	PRO	PRO	TRP	GLU	ASN	GLU	ALA	THR	GLU	ARG	ILE
5' 3'	AA	ттс \G	CAC GTG	TGC ACG	AGG TCC	GAA CTT	CCT GGA	CCA GGT	CCA GGT	TGG ACC	GAA CTT	ААТ ТТА	GAA CTT	GCC CGG	ACA TGT	GAA CTT	AGG TCC	АТТ ТАА
	TYR	120 HIS	PHE	VAL	VAL	GI.Y	GLN	ILE	VAL	TYR	TYR	130 GLN	CYS	VAL	GLN	GLY	TYR	ARG
	TAC ATG	CAT GTA	TTC AAG	GTG CAC	GTG CAG	GGG CCC	CAG GTC	ATC TAG	GTT CAA	ТАТ АТА	тат Ата	CAG GTC	TGC ACG	GTC CAG	CAG GTC	GGA CCT	TAC ATG	AGG TCC
	ALA	LEU	HIS	140 ARG	GLY	PRO	ALA	GLU	SER	VAL	CYS	LYS	ALA	150 THR	HIS	GLY	LYS	THR
	GCT CGA	CTA GAT	CAC GTG	AGA TCT	GGT CCA	CCG GĢC	GCC GGG	GAG ÇTC	TCT AGA	GTC CAG	TGC ACG	AAA TTT	GCG CGC	ACC TGG	CAC GTG	GGG CCC	AAG TTC	ACA TGT
	ARG	TRP	THR	GLN	PRO	160 GLN	LEU	ILE	CYS	THR	GLY	GLU	LEU	GLU	Thr	170 SER	GLN	PHE
	AGG TCC	TGG ACC	ACC TGG	CAG GTC		CAG GTC	CTC GAG	ATA TAT	TGC ACG	ACA TGT	GGT CCA	GAA CTT	CTG GAC	GAG CTC	ACC TGG	AGT TCA	CAA GTT	ТТТ ААА
	PRO	GLY	GLU	GLU	I'A2	PRO	GLN	180 ALA	SER	J PRO	GLU	GLY						
	CCA GGT	GGC CCG	CAA CTT	GAG CTC	AAG TTC	CCT GGA	CAG	GCA CGT	AGC TCG	CCC GGG	GAA CTT	GG CCA	GCT	,				

Fig.1 (continued on p.439)

II	-2 F	Rec 1	III			19	90									20	00	
		ARG	PRO	GLU	SER	GLU	THR	SER	CYS	LEU	VAL	THR	THR	THR	ASP	PHE	GLN	ILE
5' 3'	Т	CGA	CCT GGA	GAG CTC	AGT TCA	GAG CTC	ACC TGG	AGC TCG	TGC ACG	CTC GAG	GTC CAG	ACA TGT	ACG TGC	ACA TGT	GAC CTG	TTC AAG	CAG GTC	AŤC TAG
									210	— р								
	GLN	THR	GLU	VAL	ALA	ALA	THR	ALA	GLU	THR	SER	ILE	PHE	THR	THR	GLU	TYR	GLN
	CAG GTC	ACA TGT	GAA CTT	GTG CAC	GCT CGA	GCA CGT	ACC TGG	GCG CGC	GAG CTC	ACA TGT	TCG AGC	АТА Тат		ACC TGG	ACA TGT	GAG CTC	TAC ATG	CAG GTC
	220						a				230							
	VAL	ALA	VAL	ALA	GLY	CYS	VAL	PHE	LEU	LEU	ILE	SER	VAL	LEU	LEU	LEU	SER	GLY
	GTA CAT	GCA GCT	GTG CAC	GCC CGG	GGC CCG	TGT ACA	GTT CAA	TTC AAG	CTG GAC	TTG AAC	ATC TAG	AGC TCG	GTC CAG	_ 9 . CTC GAG	CTC GAG	CTG GAC	AGT TCA	GGG CCC
				- f -				_					250			- h		
	LEU	THR	240 TRP	GI-N	ARG	ARG	GLN	ARG	LYS	SER	ARG	ARG	THR	ILE				
	CTC	ACC	тс	CAA	AGG	AGA	CAG	AGG	AAG	AGT	AGA	AGA	ACA	ATC	TAG	TAA	GCT	TGG
	GAG	TGG	ACC	GTT	TYC	TCT	GTC	TCC	TTC	TCA	TCT	TCT	TGT	TAG	j —	A'I'I'	CGA	ACC

ATC CG

Fig.1 DNA and Peptide-Sequence of IL-2-Rec

They divide the IL-2-Rec gene in three segments, defined by the individual restriction endonuclease sites Eco RI-Pst I, Pst I-Sal I, Sal I-Eco RI (Hind III,Bam H I). Each subfragment is constructed from 10 to 16 individual oligonucleotides ranging in length from 27 to 51 bases. The retrosynthetic approach cuts the double stranded DNA in such a way, that there are free overlapping ends of 6 to 9 bases. In order to guarantee the exact finding of the individual complementary oligonucleotides the DNA duplex was devised by a computer program. This program checks wether the opposite strands a/b, do pair preferentially over e.g. a/d or a/f (Fig.1). Especially c/d, c/f, the free overlapping ends of 6 - 9 bases within the whole segment I, II and III have to be checked for their unambiguous matchings. Furthermore the segments I - III were modified on the DNA-level due to its degeneracy in order to introduce additional unique restriction enzyme cutting sites. This could be accomplished either by introducing new sites as e.g. Kpn I, Sal I, Cla I, or by deleting existing double or triple sites as e.g. Nco I, Bgl I. The chemical synthesis of the oligonucleotides Ia-IIIj is shown in (Fig.1). They were synthesized by the phosphoramidite chemistry (Ref.15) outlined in (Fig.2) with an additional chemical modification (Ref.16). The efficiency of

Fig.2 Synthesis cycle for the phosphoramidite chemistry J. W. ENGELS et al.

the coupling steps was estimated by measuring the dimethoxytrityl cation, liberated in each cycle (step one in Fig.2) at 498 nm and was routinely >96%. With the help of the β -cyanoethyl protecting group at phosphorus the mild ammonia cleavage directly results in the fully unprotected oligonucleotides Ia - IIIj. The crude reaction mixtures were liberated from ammonia by evaporation and directly loaded on a preparative 12% polyacrylamide gel (3 mm thick). The bands were visualized by uv shadowing, cut out and the oligonucleotides eluted with water, desalted by gel chromatography and freeze dried. The yields range from 10-30%. In order to join these oligonucleotides enzymatically a phosphate group has to be introduced at the 5'-hydroxyl end. This can either be done enzymatically with T4-Polynucleotide kinase or chemically (Ref.17). The kinase reaction additionally allows P for detection by autoradiography. the incorporation of 1 nmol of each oligonucleotide Ib-Io, IIb-IIk, IIIb-IIIi was kinased in Hepes-buffer pH 7.6 at 37 C with 5-10 units T4-polynucleotide kinase for 1 h. Only the 5'-ends of the restriction enzyme recognition sites were left unphosphorylated in order to avoid ligation of these palindromic sequences. By this procedure the enzymatic ligation can be accomplished in an one step test tube reaction by annealing the individual oligonucleotides at elevated temperature followed by joining with T4-ligase in a fashion similar to the one introduced by (Ref.18). For example oligonucleotides IIIa-IIIj were heated in Khorana Hepes-buffer pH 7.6, 0.05 M NaCl for 5 min at 98 C, cooled down to ambient temperature, and joined at 14° -20°C within 5 to 20 hours with 1000-1500 units T4-ligase added. The course of the reaction was followed by gel electrophoresis, checking the ligation mixture against DNA-duplexes of known size. For fragments I-III the expected DNA-duplex could be identified isolated by gel electrophoresis, desalted and lyophilized. The three segments IL-2-Rec I-III were then cloned in a pUC plasmid (Ref.19) in an E. coli K12 derivative (Fig.3). Due to a frame shift mutation and an additional stop codon in pUC8 and 9 the colonies harbouring the plasmide with the IL-2-Rec I - III inserts were white.

Fig.3 Subcloning of the IL-2-Rec fragments I-III in pUC 8 and 9

Chemoenzymatic synthesis of a gene for the interleukin-2 receptor

Several of these individual colonies were isolated, grown in liquid cultures and their recombinant pUC plasmids isolated according to Birnboim (Ref.20). We first checked their correct size on a gel against known size standards pBR 322 (Hae III) and secondly verified the synthetic DNA-sequence (Fig.1) by sequencing according to Maxam - Gilbert (Ref.21). For example the DNA sequence for the last 50 amino acids of the C-terminus is shown in Fig.4.

Fig.4 16% polyacrylamide sequencing gel long and short run[.]

Four out of five clones had the correct sequence. The subfragments IL-2-Rec I-III were individually sequenced, isolated and finally joined enzymatically with ligase to the total gene (Fig.5).

Fig.5 10% polyacrylamide gel electrophoresis: lane 1-3 IL-2 Rec I-III, lane 4 total IL-2 Rec, lane 5 pBR 322 (Hae III)

EXPRESSION-CONSTRUCTIONS OF IL-2-REC

Having confirmed the correct synthetic gene it has to be reconstructed in such a way as to synthesize the receptor protein within a cell. Our first approach was a fusion construction with β -galactosidase from E. coli a protein which is synthesized after induction by β -galactosidase in large amounts (Ref.22). This protein precipitates within the cell in a form of inclusion bodies (Ref.23) which can be isolated by centrifugation. In order to cleave the desired receptor protein from the β -galactosidase fusion moiety, we envisaged a chemical cleavage reaction by cyanogen bromide (Ref.24). Since cyanogen bromide specifically cleaves in a high yield after each methionine we had eliminated in our synthetic gene the original methionines. The replacements - originally selected on a secondary structure prediction (Ref.25,26,27) (Fig.6) were done with the aim to stabilize the

Fig.6 Amino acid sequence in one letter symbols of IL-2-Rec human, synthetic human and mouse (Ref.28), homologous sequences are boxed.

E. coli expression plasmid (pUR) Eucaryotic expression plasmid (BEH) Fig.7

predicted secondary structure e.g. Met-Ala (B-sheet), Met-Leu (C-Helix). For the expression of our synthetic gene in E. coli the construction was chosen as shown in (Fig.7).

In this plasmid the IL-2 Rec gene is joined carboxyterminally to either the total β -galactosidase gene or part of it. We have chosen this fusion construction in order to mask the hydrophobic transmembrane region, of the IL-2 Rec by the β -galactosidase moiety. This approach tries to circumvent the potential detrimental incorporation of the transmembrane region into the E. coli membrane. All these new constructions had to be verified by sequencing (Ref.20) and showed the correct DNA-sequence.

The above fusion constructions were transformed into an E. coli wild-type strain and the β -galactosidase production was induced by Isopropylthio- β -Dgalactoside. This reaction could be followed by lysing the cells with ultrasonification and directly applying an aliquot of the protein mixture onto a 10% SDS-polyacrylamide gel, using the appropriate size standards. Here we observed a total lack of any detectable fusion protein in the expected size range. Based on our assumption, that the highly hydrophobic membrane region was responsible for this phenomenon, we also constructed a receptor β galactosidase gene fusion which only consisted of the assumed extracellular receptor part.

Beside the expression in E. coli which should result in the naked receptor protein we also initiated the gene construction for the expression of the gene in mammalian cells. Since the interleukin 2-receptor in mammalian cells is synthesized as a precursor having a leader sequence we first added the authentic leader (Ref.7,8,9) sequence to our synthetic gene (Fig.8).

MET ASP SER TYR LEU LEU MET TRP GLY LEU LEU THR PHE ILE MET VAL 5' AA TTC ATG GAT TCA TAC CTG CTG ATG TGG GGA CTG CTC ACG TTC ATC ATG GTG 3' G TAC CTA AGT ATG GAC GAC TAC ACC CCT GAC GAG TGC AAG TAG TAC CAC

PRO GLY CYS ASN ALA CCT GGC TGC CAG GCA GAG CT GGA CCG ACG GTC CGT C

Fig.8 - Leader sequence of the IL-2-Rec gene

This sequence was constructed of two oligonucleotides 65 and 73 bp long. After phosphorylation and hybridisation they were joined directly to the IL-2-Rec gene and cloned in pUC 19 (Ref.29). Their sequence was checked by Maxam-Gilbert sequencing (Ref.20). For the expression of this gene in mammalian cells the shuttle vector (BEH) shown in Fig.7 will be used.

Work is in progress to study the various fusion constructions in E. coli and to monitor the synthesis of the IL-2 receptor in mouse L-cells.

The goal of our work is ultimately to study ligand receptor interaction in vitro including artificial membrane vesicles. We hope to achieve this by synthesising the receptor gene as an ample reservoir of the receptor protein in its natural and mutated form. The next step will include the synthesis of modified receptor proteins in E. coli and the synthesis of authentic receptor protein in mammalian cells. Comparison between these two receptors in their binding efficiency to IL-2 will give us an insight into the structural prerequisites for high efficiency binding. Mosaic structures between modified and authentic receptors are under construction to further elucidate the structure function relationship of IL-2 receptor and IL-2.

Acknowledgement

We are grateful for the financial support given by DFG (SFB 169), Hoechst AG and Fonds der chemischen Industrie. We are indebted to H.J. Hauser, GBF, Stöckheim, for a generous gift of the expression plasmid (BEH).

REFERENCES

- 1. Gallo, R.C., Ruscetti, F.W., Morgan, D.A., Science, <u>193</u>, 1007, (1976).
- Gallo, R.C., Ruscetti, F.W., Morgan, D.A., Science, <u>193</u>, 1007, (1976).
 Taniguchi, T., Matsui, H., Fujita, T., Takaoka, C., Kashima, N., Yoshimoto, R., Hamuro, J., Nature, <u>302</u>, 305 (1983).
 Leonard, W.J., Depper, J.M., Uchiyama, T., Smith, K.A., Waldmann, T.A., Greene, W.C., Nature, <u>300</u>, 267 (1982).
 Leonard, W.J., Depper, J.M., Robb, R.J., Waldmann, T.A., Greene, W.C., Proc. Natl. Acad. Sci. USA, <u>80</u>, 6957 (1983).
 Cantrell, D.A., Smith, K.A., J. exp. med. <u>158</u>, 1895 (1983).
 Uchiyama, T., Broder, S., Waldmann, T.A., J. Immunol. <u>126</u>, 1393 (1981).
 Leonard, W.J., Depper, J.M., Crabtree, G.R., Rudikoff, S., Pumphrey, J.

- Callieri, J.A., Barti, K.A., B. Caprada, J. 1997, Mod. 1997, 1998, 1998, 1998, 1998.
 Uchiyama, T., Broder, S., Waldmann, T.A., J. Immunol. 126, 1393 (1981).
 Leonard, W.J., Depper, J.M., Crabtree, G.R., Rudikoff, S., Pumphrey, J., Robb, R.J., Krönke, M., Svetlik, P.B., Peffer, N.J., Waldmann, T.A., Greene, W.C., Nature, <u>311</u>, 626 (1984).
 Nikaido, T., Shimizu, A., Ishida, N., Sabe, H., Teshigawara, K., Maeda, M., Uchiyama, T., Yodoi, J., Honjo, T., Nature, <u>311</u>, 631 (1984).
 Cosman, D., Cerretti, D.P., Larsen, A., Park, L., March, C., Dower, S., Gillis, S., Urdal, D., Nature, <u>312</u>, 768 (1984).
 Gallis, B., Lewis, A., Wignall, J., Alpert, A., Mochizuki, D.Y., Cosman, D., Hopp, T., Urdal, D., J. Biol. Chem., <u>261</u>, 5075 (1986).
 Depper, J.M., Krönke, M., Robb, R.J., Waldmann, T.A., Greene, W.C., J. Biol. Chem., <u>260</u>, 1872 (1985).
 Ishida, N., Kanamori, H., Noma, T., Nikaido, T., Sabe, H., Suzuki, N., Shimizu, A., Honjo, T., Nucl. Acids Res., <u>13</u>, 7579 (1985).
 Leonard, W.J., Depper, J.M., Kanehias, M., Krönke, M., Peffer, N.J., Svetlik, P.B., Sullivan, M., Greene, W.C., Science, <u>230</u>, 633 (1985).
 Engels, J., Leineweber, M., Uhlmann, E., Proc. of the 5th IUPAC Symp. on Org. Synth., 205, Streith, Prinzbach, Schill Eds., Blackwell Sci. Oxford (1985). (1985).
- 15. Beaucage, S.L., Caruthers, M.H., Tetrahedron Letters, 22, 1859 (1982).
- 16. Köster, H., Sinha, N.D., Biernat, J., McManus, J., Nucl. Acid Res., <u>12</u>, 4539, (1984).
- 17. Uhlmann, E., Engels, J., Tetrahedron Lett., <u>27</u>, 1023 (1986). 18. Khorana, H.G., Science, <u>203</u>, 614 (1979).

- Khorana, H.G., Science, <u>205</u>, 614 (1977).
 Vieira, J., Messing, J., Gene, <u>19</u>, 259 (1982).
 Birnboim, H.C., Doly, I., Nucl. Acids Res., <u>7</u>, 1513 (1979).
 Gilbert, W., Maxam, A., Methods Enzymol., <u>65</u>, 499 (1980).
 Itakura, K., Bolivar, F., Hirose, T., Boyer, H.W., Crea, R., Riggs, A.D., Heyneker, H.L., Science, <u>198</u>, 1056 (1977).
 Taylor, G., Marston, F.A.O., Hoare, M., Gray, D.R., Bio/Technology, <u>4</u>, <u>75</u> (1906). 553 (1986).

- 233 (1960).
 24. Gross, E., Witkop, B., J. Am. Chem. Soc., <u>83</u>, 1510 (1961).
 25. Hopp, T.P., Woods, K.R., Proc. Natl. Acad. Sci. USA, <u>78</u>, 3824 (1981).
 26. Kyte, J., Doolittle, A.F., J. Mol. Biol., <u>157</u>, 105 (1982).
 27. Chou, P.Y., Fasman, G.D., Biochemistry, <u>13</u>, 222 (1974).
 28. Shimuzu, A., Kondo, S., Takeda, S.I., Yodoi, J., Ishida, N., Sabe, H., Osawa, H., Diamantstein, T., Nikaido, T., Honjo, T., Nucl. Acids Res., <u>13</u>, 1505 (1985) 13, 1505 (1985).
- 29. Yanisch-Perron, C., Vieira, J., Messing, J., Gene, 33, 103 (1985).