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Abstract - The configuration interaction method has proven to be quite effective 
for the treatment of correlation effects in atoms and small molecules. The 
non-relativistic electrostatic Hamiltonian employed in such calculations is 
not adequate for the description of a number of key electronic structure effects, 
however, particularly when term splittings for states of high multiplicity 
are of interest or quite generally when heavy atoms are involved (from transition 
metals onward). The extension of CI techniques to the treatment of relativistic 
effects is not straightforward because of the spin-dependent nature of the 
interactions involved, but also because the operators most generally considered 
in this connection are not bounded from below and thus do not lend themselves 
to the use of standard variational methods. In this work two different approaches 
are surveyed which deal with these difficulties, the Breit-Pauli perturbative 
formalism and the use of projected Hamiltonians for which variational procedures 
are valid, and results for both types of calculations are discussed. 

INTRODUCTION 

Over the past two decades there has been much progress in developing computational 
methods which describe the electronic structure of atoms and molecules. These techniques 
generally employ basis set expansions and correspond to an approximate solution of 
the non-relativistic electronic Schrodinger equation at either the self-consistent 
field (SCF) or configuration interaction (CI) levels of treatment. The use of a purely 
electrostatic Hamiltonian has the drawback of being incapable of describing a number 
of relativistic effects, including various types of zero-field splittings which become 
increasingly important for systems whose constituent atoms come from the second and 
higher rows of the periodic table. The most successful approach to including such 
relativistic effects in the theoretical treatment involves the solution of the Dirac 
equation, but its use of four-component spinors instead of the two-component basis 
functions of the Schrodinger equation poses significant obstacles which preclude a 
straightforward extension of the above non-relativistic SCF and CI computational methods 
beyond the level of an electrostatic Hamiltonian. To preserve the two-component structure 
to a maximum extent in a relativistic treatment, various reductions of the Dirac equation 
have been proposed (l), which in effect provide a more comprehensive Hamiltonian operator 
containing the spin-orbit, spin-spin, orbit-orbit and other relativistic potential 
inter ctionz as well as a correction to the kinetic energy. Because these terms vary 
as r or p it is not possible to treat them in a strictly variational manner (l), 
however, since such a procedure inevitably results in the generation of unphysical 
charge distributions and total energies lying well below their experimental counterparts. 
Essentially two approaches have been attempted to date to circumvent this difficulty 
and still retain as far as possible the two-component methodology of the SCF and CI 
computational techniques. The first of these, the Breit-Pauli method, simply treats 
the short-range operators to at most second-order in perturbation theory, based on 
non-relativistic zero-order solutions of the Schrodinger equation, while the second 
involves the use of a somewhat altered version of the Breit-Pauli Hamiltonian (2) 
which does afford itself to a variational treatment. Both of these approaches will 
be illustrated in the present contribution, with the emphasis on the manner in which 
the computational techniques of more conventional ab initio many-electron calculations 
need to be altered to obtain an optimal description of the desired relativistic effects 
of systems containing heavy atoms. 
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APPLICATION OF BREIT-PAUL1 FORMALISM EMPLOYING CI 
(CONFIGURATION INTERACTION) WAVEFUNCTIONS 

From a computational point of view the first step in carrying out the Breit-Pauli 
treatment of relativistic phenomena is to obtain a zero-order set of solutions for 
the corresponding non-relativistic Schrodinger equation. The wavefunctions generated 
by conventional CI programs are clearly very well suited for this purpose. The next 
step involves the evaluation of matrix elements between pairs of such multi-determinantal 
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functions over the various Breit-Pauli operators H'. The spin-orbit interaction (term 
H of Ref.1) is most commonly employed in such calculations because it leads to important 
multiplet splittings not accounted for in non-relativistic theory. The major technical 
difficulties which arise in such computations may be appreciated from the following 
considerations. The first-order correction to the energy of a given state vanishes 
for the type of real functions produced by CI programs, so it is necessary to go to 
second order in perturbation theory in general. An exception of sorts occurs for spatially 
degenerate states, in which case the main effect often comes from the matrix el ment 
between their different compgnents. The simplest such class of systems are the 'n 
species, in wh'ch cas the < n IH I n > spin-orbit matrix element is required. As 
a result the *ll muftiB?etsYare separated in contrast to their degenerate 
status in non-re?d&vistdz theory. A whole series of such calculations are available 
in the literature (3-5) and the indication is that such a theoretical treatment results 
in a uniformly accurate prediction of the experimentally observed zero-field splittings, 
generally underestimating the measured results by from 5 to 10%. 

To go further in this development, however, it is necessary to employ second-order 
perturbation theory, in which case interactions with the whole range of zeroeth-order 
solutions need to be considered in principle. At this point it is clear that the method 
can succeed only if the infinite series implied by second-order perturbation theory 
can be safely truncated. In order to test this possibility it is important to have 
a large series of zeroeth-order solutions available, but in processing the corresponding 
numerical data it is evident that the more weakly interacting exctied states can safely 
be employed at a lower level of approximation without adversely affecting the overall 
accuracy of the computations. For this purpose it is convenient to employ relatively 
small CI expansions ( 6 )  for the more weakly interacting states, for which purpose 
the use of configuration selection techniques (7) is particularly well suited. A 
configuration-driven CI algorithm such as the Table CI technique (8) allows for the 
evaluation of only those Hamiltonian matrix elements which are actually required when 
employing selected CI subspaces. A variation of the same technique has also been 
implemented for evaluation of the spin-orbit matrix elements between the zeroeth-order 
CI wavefunctions (9). The dependence of the magnitude of the spin-orbit matrix elements 
on the size of the CI wavefunctions employed is shown in Table 1 for the NBr molecule 
(10). Expecially when attention is centered on the ultimate goal of these computations, 
it is seen that considerable computation time can be saved by restricting the size 
of the CI expansions in this manner without any significant change in the final calculated 
results such as zero-field splittings or transition probabilities. 
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Table 1. Comparison of calculated spin-orbit matrix elements (cm ) obtained for two 
different configuration selection thresholds T (phartree) for various pairs 
of zeroeth-order CI wavefunctions for the NBr molecule. 

'A 1 1c+ 2lA 21z+ 
T=10 T=40 T=10 T=40 T=10 T=40 T=10 T=40 

3c- -0.10234 0.05971 439.62592 445.24558 0.49771 -0.04359 416.09390 427.67499 

'A 626.03914 625.39814 -0.15857 2.72708 -820.61001 -832.35531 1.12188 3.62547 

Z32- 0.10227 2.62267 -610.51128 -666.80461 -1.01364 -3.51867 -862.84421 -866.31999 

332- -0.00336 -0.02198 -4.45584 -5.95292 0.00664 0.02002 -3.00013 -2.03021 

In practice the most convenient way of proceeding is simply to form the spin-perturbed 
wavefunctions of the zeroeth-order CI wavefunctions with the help of the first order 
expression 

C. ik (l) = H ~ ~ ~ / ( E ~ ~ - E ~ ~ )  , (1) 

Alternatively a small secular problem can be solved involving JI 
species employing the combined Hamiltonian H +H 
but care must always be taken not to include excited species which possess very compact 
charge distributions and thus lead to 797 inevitable variational collapse expected 
for this operator. With the use of 
its corresponding properties, including the energy. 

Ancther possible simplification in this second-order procedure is to employ only the 
one-electron part of H in the matrix element computation. Again the advisability 
of this procedure must'ge judged on the basis of the importance of a given matrix 

and all perturbing 
which leads 60 quite similar results, 

0 so 

6k in eq.(2) it is then possible to evaluate 
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State 1 State 2 Treatment A Treatment B 

LA 3A 694.4 533.0 

% +  3 c -  484.5 498.5 
l c +  3c- 1267.0 1111.6 

element in the overall computations. Sample data for the SeS molecule (11) are given 
in Table 2. In this case the approximation is generally not good enough for quantitative 
practice, but rather for more analytical purposes. The fact that the two-electron 
interaction is less important numerically than the nuclear term is a direct consequence 
of the short-range nature of the spin-orbit operator. The concept of shielding of 
the nucleus by the electrons so familiar to the quantuy chemist is a consequence of 
GauB's law and thus a specific characteristic of an r potential. The relative diffuse- 
ness of the electron cloud greatly decreases the effect of the two-electron term relative 
to its one-electron counterpart, particularly as the charge of the nucleus increases. 
Since the other Breit-Pauli operators are also characterized by an rT3 dependence 
it can be assumed that a similar situation exists for them, at least for those species 
for which both one-electron and two-electron terms exist, and it will be seen that 
considerable advantage can be taken of this fact when the discussion turns to variational 
two-component treatments in the following section. 

Table 2 .  Comparison of spin-orbit matrix elements (cm ) obtained with different 
levels of treatment (A: single configuration, one-electron operator only; 
B: CI wavefunction, one- and two-electron operator) for various pairs of 
states for the SeS molecule in its equilibrium geometry. Absolute values 
are given, but the phases agree in each case for the two treatments. 
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State 1 State 2 Treatment A Treatment B 

3$ 3n 605.0 542.2 
3 2 -  Inx 605.0 519.7 
3n 1AX 605.0 527. a 

3n 3TI 633.5 596.6 

Inx 3ny 633.5 604.9 

InX 3ny 633.5 604.1 

232.9 191.5 

InY 3 c +  232.9 199.2 

3nY 3 e T  

3ny l c +  605.0 492. a 

3nx 3c+ 229.8 190.7 
lTIX 32 + 229.8 175.4 
3n 1A 607.5 539.2 
3n 3c - 607.5 542.9 

3c - 607.5 518. a 
1A 607.5 528.6 

Y 

Advantage of the dominance of the one-electron spin-orbit term can also be taken in 
another context, namely in determining the key phase relationships which exist between 
different degenerate components of the zeroeth-order basis. In the classic work of 
McWeeny describing the implementation of spin-orbit procedures (12), repeated use 
is made of the Wiqner-Eckart theorem in conjunction with Wigner 3j coefficients, but 
in practice it must be recalled that the definition of the latter quantities is predicated 
upon the existence of certain phase relationships for the pertinent basis functions, 
in this case CI wavefunctions, employed in the treatment. For different M components 
of degenerate states it is straightforward to impose the necessary phase $elationships 
since typically only the component with M =S is explicitly computed for the zero-order 
(spin-independent) Hamiltonian. For spati% degeneracies the situtation is far less 
clear, however, because species of more than one irreducible representation of the 
full point group are generally obtained together in conventional CI programs because 
of the convenience of working in effective Abelian group symmetries. As a result the 
phase relationship between such spatially degenerate components is left to chance 
and it is necessary to employ caution in the application of standard formulae for 
matrix elements involving such species. Perhaps the simplest means of determining 
the required phase relationships in this situation is to work out the corresponding 
one-electron matrix element for the leading terms in the respective CI wavefunctions. 
Because of the dominance of the nuclear contribution to such matrix elements the signs 
of these quantities are invariably determined by the one-electron portion of the operator. 
In practice then it is only necessary to know the absolute value of a given H matrix 
element obtained with the full two-electron operator and the corresponding mu?%- 
determinantal CI wavefunctions, while using the above results for the dominant terms 
with the one-electron portion to determine the phase needed for a particular application. 
At the very least this procedure allows one to confirm the computed results with very 
little additional effort and thus avoid the pitfalls of working with degenerate pairs 
with non-standard mutual phase relationships. 

In order to check the convergence of the pertubative series it is well to calculate 
a large number of zeroeth-order CI wavefunctions. Typically for a linear molecul 
r ated in C symmetry four roots are obtained for each spin and spatial type ( 
"'A etc.), giving a total of 32 such functions if attention is restricted to singlet 
and $riplet species only. These functions are then used as input to obtain all possible 
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non-zero matrix elements between them for both the perturbing Hamiltonian and various 
transitipp moment operators (usually electric dipole and quadrupole and magnetic dipole). 
The Cik quantities are then calculated by means of eq.(l) and the final spin-mixed 
wavefunctions of eq.(2) are formed accordingly. Since all the transition moment operators 
mentioned above are spin-independent, it is not necessary to employ other than the 
conventional CI property routines for this purpose, in which it is assumed that both 
participating wavefunctions possess the same values of the S, M quantum numbers. 
For most applications it appears that a set of zeroeth-order fugctions of the above 
dimensions is adequate for the purpose at hand, but obviously this is a point which 
requires careful attention in a given application. One possible concern is the fact 
that Rydberg states exist in large numbers in the neighborhood of a given perturbed 
state. Even if the corresponding spin-orbit matrix elements H' are relatively small 
between such species, it is possible for the Rydberg states toikave a non-negligible 
effect because their very diffuseness tends to increase the magnitude of their dipole 
and quadrupole matrix elements. Experience seems to indicate that such convergence 
problems are most likely less critical than those connected with the choice of A 0  
basis for the overall treatment, as well as the more deeply founded theoretical 
deficiencies inherent to the method as a whole. 

This situation is illustrated by Table 3 in which the co p ta ion of the transition 
probabilities for various mechanisms is shown for the b'ZY-xf2 - transition in the 
SeS molecule (11) . The corresponding experimental lifetime dataOhave recently been 
measured experimentally by Fink and coworkers (13) and they indicate that the computed 
electric dipole transition moment p is 2.5 times s a le than that observed. The 
ratio of the electric and magnetic %pole moments ('2'-X5Z- ) comes out much better 
in the calculations, with p /M 
is 19.69. It should also be0adaed that the experimental determination of the above 
ratio can be obtained to notably better accuracy than either p 
so there is some hope that the calculations are more accurate ghan might first have 
been thought. It also should be emphasized that the circumstances accompanying such 
experimental determinations are such that even order-of-magnitude accuracy can be 
of considerable benefit. The present results for SeS are comparable in accuracy to 

2 '  those obtained in an earlier theoretical study involving the isovalent species 0 
S2 and SO (14), so it seems likely that such methods are capable of a quite consistent 
description of spin-orbit splitting and intensity data for systems including atoms 
at least as heavy as selenium. It also is well to point out that the Breit-Pauli approach 
has also been successfully applied to the ca culation of non-radiative transition 
probabilities, notably in the case of the O2 molecule (15), with the aid of the Fermi 
Golden rule and the spin-orbit perturbation. 

being computed as 20.20 while the experimental value 

or M1 themselves, 

i 

Table 3 .  Computation of transition moments (atomic units) for various operators employing 
the Breit-Pauli approximation. Given are the electric dipole Mu and quadrupole 
Q, matrix elements for pairs of zeroeth-order wavefunctions (multiplied by 
the appropriate spin functions) and their contributions (E, and a,) to the 
overall result of -0.02236i(MU) and -O.22qO+i(Qu& a,u. respectively for the 
corresponding spin-perturbed CI states (b 2 - X 2 ) 

* 
State 1 State 2 C1 C2/i Ma %/i Po vo/i 

32 - "- -0.1516 0.2874 0.04357 -0.8736 0.132442 
32- 23c- -0.0131 1.3786 -0.01806 11.0720 -0.145043 
1 2  + 1 2  + 0.1516 -0.2652 -0.04021 -0.9784 -0.148328 
3n 3n -0.00026 -0.2777 0.00007 6.6352 -0.001745 
3n 3n -0.00026 -0.2698 0.00007 6.7059 -0.001763 
3ny 23n: 0.00017 0.0107 0.000001 0.1122 0.000020 

2 3= 0.00017 0.0107 0.000001 0.1052 0.000018 

2311: 3ny -0.00015 0.0107 -0.000001 0.1122 -0.000017 

2 3fl 3nx -0.00015 0.0107 -0.000001 0.1053 -0.000016 

0.00010 -0.4003 -0.000041 -14.2306 -0.001452 

0.00010 -0.3975 -0.000041 -14.2081 -0.001449 

2% ' '2' 0.00780 -1.0421 -0.008128 - 8.3212 -0.064906 

232 - 3c - 0.00030 1.3786 0.000413 11.0720 0.003322 

2 3 ~  - 2 3 ~  - 0.00003 -0.3705 -0.000010 - 3.9772 -0.000103 

3n 

23nY 23nY 

23nX 23nX 
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VARIATIONAL TREATMENT OF RELATIVISTIC EFFECTS IN TWO- 
COMPONENT METHODS 

171 

The preceding section serves to illustrate both the advantages and disadvantages of 
the Breit-Pauli approach for the calculation of relativistic phenomena. On the one 
hand the nature of the effects for a large range of applications is perfectly consistent 
with such a low-order perturbation theory approach, while on the other, it is clear 
from a technical standpoint that the approximations being made are not always justified. 
Especially when the agreement with experimental data is not satisfactory, one is faced 
with the realization that traditional means of improving the calculations in non- 
relativistic treatments may not be employed in the context of the Breit-Pauli 
approximation because of the short-range nature of the quantum mechanical operators 
involved. With this observation one may justifiably ask whether another set of operators 
might not exist which does not suffer from the unboundedness property which prevents 
the use of variational techniques in the Breit-Pauli approximation. Especially since 
the Dirac equation involves only bounded operators, it would seem that a suitable 
reduction to a two-component theory could be found which does not involve the use 
of unbounded species. The affirmative answer to this question was provided by Foldy 
and Wouthuysen in the early 1 9 5 0 ' s  ( 1 6 ) .  To appreciate this development it is helpful 
to recall that the Dirac equation may be looked upon as a four-dimensional matrix 
equation. The Dirac Hamiltonian HD is a non-diagonal matrix of quantum-mechanical 
operators, whose off-diagonal elements are responsible for the coupling between electron 
and positron components of the overall wavefunction. Whenever one sees a matrix equation 
of the form 

A l ,  = E l ,  ( 3 )  

there is always the possibility of applying a similarity transformation U to it so 
as to obtain a diagonal form and thus uncouple the associated differential equation 
into its individual parts. In the present case this would simply be a series of four 
Schrodinger-type equations; each of the diagonal elements of the resulting operator 
matrix U W U  would serve as the Hamiltonian for these Schrodinger equations. The only 
difficulty with this line of approach is to find the matrix U which accomplishes the 
desired diagonalization, but Foldy and Wouthuysen were also able to provide answers 
on this point. To begin with they were able to diagonalize the free-particle Dirac 
equation exactly with the help of the matrix of operators defined as: 

where a and B are the familiar matrices in Dirac theory, m and E are diagonal matrices 
whose elements are respectively the particle masses and the freePparticle kinetic 
energies 

2 E = ( P  + 
P 

introduced by Einstein in 19@. The 
Dirac matrix of operators HD is 

u t HDFP u 

whereby it can also be shown that 

u t u = 1  

( 5 )  
2 1/2 

m )  

result of the diagonalization of the free-particle 

= B E  
P 

( 7 )  

i.e. U is a unitary matrix. 

When the Coulomb potential is introduced into the Dirac equation, it is necessary 
to look for another unitary operator to accomplish the analogous uncoupling of the 
differential equations. For this purpose Foldy and Wouthuysen were only able to offer 
a formal solution (17), but recently Sucher and coworkers have suggested other closely 
related apFroaches to this problem. In the first variant of this type it was suggested 
to simply employ the free-particle transformation U of eq.(4) to the Dirac equation 
for a system of particles in a central field. As noted above the resultant four- 
dimensional Dirac matrix is not diagonal but it was proposed in effect to proceed 
as if it were; this step is accomplished formally by adding a projection operator 
to U which eliminates all but the positive-energy components in the Dirac spinor. 
More importantly these authors were able to prove that the remaining Hamiltonian-like 
operators on the diagonal of the transformed matrix are bounded from below, in contrast 
to these employed in the Breit-Pauli approach. For example the one-elecfron spin-orbit 
operator appears in this-2pproach with an additional factor (E (E +m)) , which is 
easily seen to vary as p 
has the effect of tr nsforming the r-' dependence of the spin-orbit interaction to 
a more long-range r 

in the limit of high velocities. Th& ppesence of this factor 

-7 behavior whenever relativistic speeds are approached, thereby 
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avoiding the unboundedness property associated with the corresponding Breit-Pauli 
version of this interaction. Similar damping factors are obtained in this way for 
each of the potential terms in the Breit-Pauli formulation, including the quantity 
((E +m)/2E ) for the Coulomb operator itself, which varies from unity to a value of 
oneehalf iR the limit of lar e momenta. It also leads to a one-electron term 
damped with same (E (E +m))-' factor as for the spin-orbit term, which can be shown 
to contain the DarwEn Enteraction, another key element in the Breit-Pauli Hamiltonian. 

From a practical standpoint the main difficulty in employing the resulting operators 
is to evaluate matrix elements for them in some appropriate functional basis. Although 
many of the one-electron integrals required can be evaluated in closed form in momentum 
space (18), another approach has been studied which simply makes use of a matrix 
representation of the corresponding operators (13). For the free-particle kinetic 
energy of eq.(5), which replaces the unbounded p mass-velocity correction of the 
Breit-Pauli Hamiltonian in the transformed Dirac equation, for example, the required 
matrix can be constructed by first diagonalizing the non-relativistic kinetic energy 
operator, replacing the resultant diagonal elements with the corresponding E quantities 
represented as functions of these eigenvalues, and then performing the reverge 
transformation to the original A0 basis. This technique leads to the same integral 
values in the limit of a complete A 0  basis as are obtained by direct integration, 
but for normal basis sets the results are different. Explicit checks in which the 
E integrals over gaussian orbitals were compared when obtained with both methods 
(?9,20) indicate that the matrix representation of such complex operators performs 
quite reliably. For moderately large basis sets there is still the slight disadvantage 
that the variation principle is not strictly obeyed when this technique is employed 
to form the Hamiltonian matrix representation, but in practice this difficulty is 
far outweighed by the flexebility it affords in the use of relatively complicated 
operators in quantum mechanical calculations including various types of relativistic 
corrections. In particular it allows existing non-relativistic SCF and CI computer 
codes to be easily modified for the purpose of carrying out the desired calculations. 
All that is required is an additional transformation step similar to that employed 
to obtain the required integrals in an orthonormal basis in non-relativistic computations; 
the procedure is also applicable to two-electron operators (20). 

Basis set calculations with the free-particle projected Hamiltonian were first reported 
by Almlof, Faegri and Grelland (21) and by Hen of the laboratory (20,22) for the 
hydrogenic ion series. The first and most important result of these calculations is 
that they demonstrate that relativistic corrections can be treated with variational 
methods when certain classes of Hamiltonian operators are employed. The agreement 
between ionization energies computed with this method and those predicted by the Dirac 
equation is by no means perfect, but even for Z=82 (lead) the free-particle projector 
result for the Is ground state of 0.5812 hartree/Z' is in better concordance with 
the Dirac value of 0.5552 hartree than is the non-relativistic result (0.5000 hartree). 
At still larger 2 values the free-particle projector results tend toward even larger 
overestimations of the one-electron binding energy, but it must also be recalled that 
in the type of ab initio computations of greatest interest the degree of ionization, 
even when shielding effects are taken into account, is well below that of the type 
of heavy atom ion for which the computed results begin to deviate strongly from those 
of the Dirac four-component relativistic treatment. Moreover, by employing a different 
unitary transformation which takes account of external field effects, much better 
agreement is possible between the results of the two- and four-component treatments 
for one-electron atoms ( 2 3 ) .  

In the present context the key question is how to carry these encouraging results 
for the relativistic treatment of hydrogenic ions over to more complicated many-electron 
atoms and molecules. The first level of approximation which can be employed is to 
retain only the one-electron spin-independent operators which occur in the two-component 
relativist'c Hamiltonian operators described above. In particular the damped Coulomb 
and p1 rl-* p terms can be added to the free-particle kinetic energy E of eq. (5) 
to replace the conventional Coulomb plus p /2m one-electron operator of'standard 
non-relativistic calculations. In this approach the key zero-field splittings most 
often sought in the Breit-Pauli formalism discussed in the first part of this paper 
are still not accounted for, but a number of key relativistic effects which are important 
for the accurate representation of the charge distributions in heavy atoms and molecules 
can be handled effectively in this manner. The first such application of this type 
has been reported recently by HeR and Chandra (24) of this laboratory for the silver 
hydride molecule, and this work was able to show that the required contraction in 
the equilibrium internuclear distance arising from the influence of relativistic 
corrections does occur when such a one-electron Hamiltonian is employed. This finding 
naturally raises the question as to the desirability of going to the next highest 
level of approximation, namely to also include two-electron versions of the 
relativistically corrected potential terms. To date there has been no thorough study 
of this question as to the relative merits of these two levels of approximation. 

-pl (Z/rl)pl 
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The other direction which can be taken in this connection is to also include the 
spin-dependent operators in the variational treatment, beginning perhaps with only 
the one-electron spin-orbit operator. This development is much more ambitious from 
a technical point of view because it requires a thorough reorganization of conventional 
SCF and CI computer codes, since these are heavily dependent on the use of a spin- 
independent Hamiltonian. The situation is somewhat simpler for atomic systems because 
then a complex ( j - j  coupled) basis can be employed which leads to a set of exclusively 
real one-and two-electron integrals, but for molecules the difficulties are notably 
greater. It is probably safe to say that for the next few years at least that a compromise 
procedure for including spin-dependent effects will be favored, namely to employ 
relativistically optimized charge distributions, based on the use of a modified 
spin-independent Hamiltonian, to treat the spin-orbit and spin-spin interactions via 
perturbation theory. In any event it seems fair to say that the advent of projected 
relativistic two-component methods will have a decisive impact on the field of heavy 
atom and molecule electronic calculations in the immediate future. 
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