Irreducible tensor method and its application

B.F. Li, H.X. Liu, B.Y. Bai, C.C. Sun and A.C. Tang

Institute of Theoretical Chemistry, Jilin University, Changchun, China

<u>Abstract</u> - The irreducible tensor method is extended from continuous group to the system with point group symmetry. Especially, the V-coupling coefficient from SO(3) to octahedral group is introduced for simplifying the calculation of matrix elements. As an application, the analysis of the spectra of praseodymium penta phosphate is presented.

INTRODUCTION

In this paper, an attempt has been made to extend the irreducible tensor method to molecular system (ref. 1-8). In order to make sufficient use of the generalized Wigner-Eckart theorem in evaluating matrix element, the interactions in molecules are formulated in terms of irreducible tensor set which is associated with a group chain leading from continuous group to point group. Especially, the V-coupling coefficients from SO(3) to point group 0 (ref. 6-8) is factorized from the reduced matrix element to make a simplification of matrix element calculation. As an application, the analysis of the spectra of praseodymium penta phosphate is presented.

IRREDUCIBLE TENSOR METHOD FOR MOLECULAR SYSTEM

Let us consider a system with octahedral symmetry. For configuration $(a_2t_1t_2)^n$ characterized by the irreducible representation a_2 , t_1 and t_2 of octahedral group 0, several group chains stemmed from Lie algebra have been introduced in the treatment of many electron system (ref. 3-13). In this paper, we only consider one of them

$$\mathrm{SO}(28) \supset \mathrm{SU}^{\mathbb{Q}}(2) \times \left\{ \mathrm{Sp}(14) \supset \mathrm{SU}^{\mathbb{S}}(2) \times [\mathrm{SO}(7) \supset \mathrm{G}_2 \supset \mathrm{SO}(3)] \right\}$$
(1)

This group chain is an extension of the well-known one, due to Racah (ref. 5), adapting the octahedral symmetry in quasispin (Q) scheme. When the Russell-Saunders coupling (SxL \rightarrow J) is considered, a subgroup SO_J(3) can be introduced in the group chain (1) by writing

$$\operatorname{so}(28) \supset \operatorname{su}^{\mathbb{Q}}(2) \times \left\{ \operatorname{sp}(14) \supset \operatorname{su}^{\mathbb{S}}(2) \times \left[\operatorname{so}(7) \supset \operatorname{G}_{2} \supset \operatorname{so}(3) \right] \supset \operatorname{so}_{J}(3) \supset 0 \right\}$$
(2)

(3)

(4)

This group chain is suitable for the treatment of an rare-earth ion in the environment of ligand field with octahedral symmetry. If the field is of low symmetry, a subgroup D of the octahedral group can be further introduced in chain (2) in the following manner

o⊃d

Accordingly, an irreducible tensor set can be built up, by means of bi-coupling technique

 $W_{n}^{q} t_{\tau}(SLJ)$

where the superscript t, which is an irreducible representation of group O, arises from the decomposition of J which is the result of Russell-Saunders coupling, i.e. $SxL \rightarrow J \rightarrow t$, and where q denotes the irreducible representation of quasispin group $SU^Q(2)$, and and signify the components of q and t, respectively. Furthermore, the group theoretical classification of the irreducible tensors is listed in Table 1. Alternatively, another irreducible tensor set associated with quadruple-coupling can be constructed as

$$K_{\eta \tau}^{q t}(SLJ)$$
 (5)

For brevity, the classification of them is omitted.

In SLJt scheme, the interaction in ligand field theory such as the ligand field

interaction $\rm H_C$, the relativistic effect $\rm H_r$, and the electron repulsion interaction $\rm H_e$ can be expressed in terms of the irreducible tensor W^{q t} and K^{q t} in the forms

$$H_{\rm C} = \sum_{\rm K} B(0\rm KK) W_0^{\rm 1} \frac{A_1}{a} (0\rm KK)$$
(6)

$$H_{r} = \sum_{K,K'} B(1KK') W_{0}^{1} \frac{A_{1}}{a}(1KK')$$
(7)

$$H_{e} = \sum_{p} D(pp0) \sum_{X} (-1)^{X} (2X+1)^{\frac{1}{2}} \begin{pmatrix} 1 & 1 & X \\ 0 & 0 & 0 \end{pmatrix} K_{0}^{X} A_{1}(000)$$
(8)

Note that the spin-orbital interaction H_s

$$H_{s} = B(110)W_{0a}^{1A_{1}}(110)$$
(9)

is included in the relativistic effect H_r . The coefficients B(OKK), B(1KK') and D(pp0) in Eqs.(6), (7) and (8) can be evaluated by means of quantum chemistry calculation or they can be taken as parameters to fit experimental data.

For simplicity, we only discuss the matrix element of ligand field interaction $\rm H_C$. Application of generalized Wigner-Eckart theorem to the matrix element of $\rm H_C$ in SLJt scheme gives

$$\langle \mathbf{f}^{\mathbf{n}} \mathbf{\alpha} \mathrm{SLJtt} | \mathbf{H}_{\mathbf{C}} | \mathbf{f}^{\mathbf{n}} \mathbf{\alpha}' \mathrm{S}' \mathbf{L}' \mathbf{J}' \mathbf{t}' \mathbf{\tau} \rangle = \delta_{\mathrm{SS}'} \delta_{\mathrm{tt}'} \delta_{\tau\tau'} \sum_{\mathbf{K}} B(\mathbf{0} \mathbf{K} \mathbf{K}) [(2\mathbf{J}+1) \cdot ((2\mathbf{J}+1)\lambda(\mathbf{t}))]^{\frac{1}{2}} \left\{ \begin{smallmatrix} \mathbf{L} & \mathbf{L}' & \mathbf{K} \\ \mathbf{J}' & \mathbf{J} & \mathbf{S} \end{smallmatrix} \right\} \nabla \begin{pmatrix} \mathbf{J} & \mathbf{J}' & \mathbf{K} \\ \mathbf{t} & \mathbf{t}' & \mathbf{A}_{1} \end{pmatrix} (-1)^{\mathbf{Q}-\mathbf{M}_{\mathbf{Q}}} \begin{pmatrix} \mathbf{Q} & \mathbf{1} & \mathbf{Q}' \\ -\mathbf{M}_{\mathbf{Q}} & \mathbf{0} & \mathbf{M}_{\mathbf{Q}}' \end{pmatrix} \cdot \\ \cdot \langle \mathbf{\alpha} \mathrm{SL} \mid | \mathbf{W}^{1}(\mathbf{0} \mathbf{K}) \mid | \mathbf{\alpha}' \mathbf{S}' \mathbf{L}' \rangle$$
(10)

It is especially noteworthy that the V-coupling coefficients from SO(3) to group O,

$$V\begin{pmatrix} J & J' & K \\ t & t' & A_1 \end{pmatrix}$$
(11)

defined by Tang (ref. 6-8), play an important role in the evaluation of matrix elements, as they can bridge the gap between the continuous group and the point group. For practical calculation of the rare-earth complexes, the numerial values of the V-coupling coefficients from SO(3) to group 0 in the range j=1/2 to j=25/2 have been evaluated (ref. 10). From Eq.(10), we see that the reduced matrix element introduced by Racah can be further splitted into the product of the 3-j symbol of quasispin group SU^Q(2) and the reduced matrix element of the number of electrons. As the V-coupling coefficients from SO(3) to group and the 3-j symbol of quasispin SU^Q(2) are introduced, they will make a simplification of the matrix element calculation.

TABLE 1. The group theoretical classification of W^{q t}(SLJ)

	SO(28)	SU ^Q (2)	Sp(14)	SU ^S (2)	SO(7)	G ₂	SO(3)	so _J (3)
WOA1(000)	(000)	0	[000]	0	(000)	(00)	0	0
W ^{0 t} (101)	(1100)	0	[200]	1	(000)	(00)	0	1
w ^{0 t} (033)	(1100)	0	[200]	0	(110)	(10)	3	3
W ^{0 t} (OLL)	(1100)	0	[200]	0	(110)	(11)	1	1
							5	5
W ^{0 t} (1LJ)	(1100)	0	[200]	1	(200)	(20) 2	2, 4, 6	J
$W^{1A_1}(000)$	(1100)	1	[000]	0	(000)	(00)	0	0
W ^{l t} (OLL)	(1100)	1	[1100]	0	(200)	(20) 2	2, 4, 6	J
W ^{l t} (1LJ)	(1100)	1	[1100]	1	(110)	(11)	1, 5	J
W ^{l t} (13J)	(1100)	1	[1100]	1	(110)	(10)	3	J

SPECTRA OF PRASEODYMIUM PENTA PHOSPHATE

The symmetry of crystal structure of praseodymium penta phosphate is of the distorted C_{4v} . Since C_{4v} is equivalent to D_4 , the matrix in Eq.(10) can be modified by means of the V-coupling coefficients from octahedral group to group D_4 to adapt the lower symmetry of praseodymium penta phosphate. As a direct result, there are eighteen parameters with lower symmetry which can be used to fit the experimental data provided by one of the author B.Y. Bai to give,

for the ligand field interaction,

B(022E)=-164, B(044A₁)=-104, B(044E)=-404, B(066A₁)=-414, B(066E)=-314;

for the spin-orbital interaction,

B(110A₁)=-3485;

for the relativistic effect,

 $\texttt{B(112E)=-44, B(132E)=-59, B(134A_1)=-29, B(134E)=-124, B(154A_1)=-9, B(154E)=-94,}$

B(156A₁)=-39, B(156E)=56;

for the electron repulsion interaction,

 $D(000A_1)=0$, $D(220A_1)=29030$, $D(440A_1)=11040$, $D(660A_1)=8820$.

The result of theoretical calculation and the experimental data of fluoresent spectra are listed in Table 2. The root-mean-square deviation is 34 cm^{-1} .

TABLE 2. The splitting of terms of ${}^{3}H_{J}$, ${}^{3}F_{J}$, ${}^{1}G_{J}$, ${}^{1}D_{J}$, ${}^{3}P_{J}$, ${}^{1}I_{J}$ and ${}^{1}S_{J}$ for Pr^{3+} in the field of $P_{5}O_{14}^{3-}$ with C_{4v} symmetry

Terms	Expt.	Calc.	Irr.a	Terms	Expt.	Calc.	Irr ^a
	(cm ⁻¹)	(cm ⁻¹)			(cm ⁻¹)	(cm ⁻¹)	
³ H ₄	0	0	A ₁			4750	в ₁
-	20	17	Е			4793	E
	48	46	A ₂	³ F2	5053	5032	A ₁
	99	64	A ₁		5081	5050	Е
	154	143	^B 2		5111	5132	в ₁
	256	258	E	_	5216	5185	B ₂
	526	520	^B 1	³ F3	6427	6382	E
³ н ₅	2139	2156	E	-	6449	6445	^B 2
-	2170	2186	A ₂		6456	6472	A2
	2179	2223	Е		6481	6514	Е
	2218	2242	B ₁		6497	6545	в ₁
	2229	2249	A ₁	³ F ₄	6849	6801	A ₁
	2286	2304	A2	•	6853	6852	^B 2
	2382	2469	E		6861	6879	E
	2640	2535	в ₂		6869	6906	A ₂
³ н _б	4326	4270	Е		6997	7008	A ₁
·	4338	4343	B ₂		7030	7040	в ₁
	4367	4382	в ₁		7098	7093	E
	4385	4392	A ₁	$^{1}G_{4}$		9648	A ₁
	4412	4433	Ē	•		9794	B ₂
	4528	4480	^B 2			9858	E
	4584	4579	A ₂			9873	A2
		4592	A ₁			9888	в ₁
			-				—

	10181	Е		21008	B ₂
-	10224	A ₁		21021	A2
¹ D ₂	17278	Е		21033	в ₁
	17295	^B 1		21127	Е
	17335	A ₁		21386	Е
2	17473	^B 2		21397	^в 2
³ P ₀	21048	A1	_	21448	A ₁
³ _{P1}	21642	Е	³ P ₂	22895	Е
	21738	A2	-	22924	A ₁
¹ I ₆	20954	E		22939	в ₁
-	20978	A1	_	23077	B ₂
	21000	в1	¹ s ₀	49644	A ₁
PMSDD 34					

TABLE 2	2. (Continued	from	previous	page)
---------	------	-----------	------	----------	-------

^aIrreducible representation of C_{4v} .

^bThe root-mean-square deviation is abbreviated as RMSD.

REFERENCES

- 1. Y. Tanabe and S. Sugano, J. Phys. Soc. Japan, 9, 753-766; 766-779 (1954).
- 2. J.S. Griffith, The Theory of Transition-Metal Ions, Cambridge University Press, Cambridge (1961).
- 3. B.G. Wybourne, Int. J. Quantum Chem., 7, 1117-1137 (1973).
- 4. M.K. Kibler and G. Grenet, Int. J. Quantum Chem., 11, 359-379 (1977).
- G. Racah, <u>Phys. Rev.</u>, <u>76</u>, 1352-1365 (1949).
 Research Group on the Structure of Matter, <u>Scientiarium Naturalium</u> (JiLin University), <u>3</u>, 79-94 (1964); <u>Scientia Sincia</u>, <u>15</u>, 610-625 (1966).
- 7. Research Group on the Structure of Matter, The Summer Physics Colloquium of the Beijing Symposium, (1966).
- 8. Tang Auchin, Theoretical Method of the Ligand Field Theory, p. 64, Science Press, Beijing (1979).

- 9. Tang Auchin, Sun Chiachung and Li Befoo, Int. J. Quantum Chem., 18, 545-555 (1980).
 10. Tang Auchin, Cho Chinyu and Sun Chiachung, Int. J. Quantum Chem., 18, 557-573 (1980).
 11. Sun Chiachung, Li Beifoo and Tang Auchin, Int. J. Quantum Chem., 14, 521-540 (1980).
 12. Sun Chiachung, Li Beifoo and Tang Auchin, Int. J. Quantum Chem., 15, 305-320 (1981).
 13. Sun Chiachung, Han Yande, Li Beifoo and Li Qianshu, Int. J. Quantum Chem., 23, 160 (1982).
- 169-183 (1983).