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Fundamental problems in the calculation of
interaction potentials

R.McWeeny

Dipartimento di Chimica e Chimica Industriale, Universita di Pisa, Italy

Abstract - The energy of inferaction of two general molecules is reduced directly to a sum of physically
recognizable terms, for which explicit expressions are given. These expressions contain only quantities (e.g.
electron densities and certain generalized dynamic polarizabilities) which may be calculated, ouce and for all
time, for the isolated molecules and then used to obtain the interaction energy for any given conformation.

INTRODUCTION

Most of chemistry is concerned with the tnteractions hetween molecules, usually in the fluid phase and
consequently, on average, at relatively large distances. Such interactions are generally regarded as ‘weak’ -
much weaker than those involved in chemical bonds - and are often referred to as “non-bonded interactions”
or “van der Waals interactions” (from the equation of state in which they were first invoked).

The interaction energy associated with two molecules (denoted in this paper by A and B) is so small compared
with the total electronic energies of A and B separately that any attempt to calculate it non-empirically
is bound to meet enormous problems. To see why this is so it is sufficient to consider the interaction
between two nitrogen molecules: the form of the interaction potential (Fig.1) is typical, indicating weak
attraction at long range, a shallow minimum in the ‘van-der Waals region’, and sirong repulsion at short
range. The quantity of interest is the depth of the shallow minimum: for Nj..N, this is of the order -0.1
kJ mol=! (=6 x 1075 E}); but the energy of each molecule is about -109 E), and an ab initio calculation of
this quantity at the Hartree-Fock limit would be in error by a little under 1%, this being the ‘correlation
error’ whose removal requires a vast computational effort even for small molecules. In this example, then,
the errors in calculating the energies of the separate molecules are likely to be at least 10 000 times the
required interaction energy! The situation is of course much worse for larger molecules, whose total energies
increase rapidly with the number of inner shells but whose interaction energies remain small.

=) No detailed discussion of previous efforts to calculate interaction
energies will be attempted here. Tt is suflicient to distinguish two
main types: both essentially work on the upper curve (broken line)
in Fig.1, since removal of the correlation energy is not generally
feasible, and assume that the depth and position of the actual
minimmum will be adequately accounted for (i.e. that the upper
and lower curves will exhibit the same general features); but one
Eint ;_ \: @5 EEy fan?il)./ of met.hods starts from t..he sepqraie molecules, introducing
Epp their interaction as a perturbation, while the other starts from the
‘supermolecule’ in which AB is treated by conventional methods as

a single system whose geometry is varied.

correlation
error

Fig.1 Typical potential curve
(a) exact  (b) Hartree-Fock

The perturbation methods encounter certain difficulties (ref.1) in defining the Hamiltonian for the ‘unper-
turbed’ system, connected with the incorrect symmetry imposed by putting electrons 1.2,...¥ 4 in molecule
A and the remaining Np (= N — N,4) in molecule B. The supermolecule approach encounters problems
connected with the superposition of the separate basis sets used in constructing wavefunctions for the in-
dividual molecules; for the supermolecule calculation uses a much larger basis than that used for either
molecule separately, giving a spurious lowering of the supermolecule energy relative to that of the fragments
and consequently an exaggerated depth of the minimum - an effect which has come to be known as a “basis
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set superposition error”. Ingenious ‘counterpoise’ methods of correcting for this error have been devised
(e.g. ref.2) ; they depend basically on using the (ull orbital sct {i.e.for both molecules) even for A and B
separately, in the hope that the error in the upper curve (Fig.1) will then be more uniform over the whole
range. Efforts to pass from the upper curve to the lower curve (by admitting correlation effects) are then
usually made by perturbation theory; and often (e.g. ref.3) the intermolecular terms in the correlation en-
ergy are identified with the long-range interactions (the *dispersion energy’ of London (ref.4) while the large
intermolecular terms from the supermolecule calculation are assumed to account for the short and medium
range behaviour. Clearly such procedures are not completely satisfactory and it would be better to attempt.
a direct calculation of the interaction energy itsell by separating it theoretically from the total energy and
expressing it in terms of properties of the free molecules. There are problems in this approach too; but con-
siderable progress has been made, and explicit expressions for the principal terms in the interaction energy
will be given in later Sections. Although we normally consider the ground state, it will be evident that the
formalismi may be applied more generally.

GENERAL APPROACH

In order to introduce properties of the free molecules, A and B, it is necessary to assume knowledge (in
3 23

principle only) of the exact wavefunctions of hoth systems in isolation. Let us denote these functions hy

O dL, . for A in states a,d’, ... and likewise for B. An exact wavelunction for the two systems in their

ground states (a.b - assumed for the moment non-degenerate), at infinite distance, would then be
AB _ e i1e Al
¢y = KA[® 0, (1)

where &2 contains electrouic variables bfu,, b f s, wbfan ®F contains vatiables bfrq. bfrs. bfreg, (using
i to denote n + N 4), and the operator A correctly imposes antisymmetry with respect to all N variables.
Explicitly,
A= (N epP = (NalNp!/NYA Ay dp, (2)
P

in which A’ = "7 e7T is a sum over all transpositions belween A and B, while A4 and .15 are antisyninetriz-
ers for the separate systems. When the wavelunctions of A and B are already antisymmetric and normalized,
the partial antisymmetrizers A4 and Ap are redundant (and will be discarded) and the normalizing factor

in (1) becomes
K = \/(N!/NA'Ngh. (3)

We adopt this value in all that follows, even when the two factors of the product in (1) begin to overlap
appreciably and give a function which is no longer normalized to unity.

When there is no interaction between A and B the Hamiltonian for the whole system AB is simply /7 =

Hi+ Hp and (1) yields an encrgy
E =< ®}P|H|®P >= £} + EP, (4)

the asymptotic value for the lowermost curve in Fig.l. At finife separations there will be additional terms
on the right in (4) and these will represent the required interaction energy; the aim will be to extract and
calculate these terms directly, without any differencing of enormous total energies, so that even an error of,
say 1%, will only be 1% of the interaction energy - which would be entirely acceptable.

To obtain expressions for the interaction terms we make one fundamental assumption: that the wavefunction
for the whole system AB may be expanded, with adequate precision, in the form

¥ = C.ds (5)

where & indicates a pair of states (e.g.ab,a’d,ab’,a’t,...). This assumption has non-trivial implications,
whenever A and B are not strictly separable (i.e. infinitely remote). Thus, the A- and B-factors in any
function might be constructed from orbital sets { ¢ } and { ¢P }, respectively, which would normally be
assumed complete; but then, by definition, there is a redundancy; for either set alone would be sufficient for
constructing the wavefunction for the whole N-electron system AB and the partitioning into two subsets is
evidently artificial. Moreover, if the partitioning is made, then the N-electron wavefunction would have to
be expanded in terms of products which did not contain always N factors from { ¢ } and N from { ¢F };
there would have to be products with V441 A-factors and N —1 B-factors, for example, associated formally
with “charge transfer’ terms corresponding to A=B¥ etc.. This suggests that the partitioning N = N4 + Npg
should be relaxed and that the expansion (5) should contain terms for all positive and negative ions of A and
B; but, apart from purely technical difficulties, the results of partitioning the basis are inescapable - the full
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orbital set will be overcomplete. In practice, of course, the sets actually used in molecular calculations are
so far from completeness that such inconsistencies are unlikely to be serious as long as the molecules overlap
only slightly. The individual wavefunctions for A and B would then be constructed by conventional methods
(e.g. at a full-CI basis-set limit) from separate orbital sets and for fixed values of N, and Np, usually for
neutral molecules but not excluding the possible admission of charged reference molecules in highly ionic
situations. It is on this somewhat pragmatic level that we extend the use of the expansion (3) from the
long-range region (where it is surely valid) to the shorter range, where it will become increasingly difficult
(owing to charge-transfer and overcompleteness effects) to distinguish two separate molecules or ions.

The leading term in (5) will be denoted by ®o(= <I>;',,B) and we shall choose Cy = I, normalizing later. The
corresponding secular equations are easily set up and solved by a partitioning method (ref.5)and give, up to
second order in ofl-diagonal elements,

_ My Z [Hyo — Myo(Hoo/Moo)]* (6)
1‘[00 [(HO()//‘[OO) - (Hxn/“'['w)]
where generally
Hoy =< O |H|®y >, My =< Ox|Ps > ()

and H is the full Hamiltonian for AB. At long range Moo — | and the leading term in (6) becomes (ref.6)
Ey =< ®AP|H|048 >= EX 4 EP + E4B(clec) (8)

where E' and EP refer to the isolated molecules in their ground states, while
EAB(elec) = E2XE 4 / Vg (r)Pa(aalr)dr + / Va(v) Pp(bblr)dr + / a(1,2)Pa(aalry) Pp(bblra)dridrs  (9)

Here, for example, Py(aa|r) is the electron density for A in state a, while Vg(r) is the potential energy of an
electron at point r in the field of the nuclei of B. The notation “electrostatic” is clearly justified, (9) being
the classical interaction energy of two continuous charge distributions, each with embedded nuclei.

Evidently, at long range, (6) and (8) lead directly to an expression for the interaction energy,
Eint = E— (E} + EB) = EP(elec) + Zap (10)

where the last term stands for the sum in (6). To show how (10) is modified by overlap effects, we develop
the matrix elements in (7) into terms which involve, successively, 0,1,2,... transpositions in the operator .1’
which appears in (2). Thus, with & = a'b’, A = ab,

Hexn = K2 < AGJ®L|H|AGL O >=< ®XOP|H Y erT|®) 7 > (1)
T

where we use the property A% = A and the antisymmetry of the separate molecular wavefunctions. Conse-
quently (ref.7)
Moy =M =MD . (12)a
Hoo=HQ—HY + . (12)b
where, for not too large overlap, multiple-interchange terms rapidly become negligible (ref.8). Before substi-
tuting in (6) we note that all energies are conveniently referred to £ + EF as a reference level by subtracting
this quantity from both E and H; this changes nothing except the interpretation of the lI-terms in (6). Thus,

including up to single-interchange terms and noting that (with the energy-shifted Hamiltonian) H(',:}) 1s given
by (8) with E2 + EP removed, we obtain easily

LB (elec) MYy — Iy

Eine = ’\B(elec)
' Y

+ XS (13)

The first two terms in (13) comprise the electrostatic energy and a nou-orthogonality correction which goes
to zero exponentially as the overlap diminishes; they are of first order in the usual sense, arising from an
expectation value calculated using the ‘unperturbed function’ &:48
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The second-order sum ¥4 p contains the remaining long-range interactions, usually described as polarization
(or induction) and dispersion energies. Since the second-order terms are small anyway, it is unnecessary
to make overlap corrections to the terms under the summation in (6): the denominator is roughly an
electronic excitation energy (typically several electron volts) and is not modified significantly by the presence
of intermolecular terms (typically 1072 — 107 V) which may therefore be ignored; the numerator contains
an overlap term multiplied by an interaction energy, which may also be neglected by comparison with the
zero-interchange term in H,g, as will become clear presently.

To summarize: the interaction energy calculated with a function of the type (5) may be expressed, through
(13), as a sum of terms whose physical meaning is clear; and all terins may be calculated directly, without
reference to the total electronic energy of the molecules, for all distances and geometries excluding those of
closest approach - in which the two systems lose their individuality. We write (3) in the form

Eine = E’;‘b (elec) + EXP (pen) + EAB(ex) + EAB(pol) + EXB(disp) (14)

where the second and third terms (‘penctration’ and ‘exchange’) arise from the square-bracket quantity in
(13), the remaining two from ¥ 45, and now turn to methods of evaluation.

EVALUATION OF THE FIRST-ORDER TERMS

The expression for EAB (elec) has been given already in (9) and requires little discussion. Even when the

wavefunctions &3 and &2 are elaborate multiconfiguration functions, at or near the full-CI limit, the density
functions assume simple forms in terms of the orbitals employed. Thus,

Pa(aalr) = Y " PAgl(x)8 (x)" (15)

r,s

and similarly for molecule B. The integrals in (9) then reduce to sums of 1- and 2-electron terms, giving

Blelec) = EfR+ Y PA < MVBloft > +>_ PE Valg? >
A b (16)
3 PAPE < 6221916168

r.s,t,u

Here, for example, V4 is the potential energy of an electron in the field of the nuclei of molecule A and the
integrals have their usual meanings; all may be evaluated in terms of standard integrals over basis functions,
using appropriate 2- or 4-index transformations.

The next two terms in (9) are much more difficult: they have been considered in detail elswhere (refs.7.8),
even for molecules in spin-degenerate states where alternative spin couplings can lead to alternative inter-
action surfaces. The resultant expressions, although cumbersome, have the merit of complete generality,
being expressed in terms of electron and (for non-singlet states) spin density functions without reference
to orbital approrimations; they could, in principle, be derived from "exact” molecular wavefunctions. For
present purposes, however, we pass immediately to the orbital forms analogous to (16). We specialize also
to molecules in closed-shell ground states of Hartree-Fock form, remembering that since we calculate the
interaction energy directly (not as an energy difference) this should be a useful first approximation: in this

case P = pB = 2¢,,.

rs

A key quantity in the short-range region is the ”generalized overlap” defined by
mAB /PA (aalra;r)) Py (bblr; : vq)dr dr, (17)

in which offdiagonal elements of the density matrices appear. The orbital approximation thus becomes

§BA _ JAB ¢BA .
'nab Z rt‘ tu" ur =4 Z Srs ‘bsr ( lb)

rs,tu

in which the elements of the intermolecular overlap matrix are SPP =< ¢ |of >, quantities whicl all [all
off exponentially with intermolecular distance.

The exchange term in (9) goes over, in the long-range limit, to the well known form for strong-orthogonal
systems (ref.6): it contains an integrand like that in (17) but with an extra lactor lf._,l and the corresponding
orbital form is found to be

EAP(ex) = — 1-77,"3/2)-‘Z<a> L6 BlgleP o (19)
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This quantity is essentially negative and consequently there is an exchange alfraction between nonbonded
systems in singlet states , not the “exchange repulsion” commonly referred to in textbooks.

The ‘penetration energy’ depends on one-electron integrals and for molecules in singlet states invariably
becomes large and positive as soon as overlap becomes appreciable. Again, for closed-shell Hartree-Fock
functions, the general expression reduces to simple form. After considerable cancellation of terms in the
numerator of the square-bracket term in (13) we find

E;;B(pen) =-2(1 - m",‘bB/‘Z)_lF;},B (20)

where, momentarily using the convention that a repeated index (e.g.a,a’,.. or b, ', ..) means summation over
the doubly occupied orbitals (of A or B),

FAB(pen) =< alhlb >< bla > — < alhla’ >< d'|b >< bla >
+2 < bla >< ad’|[ba’ > +2 < bla >< ab'||bb’ >
+2 < bla>< ab’|gla’d >< |V > -2 < bla >< alp’ >< ba'lglba’ >
+(A—B)

(21)

and as usual (A «— B) indicates a similar term with the roles of A and B reversed *.

The expressions given above are easy to evaluate and are capable in principle of giving a good account of
intermolecular repulsions. They are, however, sensitive to the quality of the orbitals used (especially in the
‘tail’ regions) and must therefore be used with care.

POLARIZATION AND DISPERSION TERMS

The last two terms in (14) cannot be evaluated from a knowledge of groundstate wavefunctions; they involve
the response of each system to the perturbation caused by the other and, being of second order already,
will be evaluated without overlap corrections. Here we indicate how both terms may be expressed in terms
of response functions, without making any of the usual restrictive approximations such as the multipolar
expansion of interaction terms in the Hamiltonian.

First we note the long-range forms of E&48 (pol) and EZ2(disp): they derive, respectively, from the sum-

mation in (6) over x = a’b,ab’ and over k = a’'b’ (i.e. over single and double excitations) and become
(ref.6)
AITTA 134 ~ |2
| < @G |HSYf1Pg > |
AFE(Aa — Ad')

Ebe(pol) =— —(d—B) (22)

where (.1 — B) meaus a similar sum for B instead of A, and

| < e lH|e” > |*

a'b’

AE(Aa — Ad’; Bb — Bb)

E('l‘,,B((lisp) = -

a’b’

(23)

Here H is the full Hamiltonian (for AB) while H;}, is an N 4-electron Hamiltonian for the electrons of A in
the ‘effective ficld’ due to B (in its ground state); and the denominators are transition energies, conputed
as differences of expectation values of H for the ground and excited state functions.

With neglect of overlap the matrix elements reduce at once; in (23) for example,
< OANH|®L? >= (_T_—) /1'1"21 Py(ad'|r)) Pg(bb|ra)dr drs (24)
RV EE]

where Py(ad’|ry), for example, is a transition density (for Aa — Ad’) for molecule A, evaluated at point ry.
For transitions which are strongly ‘dipole-allowed’ the integral represents roughly the interaction energy of
two extended dipoles in close proximity; such terms are large, justifying the neglect of overlap corrections as
indicated in (13) et seq.

* VVith the abbreviated integral notation, < 2 ¢2|g|le2¢2 > is of the type < ablgla’t’ > and, for example,
< ablja’t’ > would stand for < ablgla’d’ > —(1/2) < ablg|t'a’ >
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The terms in (22) reduce on noting that, for example,

Na ) Na
Hiyp = HA 4 V) +elp(e)] = £+ 6V (xi) (25)
i=1 i=1

where H4 is the free-molecule Hamiltonian for A, while the sum gives the change due to the electron
distribution of B and the nuclei it contains (i.e. the usual coulomb interactions). The off-diagonal elements
of H* vanish and hence

< @::IH?UIQI: >= /6VI(‘B)(r)PA(aa'(r)dr (26)
which again has a classical interpretation.

The main difficulty in calculating the interaction energy from (22) and (23) is the summation (in principle
infinite) over the excited states of one or both molecules; but this difficulty can be circumvented by an integral
transform which introduces instead certain linear response properties of the ground states, properties which
may be calculated for the individual molecules by standard variational methods. It will be sufficient to
consider (23), introducing the dynamic or ‘frequency-dependent’ polarizabilities (FDPs) which serve in both
cases.

First we write the transition densities in (24) as matrix elements of density operators by introducing an
integral operator with the Schrédinger representation *

Ere(i) = Era(riirh) = ¢:(x:) 83 (x)). (27)

The effect of E',.,(i) on any function ¢(r;) is to replace the variable r; by &}, multiply by the kernel E\ (r;;}),
and integrate over r} to obtain a new function ¥’(r;). If we use E._, to denote the sum over all N electrons,
the effect of the operator on any Slater determinant is to replace ¢, (with either spin factor) by ¢, (with
the same spin factor) or, if no such spin-orbital is present, to produce zero. In terms of these ‘substitution’
operators, the transition densities in (24) become

Py(ad'|v) =< ®})d3

®r >, A=) EAGM)sM )T, (28)

with a similar result for molecule B. We note in passing that any oue-electron operator F' can be written in
terms of the E- operators in the form

F=7% <4|Fl¢e > Eve (29)

r,e
where < ¢,|F'|¢s > is the usual matrix element.

On using (29) and (24) in (23), the dispersion encrgy is represented as the integral (over four volune elements)
of a product of two A-factors and two B-factors, divided by an excitation energy of the form

Ef = B} + E) = B = h(wjy +wpi) (30)
where the w s are excitation frequencies, in good approximation (see (13) et seq.), for the free molecules. Tt

would clearly be an advantage if the whole intcgrand were a product of two lactors, one for A aund one for B:
and such a form may be achieved by using the integral transform

_'__23/ Y (31)
(e+y) 7wy (27 4+w?) (¥ +27)

- at the expense of one further integration, over w. The summations over excited states in (21) may then be
taken inside the integral and performed separately to give a final result (ref.9)

EXB(disp) = — ( f") ( £ ) /(h-l(lrzdr'ldrg(rm-'n)—'/ n,.(d;‘;d';.‘x|iw)n,,((1’,’.{(/f_,|m)dw (32)
0 -

2 4meq

where the II-factors, which are sums over excited states of the separate molecules, are FDPs at pure

* In Fock space the operator is (al,d,o + &Ip’isﬂ) where, for example, al, and @, create or or destroy an
electron in spin-orbital ¢.c. The use of a complete set of spin-orbitals is convenient but not essential to the
argument, which may be formulated also using field operators.
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imaginary frequency’. In general the FDP H(( 'Fiw) determines the first-order change in < ¢ > caused by
an exponentially growing perturbation Fe*t in the form

6 < G >=I(GFiw)est (33)
and may be calculated by any convenient method.

Formula (32) is an exact expression for the dispersion energy and has an interesting physical interpretation.
There are two electrostatic interactions, that for electronic charges in dr; (in A) and dry (in B). bringing
in the factor »3', and that for charges in dr} and dr}, supplying the further factor rf,: these interactions
are multiplied by FDPs (propertios of the individual molecules) which determine how density fluctuations
propagate from point ry to point r{ (in A) or from rs to r4 (in B); and, after a [requency integration, the
results are sumumed over all positions of the four volume elements. The FDPs are in fact propagators.

To introduce orbital approxin:ations it is only necessary to write the operators in each FDP explicitly as in
(29): the integrations then lead to sums of ordinary 2-electron integrals multiplied by FDPs for pairs of the
E-operators. In the most commonly occurring case, where the orbitals are real, the permutation symmetry
of the integrals may be exploited by introducing the Hermitian combinations

Dy = (1/2)(2 =6, )(Ers + Eov)  (r>5) (34)

and restricting the summations accordingly. The final expression (with “charge cloud” notation for the
integrals) is then

A8 (disp) = ——ZZM AR [CAT AR IS
3 (35)

(a0}
X / (D2 ,,qI'W)HB(DW DPF jiw)dw
0
where the FDPs have the form

(GFiw) = — (36)

L Z Qwon < 0|Gln >< n|F|0 >
h (wd, +w?)

n>0

in which F' and G are arbitrary Hermitian gperators, and 0,n denote ground and excited states.

The practical implementation of (35) has been discussed elsewhere (refs.9,10) along with methods of calculat-
ing the FDPs (refs.11,12). Reductions are possible at various levels of approximation, depending on choice of
orbitals and method of calculation of the FDPs. If the orbitals are strongly localized and orthogonal (ref.9)
terms for p # ¢, etc. become very small and (35) reduces effectively to a fourfold summation; while if the
orbitals are SCF MOs, and the FDPs are calculated using time-dependent Hartree=Fock (TDIIF) theory
(also known as the random phase approximation (RPA)), then the summations again reduce significantly in
terms of the RPA eigenvectors (ref.10).

Finally, the polarization energy (22) is expressible in terms of FDPs evaluated at the static limit w — 0. To
see this we write the first term in the form

Z < ®A 81" el >< @i lavi”| e >

(E —E2) =(1/2) / SVA7 ()6 Pa(r)dr (37)

a

lere we have noted that the second-order sum may be written alternatively as either < @;;‘lé"t,imlé‘b;" >
or < 6<I>;,4|6V,(‘B)|<I>;‘ > where §®; is the first-order change of & due to the perturbation 5[':13); and half
the sum of the two forms gives half the change in the expectation value of 61"(5) arising from the density
change 6 Py. But (W:_(,B' may be written, according to (29), as a weighted sum of E-operators in which £,

(switched on exponentially) makes a change 8P, = [I(E,"‘Elf;[w)e“‘ln P2 and (37) then easily reduces to
give (for w — 0)

1/2)/5» D)6 Pa(r)dr = (1/2) Y < o6V P10 > Wa(EAEAI0) < 676V |g:t > (38)
LELD 4T)

On introducing the Hermitian combinations (34), the polarization energy (22) becomes

E&P(pol) = (1/2) Y < 6216V 162 > (DA DAI0) < 6216V > +(.A = B) (39)
r>s
r2q
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where (A — B) denotes a similar term with A,B interchanged. The polarization energy is thus determined
by the same FDPs as the dispersion energy.

Numerical tests (refs.13,14) on small molecular dimers confirm that calculations along the lines of this section
and the last can give a good account of the structures of weakly bound species.

REFERENCES

1. B.Jeziorski and W .Kolos in: Molecular Intertactions Vol.3, H.R.Ratajczak
and W.J.Orville-Thomas (eds.) (Wiley, Chichester, 1982)

2. S.F.Boys and F. Bernardi, Mol.Phys.,19,553 (1970)

3. ASzabo and N.S.Ostlund, J.Chem.Phys.,67, 4351 (1977)

4. F.London, Z.Phys.,63,245 (1930)

5. P.-O.Lowdin, J.Chem.Phys., 19,1396 (1951)

6. R.McWeeny, Proc.Roy.Soc.(Lond.),A253,242(1959)

7. R.McWeeny and B.T.Sutcliffe, Proc.Rov.Soc.(Lond.), A273, 103 (1963)

8. P.D.Dacre and R.McWeeny, Proc.Rov.Soc.(Lond.), A317,435 (1970)

9. R.McWeeny, Clroatica Chem.Acta,57 865 (1984)

10. M.Jaszunski and R.McWeeny, Mol.Phys.,55, 1275 (1985)

11. M.Jaszunski and R.McWeeny, Mol.Phys. 46, 483 (1982)

12. R.McWeeny, J.Mol.Struct.(Theochem).93, L, (1983)

13. C.Amovilli and R.McWeeny,Chem.Phys.Letters, 128,11 (19386)

14. C.Amovilli and R.McWeeny, to be published

15. C.Amovilli, Tesi di Laurea, Universita di Pisa (Italy) (1984)

16. R.McWeeny,J.Mol.Struct.(Theochem),(123, 231 (1985)






