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ABSTRACT 

The properties of atoms in molecules can be measured experimentally 
and quantum mechanics predicts these atomic properties just as it 
predicts the properties of a total system. This paper presents a 
demonstration of this statement and an example of its application to 
t.he measured energy of an atom in a molecule. 

INTRODUCTION 

The quantum description of an atom in a molecule which exists in R Stationary slate can bc 
obtained as a direct extension of Schrb’dinger’s original derivation of the wave equation 
[l] through t.he introduction and use of operators which are the! generators of 
infinitesimal unitary transformations. Such operators, as first pointed out by Dirac [ Z ] ,  
are the quantum counterparts of the generators of infinitesimal carionical transformations 
in classical mechanics and the correspondence between the properties of these two sets of 
generators is responsible for the fundamental simi1arit.y in the structures of classical 
and quantum mechanics. Because of this correspondence, Schwinger [ 3 ]  was able to state a 
single principle - the principle of stationary action - from which either classical or 
quantum mechanics can he derived in its entirety. In his first paper, Schrgdinger 
demonstrated .that the postulated ‘quantum conditions’ could be replaced by a variation 
principle from which the quantum numbers are obtained in a natural way. Schwinger’s 
principle of stationary action is obtained as a generalization of the variation of the 
action integral through a relaxation of the constraint that the variations vanish at the 
time end points and their subsequent identification with the generators of infinitesimal 
unitary transformations. For a system in a stationary state, the variation of the action 
integral reduces to the variation of an energy integral which is identical to that first. 
constructued by Schrijdinger and used by him to derive the wave equation for a stationary 
state. We shall illustrate that for a time independent system, Schwinger’s principle of 
stationary action generalizes SchrCdinger’s derivation of the wave equation to yield the 
hypervirial theorem as well. The further generalization of this result t o  a subsystem of 
a total system in a stationary state is obtained by retaining the variations in the state 
function on the (finite) boundaries of t,he subsystem and by a variation of the boundary 
itself. The boundary variations are again identified with the generators of infinitesimal 
unitary t.ransformations. What is remarkable and physically important is that this final 
generalization is possible only for a particular class of subsystems, those which satisfy 
a variational constraint that is stated in terms of a property of R system’s charge 
distribution [4,5,6]. 

We shall first review Schrb’dinger’s derivation of the wave equation as given in the first 
of the four papers he published in 1926. This is followed by a discussion of Schwinger’s 
principle of stationary action and of how it is obtained through the use of generr-ltOrS of 
infinitesimal transformations. The properties of these generators and their associated 
transformations are illustrated. They are then employed in the generalization of 
Schrijdinger’s derivation of quantum mechanics, first for a total system and then for a 
subsystem. The paper concludes by using the resulting quantum description of the 
properties of a subsystem t o  define the energy of an atom in a molecule. It is then 
demonstrated that t.his energy is the one determined experimentally, one which can be 
measured in those cases where there is an observed additivity in the heats of formation. 

SCHRODINGER’S DERIVATION OF QUANTUM MECHANICS 

Schrtldinger concludes his first paper [l] by stating that ‘the function ‘P be such as 
to make the ”Hamilton integral’’ 

F{d’T(q,dY/dq) + **V) (1’) 
stationary, while fulfilling the normalising, accessory condition 
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T(q,aY/aG) is the kinetic energy expressed as a function of the coordinates and momenta 
and V is the potential energy. Schrgdinger considered specifically the problem of the 
hydrogen atom for which the explicit form of the functional is 

J[+] = dT(fi*/Zm)oP*oP - (E - V ) t ' )  (3) I 

I 
with V = -ea/r. The quantity E in eqn ( 3 )  is the Lagrange multiplier introduced to ensure 
the normalisation constraint as expressed in eqn (2). Expressing the integrand in eqn (3 )  
by the symbol f, the variation of J using the standard methods of the calculus of 
variations is given by the expression 

6J[f] = dr{(af/aP)bP + (df/aW)6vY} (4) 
The variation with respect to W yields a term containing 6vP and this must be replaced by 
an equivalent one expressed in terms of 6P using integration by parts as outlined below 

v*{(vP)6Y) = v"P6P + (vP)*6oP (5) 

Requiring the resulting variation to be stationary gives 

6J[P] = 2 {-(.ti2/2m)v2P + (V - E)P)bPdr + 2(.h2/2m) dSW*nH 0 (6) 

HP -- EP 0 ( 7 )  

fdSw*m = 0 ( 8 )  

I f 
Demanding that this requirement be met for all arbitrary variations 6P yields 

A 

as the Euler-Lagrange equation if, in addition, one requires the surface term to vanish 

by demanding that 6P vanish on the boundaries of the system which are taken to be at 
infinity. SchrSdinger demonstrated that the variation problem had a discrete (E < 0) and 
a continuous (E > 0) spectrum of proper values. For the bound states of the hydrogen 
atom, eqn ( 7 )  had solutions only if E satisfied a particular condition. This condition 
introduced the principal quantum number labelled "e" by Schrgdinger, which together with 
the angular momentum quantum number which he labelled "n", demonstrated that for each 
value of "c" there was a degeneracy of acceptable solutions equal to e 2 .  

In the fourth paper Schrb'dinger [7 ]  gave his time dependent equation for the state 
function 

ih+ = Iw -is+* = &* (9) 

and noted that in general P could be complex. Thus in the present day variation of the 
integral J [ P ] ,  the factor of two in equation (6) would be gone and two separate and 
independent variations would be performed, one with respect to 'P and the other ,with 
respect P*, variations which would in turn yield the Euler equations for both P and P . 
In this same paper he discusses the physical significance of the field scalar P and 
stresses 'that 'P cannot and may not be interpreted directly in terms of three-dimensional 
space - ' .  Instead, he points out that the product P*P must determine the 'electric 
density'. The electric density For a N-electron system he defines as 

(10) 
electric density at rl = eNJdr2br3.. . prNP * P 

which, aside from a summation over the electronic spin coordinates, is the definition of 
what is presently called the electronic charge density and denoted here by the symbol 
p(r). It is most interesting to note that Schr6dinger regarded P * P  as providing a 
description of the actual spreading out of electronic charge in real space - as a 
description of a system's static charge distribution: 'As an obvious generalization of 
the procedure of spreading out the electronic charge according to a relative density 
function P*P (which furnished satisfactory results in the one-electron problem), the 
following view would present itself in the case of a general mechanical system: the real 
natural system does not behave like the picture which ordinary mechanics forms of it 
(e.g. a system of point-charges in a definite configuration), but rather behaves like what 
would be the result of spreading out the system, described by q,, ....,qn, throughout its 
configuration-space in accordance with a relative density function ?*?' [ 8 ] .  This fourth 
paper also introduced the current density j and showed that p(r) and j(r) obey the 
conservation law for a fluid. 

F R O M  S C H R ~ D I N G E R  TO SCHWINGER 

The work of SchrSdinger, Heisenberg, Dirac and others led to the Hamiltonian formulation 
of quantum mechanics. This approach, in addition to the general mathematical scheme of 
linear operators and state vectors with its associated probability interpretation, 
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contains two distinct postulates: the commutation relations between generalized 
coordinates and momenta and the equations of motion as introduced with the array of 
assumptions based on the classical Hamiltonian dynamics and the correspondence principle. 
In the development of quantum mechanics given by Schwinger [3], both postulates are 
replaced by a single dynamical principle based upon the Lagrangian formulation of 
mechanics. 

In the Lagrangian approach, one obtains the equations of motion, classical or quantum, as 
the Euler equations resulting from the requirement that the action integral W l z ,  the 
action integral operator in the quantum case, be stationary with respect to variations in 
the classical trajectory or the quantum state function respectively, with the added 
constraint that these variations vanish at the time end points tl and t2  

where %lY,t] is the Lagrangian. Schwinger demonstrated that one can obtain a complete 
description of mechanics through a generalization of the requirement that W,, be 
stationary. This generalization corresponds to the removal of the constraint that the 
variations 6q or 6+ vanish at the time end points together with the introduction of a 
variation of the time end points themselves, followed by the demonstration that t.hese end 
point variations may be identified with the generators of infinitesimal canonical or 
unitary transformations. The implementation of these steps leads to the principle of 
stationary action which is 

where G(t) denotes a generator of an infinitesimal canonical or unitary t,ransformation. 
The equations of motion are still contained in this principle. The generator G has the 
form 

(13) 

The two terms appearing in the generator encompass all possible dynamical changes that can 
occur in a mechanical system, both spatial and tmporal. To appreciate the beauty and 
power of this principle requires an understanding of the properties of the generators G. 

G(t) = (6%/6:)6q - H6t 

PROPERTIES OF INFINITESIMAL UNITARY TRANSFORMATIONS 

A unitary transformation is one which when applied to both the state functions andAthe 
observables of a system, leaves the description of the system unchanged. Denote by U an 
operator with the property that its adjoint is equal to its inverse, that i s  

%+ 2;J = 1 or 6-1 - - ;t (14) 
h 

The operator U is u2ed to perform simultaneous transformations on the state vector Q and 
on the observables 0 in the manner indicated in equations (15) .. 

Y + Y '  = UY 
n h h h A  

0 -+ 0' = uou-1 

Such a transformation leaves the description of the system completely unchanged in that 
all properties of the transformed system are the same as those of the original one. One 
easily shows that an operator equation of the original system 

h 

OY = OY 

is transformed into a corresponding equation with the same eigenvalue 
A 

O ' Y '  OY' 

and the expectation value of an operator remains unchanged as well 
h In n -An-  A 

< Y ' , O ' Y ' >  = <UYUOU UY> = <Y,oY> 

as does the normalization of Y .  

Our interest is in such a transformation which is infinitely close to unity as defined by 
the operator 

U = 1 - irG (16) 
where E is a real infini_tesimal quantiiy and G is a Hermitian operator. Since G is 
Hermitian, the inverse of U which equals ti+ is 

(17) 

h A  n 

h h 

h ;-1 = 1 + irG 
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and the product is of order unity to first-order in o 
Ah-1 nh 

uu = 1 + ~'GG LJ 1 
h h 

The operator U induces an infinitesimal unitary transformation. An operator 0 is 
transformed in the following way under such a transformation 

0 + 0' = (1 -irG)O(l + irG) = 0 + ie[O,G] (18) 
The infinitesimal change in 0, the variation in 0, is determined by its commutator with G, 
the generator of the infinitesimal transformation according to 

. + A  4 , . A h  A , ,  , . A  

h h A 

~ h n  A h  

80 = 0 ' -  0 = ie[O,G] (19) 

Similarly, for the state function one obtains 
A 

P + P' = UY P - i6G.P (20) 

and the infinitesimal change or variation in Y is given by action of the generator of the 
transformation on Y 

h 

6p = PI-- 1p L- -ieGy (21) 
Thus the operator G can be considered to generate changes in the dynamical variablesAof a 
system. The infinitesimal change in the expectatiy value of an observable A is 
equivalently effected by the action of the generator G on P or on the operator &, for 
using the above expressions one finds 

A 

h h A h  ,, 
<6k",AY) i <Y,AdY) = ir<Y,[G,A]F'> = -<YP,6AY> (22) 

This general property of an infinitesimal unitary transformation will appear in the result 
to be obtained in the generalization of the variation of Schriidinger's energy functional. 

Infinitesimal unitary transformations are important from another point of view: as first 
pointed out by Dirac they provide the means for establishing a fundamental correspondence 
between classical and quantum mechanics. Exploring this correspondence in its classical 
terms will provide a deeper understanding of the meaning of such transformations in the 
quantum case. 

Corresponding to the unitary transformation in a quantum system is a canonical or contact 
transformation in classical mechanics. This is a transformation of the position and 
momentum coordinates such that Hamilton's equations of motion 

are satisfied using the transformed set of coordinates. The system and its properties are 
not changed by this transformation: all properties, while perhaps having a different 
functional form, have the same values when evaluated in the new coordinate system. A 
canonical transformation is therefore, like a unitary transformation in this regard. 
Canonical transformations are defined in terms of so-called generating functions which are 
functions of one of the original set of coordinates q and p and one o f  the new set, which 
we shall label as P and Q, as well as of the time [9]. There are therefore, four such 
generating functions and their individual properties are dertermined by a modification of 
Hamilton's principle. We are interested in the particular transformation generated by the 
function F(qi,Pi,t) = ZiqiPi. The equations for obtaining the old momenta and the new 
coordinates from this function are 

p. = aF/aqi and Qi = aF/aPi 
and from these equations one sees that this particular function generates the identity 
transformation with pi = Pi and Qi = qi. 

We are now in a position to define in analogy with the infinitesimal unitary 
transformation of quantum mechanics, the infinitesimal canonical transformation of 
classical mechanics. We consider the transformations 

i Q. = q. + 8q 
1 1  

P. pi + 6pi 
for which the generating function F is given by - 

F = .q.P. + eG(q ,P)  

As in the quantum case, G is referred to as the generator of the transformation. Using 
the equations given above one finds 

21 1 1 

pi = aF/aqi = pi + eaG/aqi 
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Qi aF/aPi = qi + eaG/aPi 
In terms of these results, one finds that the infinitesimal changes in the coordinates to 
f irst-order are 

bp. = P. - p. = -aaG/aq 
6qi = Q. - q. = eaG/ap 

1 1 1  i 
1 1  i 

where the partial derivative with respect to P i  has been replaced by one with respect to pi 
in the latter equation as the results are to first-order only. 

We shall use the classical expressions in equations (24) and (25) to illustrate that such 
infinitesimal transformations generate real changes in a system. They describe 
transformations which while leaving the functional form of a property unchanged, change 
its value by an infinitesimal amount. As a most important example of this property 
consider the results obtained when G is set equal to the Hamiltonian H and E. to dt. From 
equations (24) and ( 2 5 )  one finds that 6q and 6p are given by 

6qi dt(aH/dp.) tidt = dqi and 6pi = -dt(aH/dqi) = sidt = dpi 
showing that the transformation changes the values that q and p have at time t to the 
values they have at time t + dt. Thus Hdt is the generator of an infinitesimal temporal 
change in a classical system. One may envisage the time evolution of a mechanical system 
as being the result of the successive application of the generator Hdt, so that its motion 
corresponds to the unfolding of a canonical transformation [2,9j.  

In general, the change in a property A(p,q) caused by an infinitesimal canonical 
transformation is 

6A = A(qi + 6qi, pi + 6Pi) - A(qi,Pi) 
Performing a Taylor series expansion and keeping terms to first-order only, one finds 

6A = Ii{(dA/bqi)6qi + (aA/api)6pi1 

bA = E. .f(aA/aqi)(aG/api) - (Wapi)(Wdqi)l 

which, using the defining equations (24) and (25) may be re-expressed as 

(26) 
Eqn ( 2 6 )  is of course the definition of the Poisson bracket for the quantities A and 0, a 
quantity denoted by the symbol {A,G) as in the equation 

21 

6A = c{A,G} (27 )  

This latter equation is in direct corr_espondence with the quantum result given in eqn (19) 
for the variation of the observable 0 in terms of the commutator of 0 and the generator 
G. The root of this correspondence, as noted by Dirac, derives from the similarity in the 
properties of infinitesimal unitary and canonical transformations. This similarity is a 
reflection of a structure which i s  common to both mechanics [ 2 ] .  The quantity Hdt is the 
generator of an infinitesimal temporal transformation in both a classical and a quantum 
system. Using the Heisenberg representation for the quantum system, both mechanics yield 
the important result that if 

* A  

6H r{H,G) = (i/ti)r[H,G] = 0 

then the property G is a constant of the motion. In this view, constants of motion are 
generating functions of infinitesimal canonical transformations which leave H invariant. 

The generator G defined in the principle of stationary action may act on the state 
function or on the observable corresponding to some property. Staying within the operator 
representation we shall derive the Heisenberg equations of motion from this principle by 
choosing a variation in which only the time is changed by an amount bt and 6q is zero. 
The change in an operattr 0 is -(d6/dt)8t and according to eqn (19) which describes the 
effect of the generator H6t one has 

dO/dt = -(i/&)[O,H] ( 2 8 )  

Again using eqn (19), this time setting the operator 0 equal to the position operator qs, 
and considering a variation in which only the coordinate t$r is changed at a given time, 
one obtains 

(29) 

h 

A A A  

A A 

A 

dhqr (ifi) [is, (ar/a4,)6ir1 
A 

The RHS of eqn (29) reduces to 6qs if and only if 
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Thus the canonical commutation rules are obtained as a consequence of the principle of 
stationary action. 

The principle of stationary action yields the equations of motion and t.he commutation 
relationships for a quantum system. It introduces the observables of quantum mechanics by 
identifying the variations of the action integral with the generators of infinitesimal 
transformations and yields as a consequence of this identification, the Heisenberg 
equation of motion for an observable. 

An operational statement of the principle of stationary action can be obtained from eqn 
(12) in the SchrGdinger representation by considering the change in action for an 
infinitesimal time interval and by restricting the action of the generator to the state 
function (which by eqn (21) gives 6~ = -(i/&)&). The resulting statement is given in 
terms of the variation of the Lagrangian integral as 

62[&] = (r/2)(i/ti)<PI[H,G] IF> (31) 
where .f[P,t] = JL(y,W,+)dT and the many-particle Lagrangian density is the invariant 
hermitian function 

h A  

(32) 
2 * ^ *  L(Y,w,+) = (i5/2){~*+ - +*PI - { (5 /2m)livip *viy + vv Y )  

Equation (31) is a variational derivation of the Heisenberg equation of motion for the 
observable G 

A A  

d<G>/dt = (i/.li)<Y)[H,G] It> (33) 

Schrodinger's choice of the form for the functional J[P] was based on analogy with the 
Hamilton-Jacobi differential equation of classical mechanics. Its form with respect to 
its dependence on only first derivatives of 9 with respect to a coordinate is important 
for this is the restriction placed on the Lagrangian. For a stationary state at the point 
of variation the state function satisfies 

A 

(i.h)aP/at = HY = EP 

and Y(r,t) = exp{(i/h)Et}'P(r). In this situation it i s  clear that the Lagrangian will 
reduce to the negative of the integral previously given for the energy functional J[P] 
which is rewritten here for the many-electron case 

(34) I * *  J[Y] = ~r{(+f1'/2m)~~v~P*.v~* + (V-E)P 9) -Y[P,t] = - drL(V,W.,$) 
where Jdr implies int.egration over all electronic coordinates. For a stationary state the 
variations in P will be of the type 

bP(r,t) = exp{(i/*)At}B'P(r) (35) 

thereby preserving the separation of the temporal and spatial variables observed at the 
point of variation. The Lagrangian will be equal to the functional J at every stage of 
the variation and the two variations are simply related to give 

-6%[~,t] 8J[P] = -(~/2)(i/+fi)<?([H,G] I?> (36) 

For a stationary state, 6E = 65 = 0, and in this case the principle of stationary action 
yields the hypervirial theorem [lo] 

A h  

A h  

<?l[H,G] I?> = 0 (37) 

Infinitesimal unitary transformations can be used to obtain eq? (37) directly through a 
variation of the usual stationary state energy functional where H is the Hamiltonian 

h h 

<6PI(H - E)IP> + <PI(H - E)(6+> = 0 (38) 
With the variation 8P = -(i/hXcGP and eqn (22), one obtains directly the hypervirial 
theorzm, eqn (37), [ l l ] .  When H contains a real parameter u such as a nuclear coordinate 
and G corresponds to the operator also, then the above derivation must be modified to 
include the term aE/aa for E contains the same parameters as does 8. The result in this 
case is 

A 

h A  h 

c:?l  [H,G] I ? >  .- <PI[E,G] I ?>  = 0 (39) 

and when the commutators are evaluated, one obtains the generalized Hellmann-Feynman 
theorem 

A 

<PI (aH/aa) I?> = dE/& (40) 

Epstein [ll] has shown that unrestricted and spin unrestricted Hartree-Fock_solutions are 
invariant to all unitary transfhormations with one-electron operators G. Thus the 
hypervirial theorems for all such G's will be satisfied by UHF and SUHF functions. Hurley 
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[12] first demonstrated that when the set of trial functions is invariant to changes in a 
parameter a, the generalized Hellmann-Feynman theorem will be satisfied for u. 

In summary, the principle of stationary action yields the equations of motion and it 
introduces the observables of quantum mechanics by identifying the variations of the 
action integral with the generators of infinitesimal unitary transformations. Through the 
use of these generators, the principle gives the canonical commutation relations and the 
Heisenberg equations of motion. For a stationary state the principle, as well as yielding 
the wave equation, gives the hypervirial theorem from which the properties of the 
observables for a stationary state can be determined. 

ATOMIC STATEMENT OF THE PRINCIPLE OF STATIONARY ACTION 

It has been demonstrated that Schwinger's principle of stationary action can be extended 
to a particular class of subsystems of a total system [5,6]. Before demonstrating that 
the simpler variation of Schrb'dinger's stationary state functional J[?] can be extended to 
define an atom in a molecule, we first outline the general case which involves the 
variation of a subsystem action integral. This is accomplished by first defining a 
subsystem Lagrangian L[*,R], where n denotes the subsystem, in terms of the many-particle 
Lagrangian function given in eqn (32) as 

%[1P,n] = [ndrplL(f,v!?,$) (41) 
The symbol J'drl in eqn (41) denotes a summation over all spin coordinates and the 
integration over the spatial coordinates of all electrons but one. Since p is 
antisymmetrized, it matters not which set of electronic coordinates is excluded. The 
symbol Jndr denotes the integration of the remaining electronic coordinates over the 
subsystem R. The variation of the corresponding subsystem action integral W,,[n] is 
generalized to include a variation of the surface bounding the subsystem, a step which in 
turn requires the retention of the variations in f on the portions of this surface with 
finite coordinates, in addition to retaining the variations in f at the time end points, 
the generalization introduced by Schwinger. It is important to note that the latter terms 
necessarily appear in the variation of the atomic action integral and thus the 
generalization of the variation of the action integral to a subsystem automatically 
transforms the variation into Schwinger's principle. The variations in f at the time end 
points and on the surface of R are again identified with the generators of infinitesimal 
unitary transformations. The result of this very general variation is shown to reduce to 
the principle of stationary action only if the constraint given in eqn (42) is satisfied 
at every stage of the variation 

6{ v*p(r)dr) = 0 (42 )  1. 
Eqn (42) is satisfied by a subsyst.em which is bounded by a surface of zero flux in the 
gradient vector of the charge density, the condition given in eqn (43) 

vp(r)*n(r) = 0 for every point on the surface S ( R )  (43) 

The atoms of chemistry are bounded by surfaces which satisfy the zero f lux  condition 
[13,14], a condition which demands that the integral of' the Laplacian of the charge 
density over the atom vanish as stated in eqn (44) 

(44) 
This condition is satisfied by an atom free or bound. The surface of an atom is 
constantly and continuously deformable in such a way that eqn (44) is always satisfied, 
even for the virtual changes encountered in the variation of the action integral. The 
integral of the Lagrangian density of a many-particle quantum system, eqn (32) reduces to 
the integral given in eqn (44) when the system is described by Schrgdinger's equation. 
Thus the Lagrangian integral of an atom, like that of a total quantum system, always 
vanishes. 

The operational statement of the atomic principle of stationary action corresponding to 
that given in eqn (31) for a total system is 

JRv2p(r)dr = dS(n)vp(r)*n(r) = 0 f 

h h  

&t[&,R] = (6/2){(i/+i)<Yl [ H , G ]  + complex conjugate} (45) 
where the subscript R on the commutator average implies the same mode of integration as 
given in eqn (41). This statement of the principle applies to any region bounded by a 
surface of zero flux in the gradient vector of the charge density, a condition satisfied 
by the total system as well as by the atoms of which it is comprised. Eqn (45) thus 
represents a generalization of quantum mechanics to a subsystem of a total system. 

The atomic analogue of the energy functional J[*] is defined as 
J [ * , R ]  = [ndrp*{(?i2/2m) * +vi* + (i - R)?*?) 
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The variation of this integral, including a variation of the surface S(r) bounding the 
region R, yields 
6J[P,n]  = /adrpri{k - E+}6P* + dS(r) ds~{(4iz/Zm)v?*n(r)s.p$ + 6S(r)f(P,W)} 

(47) 
f s  + complex conjugate 

where f('P,w) again represents the integrand of the functional J. The variations in 'P are 
assumed to vanish when any of the coordinates assume the infinite values associated with 
the boundary of the total system. Thus the only surface terms to survive are those for 
the surface bounding the region R. One may use the argument from Courant and Hilbert [15] 
regarding the stationarity of J with respect to the vanishing of 6P on the boundary, to 
again obtain Schrb'dinger's equations for P and ?* as the Euler equations for the variation 
of J['P,R]. One may consider contained in this variation the special case where 17 = R' 
with 6P thus vanishing on all the boundaries. This gives Schrb'dinger's original 
derivation as a particular case of the variation in eqn (47) and one obtains the wave 
equations for Y and f* as the Euler equations. 

The variation of J[Y,n]  is thus reduced to 
(48) * 

and further progress towards obtaining a general physical result can be made only by 
removal of the term involving a variation of the surface. Consider, towards this goal, 
the identity connecting the integrand f(P,W) of Schrodinger's functional and the energy 
functional expressed in terms of the Hamiltonian operator H as expressed in eqn (49) 

(49) 

6J[Y,n] = dS(r) d~'{(5~/2m)W*n(r)6P + 6S(r)f(?,vP)} + cc f J  
f(+,W) + E = (1/2){+*HY + (YH) ^ *  Y} + (42/4m)1ivf(P * 9) 

The subsystem integration of the final term on the RHS of this equation yields 
(.t~'/4m) JndrJcir~>iv~(S~) = (+1~/4m) nv2p1(r)dr s 

(50) where p'(r) is the electron density divided by N. This result follows from the fact 
that the volume integral of v2(.p*'P) vanishes for a system with boundaries at infinity 
because of Green's theorem 

(50) 
si.nce both P and viY, and their complex conjugates, vanish when any electronic coordinate 
becomes infinite. We also point out here the related identity connecting the two 
expressions for the kinetic energy 

(51) 
an expression which is conveniently re-stated in terms of kinetic energy densities using 
the one-matrix as 

(52) 

...p ri...[vf(v * 9)) = ...p(ri)-..vi(Y * y)*n(ri) o 

* * --(+iz/4m) i { ~  v f ~  + r n f ~  1 = (+i2/2m)livi9 *Pi* - (+iz/4m)vzp(r) 1 *  
-.(+i2/4m) {(v2 + v*z)r(') (r,rj 11 = (-t12/2m) {v*vIr(l) (r,r1 - *2/4m)vzp(r) 

because of eqn (44), it is clear that the integration of either kinetic energy density 
over' a region satisfying the zero f l u x  surface condition as given in eqn (43) will yield 
the same value for its average kinetic energy. 

Subst.it.ution of the identity given in eqn (49) into eqn (48) and recalling that at the 
point of variation Schrb'dinger's equation applies, the variation of J [ t , n ]  reduces to 

6J[P,R] = (4*/4m) dS(r)(6S(r)v2pu(r) + 2 drmW*n(r)6P) + cc (53) f I 
The imposition of the variational constraint given in eqn (42) now enables one to replace 
the term involving the surface variation with the volume integral of the variation of 
v'p(r) for one has 

6 {  v2p(r)dr) = 0 = 6{v'p(r))dr + dS(r)6S(r)v2p(r) (54) L JQ f 
JR6{dp*(r)jdr = 4 1  dS(r) drl{(W'*)6P + Y*6(W)}*n(r) + cc 

The required variation of the Laplacian of p yields only surface terms for the coordinate 
r and is given by 

(55) 
It is important that no new volume contributions to the variation result from the 
impositionn of the variational constraint or one would no longer obtain SchrGdinger's 
equation as the Euler equation of the variation. Substitution of this result into eqn 
(53) yields 

(56) 

(57) 

* * 
6J[P,R] = (4'/4m) dS(r) drI{(vP )8P - Y 6(W)}*n(r) + cc 

* 
f J  

The single-particle current density is defined as 
j(r) = (6/2mi) dz'{* W - (v? 1.p) * J 

and in terms of this quantity the variation in the atomic functional J[P,R] is seen to be 
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given by the flux in the infinitesimal quantum current density through the surface 
bounding the atom 

6J['P,n] = -(i6/2) dS(r)8'Pj(r)*n(r) + cc (58) 
If the variations in 'P are noy identified with the generators of infinitesimal unitary 
transformations as 69 = -(i/h)iGF, then the expression for the variation of: J['P,n] becomes 
equal to the infinitesimal flux in the current density for the observable G 

f 

f 
1 

h 

(59) 6J[GY,n] = - ( 6 / 2 )  dS(r)jG(r)*n(r) + cc 
where j (r) is given by G 

(60) 
* ^  

The result for the variation of J['P,n] is put into its fiEal form by using the subsystem 
statement of the Heisenberg equation for an observable G for the case of a stationary 
state which is 

jG(r) = (4/2mi) dr'{'P v(G+) - (W )G?} 

(61) f A h  

{<[H,G]>, + cc} = -{Hi dS(r)jG(r).n(r) + cc} 
a result which may also be easily obtain_ed starting from the LHS of eqn (61) using 
Schrb'dinger's equation and recalling that H is not Hermitian over a subsystem. Eqn (61) 
is the hypervirial theorem for a subsystem with an arbitrary boundary. With the use of 
eqn (61), the variation in the atomic functional becomes 

A A A  

6J[G'P,R] = -(r/2){(i/h)<[H,G]>n + cc} (62) 
which is the principle of stationary action for a stat.ionary state as given in eqn (36), 
generalized to a subsystem bounded by a surface of zero flux in the gradient vector of the 
charge density. 

Eqn (62) together with Schriidinger's equation, are obtained through a generalization of 
the variation of SchrBdinger's energy functional. The same description of the properties 
of a total system afforded by quantum mechanics applies to a particular class of 
subsystem, one which is bounded by a surface of zero flux in the gradient vector of the 
charge density - a quantum subsystem. 

Eq. (62) is the v5riational derivation of the hypervirial theorem for a quantum subsystem. 
Evaluation of 6J[GY,R] for a given G yields the surface integral of the flux in j, through 
the surface of the subsystem, and equating this to the commutator average, yields the 
hypervirial theorem for a subsystem, eqn (61). The variational derivation of this theorem 
as determined by the principle of stationary action is restricted to subsystems which 
satisfy the variational constraint of a zero flux boundary condition, eqn (43). From eqn 
(62) one can, as in the quantum description of a total system, derive the Ehrenfest 
momentum and force theorems, the Hellmann-Feynman and the virial theorems. In general 
there is a non-vanishing fluctuation in the subsystem average valueAof an observable. 
;bus unlike a total system, the subsystem average of the commutator of H and an observable 
(2 in general does not vanish and new relationships are obtained for a subsystem which 
relate its properties to virtual fluxes in corresponding quantum currents through its 
bounding surface [ 161. 

We are interested in defining the average energy of a subsystem and for this purpose we 
need the subsystem sta_tement of the virial theorem. This theorephis obtained [4,6] by 
setting the generator G in eqn (62) equal to the virial operator r*p, the product of the 
position and momentum coordinates for an electron. This yields 

2T(n) = - V ( n )  (63) 

where T(R), the kinetic energy of R is obtained by integration of either of the kinetic 
energy densities given in eqn (52) over a. The quantity V ( n )  is the virial of the 
Ehrenfest force exerted on the subsystem. It is expressible in terms f the quantum 
mechanical stress tensor, which in turn is a functional of the one-matrix rT1)(r,rk). The 
energy of n is defined as 

E(n) = T(n) + v ( n )  (64) 

The reader is referred to reference [6] for a complete discussion of this topic. It is 
however, important to note that only for a quantum subsystem can the virial theorem be 
derived variationally from the principle of stationary action. pile one can partially 
integrate Heisenberg's equation of motion for the operator rep over any arbitrarily 
defined region of space this does not yield an expression which is the analogue of the 
virial theorem for the total system for two reasons: the kinetic energy is not uniquely 
defined for a subsystem with arbitrarily defined boundaries and the virial for an 
arbit.rary subsystem contains a spurious contribution, either positive or negative in sign, 
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arising from the nonvanishing of the integral of (.h2/4m)v’p. The vanishing of this 
integral and the unique definition of a kinetic energy for an atom are both consequences 
of the quantum boundary condition of zero flux, eqn (43). The difficulty in partitioning 
a total energy enters in the division of the potential energy of interaction between the 
subsystems. A force however, is a local quantity and is determined by the divergence of 
the quantum stress tensor, -v*a(r). The virial of this quantity yields the corresponding 
potential energy of the electronic charge located at r and in this manner the potential 
energy is transformed into a local quantity which may be separately averaged over each 
subsystem and thus, partitioned into separate atomic contributions. Any property M of a 
total system is expressible as a sum of atomic contributions 

M = p ( n )  

TRANSFERABILITY AND ADDITIVITY OF ATOMIC PROPERTIES 

The knowledge of chemistry is ordered, classified, and understood by assigning properties 
to atoms and functional groups and then relating the properties of the total system t o  
those of its constituent atoms. The atoms defined by theory provide the physical basis 
for this hypothesis in the following way: (1) They are the most. transferable pieces of a 
system that one can define in real space and they thus maximize the transfer of 
information between molecules at the level of the charge density. ( 2 )  The average value 
of a property for the total system is obtained by s m i n g  the atomic averages for the same 
property over all the atoms in the molecule, eqn (65). ( 3 )  The most iniportant 
characteristic of an atom is that the constancy in its properties, including its 
contribution to the total energy of a system, is observed to be directly determined by the 
constancy in its distribution of charge. When the distribution of charge over an atom is 
the same in two different molecules, i.e., when the atom or some func:tional grouping of 
atoms is the same in the real space of two systems, then it makes the same contribution to 
the total energy in both systems. It is because of the direct relationship betwen the 
spatial form of an atom and its properties that we are able to identify them in different 
systems. This relationship has its basis in the observation that the atoms of theory 
respond only to changes in the total force exerted on their charge distributions and not 
to changes in the individual contributions to this force, changes which are large even 
between closely related systems, be they members of a homologous series or chemically 
similar in structure. If it were not for this property of responding only to some net 
field (actually the virial of the total Ehrenfest force) rather than to individual 
potential contributions, there would be no chemically recognizable atoms or functional 
groups. 

The relationship between the form and the properties of an atom are most evident in the 
limit of an atom being transferable between systems without change. The resulting 
constancy in its properties, together with the fact that the value of a property for the 
total system is given by the sum of the atomic contributions (point 2 above), then leads 
to the existence of atomic or group additivity schemes. The most important and 
fundamental of these is additivity of the energy, and one of the earliest examples of this 
was observed for the homologous series of saturated hydrocarbons [17]. 

It has been shown that the methyl and methylene groups defined by the theory of atoms in 
molecules account for the additivity of the energy observed in the normal hydrocarbons and 
for the deviations in this additivity found for small cyclic and bicyclic molecules, 
deviations which are used as the basis for the experimental definition of a strain energy 
[18,19,20]. The observed incremental differences in the heats of formation of the 
hydrocarbons yield measured values for the energies of the methyl and methylene groups. 
The energies assigned to these groups are independently determined by the theory of atoms 
in molecules. That this assignment leads to energies for the transferable methyl and 
methylene groups equal to their incremental values as determined by the total energies, 
confirms that these are the atoms of chemistry. 

The charge distribution of the transferable methylene group of the normal hydrocarbons is 
found to undergo a small perturbation, corresponding to a shift in charge from the 
hydrogens to the carbon, when the group is placed in a small ring system with geometric 
strain. In cyclopropane and cyclobutane for example, these small changes in the charge 
distribution lead to small increases in the energies of the methylene groups in these two 
molecules relative to the standard value. The calculated increases correspond to the 
observed strain energies for these molecules providing further evidence that the atoms of 
theory recover the measureable properties of the atoms of chemistry. As a final, related 
example, it is found that the energy of the methylene group in cyclohexane is predicted by 
theory to be equal to that found for the standard group, a result again in accord with the 
experimental heats of formation which demonstrate that this molecule does not possess a 
measureable strain energy. Other properties parallel the constancy of the charge 
distribution of the transferable methyl and methylene groups as has been demonstrated for 
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the populations, group dipole (and other) moments, correlation energies and atomic volumes 
[ZO]. An atoniic volume is another property that has been shown experimentally to be 
additive in the hydrocarbons. 

The properties of atoms in molecules can be measured experimentally and quantum mechanics 
predicts these properties as it does the properties of the total molecule. 
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