Vibrational properties of nitroprusside and related anions in solids

Pedro J. Aymonino
Programa QUINOR, Quimica Inorgánica, Departamento de quimica, Facultad de Ciencias Exactas, Universidad Nacional de La plata, C.C. 962 , 1900 La Plata, Republica Argentina.

Abstract

Structural and vibrational properties of the nitroprusside, $\left[F_{e}(C N)_{5} N O\right]^{2-}$, anion, including the vibrational interaction between the NO groups of neighbouring anions in structurally propitious crystals are briefly reviewed. The discussion extends to pentacyanonitrosylmanganate(3-) anions in the potassium salt. The vibrational behaviour of electronically excited (metastable) nitroprusside anions is also considered. Finaliy, the vibrational manifestations of the strong coupling existing along the NCMnOMnCN axis of the linear $\mu-o x o$ bis (pentacyanomanganate) (6-) anion, and the correct assignment of its electronic absorption bands are also reviewed.

The nitroprusside anion, or pentacyanonitrosylferrate(2-), [Fe(CN) $\left.5^{N} \mathrm{NO}\right]^{2-}$, (Npr^{2-}), is an old member of the vast series of pentacyanometallates.

Its structure is a pseudo-octahedron containing the NCFeNo grouping in the polar axis and four $C N$ groups in the equator, slightly bended towards the axial cyanide. Ideal symmetry is $C_{4} y$ but in crystals it is always lower. In SrNpr.4H2O(ref. 1), for instance, bond lengths of ligands are nearly equal to bond lengths of the free groups, nitric oxide and cyanide (1.17 and 1.15 for NO and 1.13 and 1.14 for CN^{-}, respectively ref. 2).
Wavenumbers of the stretching vibrations of the bonded ligands are $2152 \mathrm{~cm}^{-1}$ and about $1960 \mathrm{~cm}^{-1}$ for CN and NO, respectively, in BaNpr. $3 \mathrm{H}_{2} \mathrm{O}$ (ref. 3), not far from values reported for free CN^{-}and $N O$ (2080 and $1880 \mathrm{~cm}^{-1}$, respectively, ref. 4). In fact, $\mathcal{V}_{C N}$ is greater than in the $\mathrm{Fe}^{\mathrm{I} I I}$ complex $\left[\mathrm{Fe}_{\mathrm{e}}(\mathrm{CN})_{6}\right]^{3-}$, which has its $C N$ stretching bands between 2135 and $2118 \mathrm{~cm}^{-1}$ (ref. 4). Therefore, although $\tilde{\mathcal{Y}}_{\mathrm{N}}$ is somewhat shifted towards the value reported for $\mathrm{NO}^{+}(2273 \mathrm{~cm}-1$ ref. 4), Feili and N° oxidation states seem to apply better than the commonly accepted $\mathrm{Fe}^{I I}$ and NO^{+}(cf. ref. 5). It is to be noted that XPS (ESCA) results point to a +0.35 fractional charge on the $N O$ group of $N a 2 N p r .2 H_{2} \mathrm{O}$ (ref. 6) but on the contrary, SINDO calculations (ref. 7) result in a -0.254 charge, a seemingly overestimated value (ref. 7). A strong charge separation is recognized in the No group, specially as result of the SINDo calculations ($q_{N}=$ $+0.503, q_{0}=-0.757$) (ref. 7). The high polarity of the group and the big change it experiences when the bond vibrates (ref. 6) ((dm/ds) $=3.35 \mathrm{a} . \mathrm{u} .(\mathrm{ref} .6)$) are important characteristics of the group.
 cm^{-1}). To the $\mathrm{FeN}^{\mathrm{N}}$ bond is recognized a strong π contribution amounting 1.693 (ref. 7 and references therein). The FeCN deformation and Fec stretching bands appear below $500 \mathrm{~cm}-1$ and are fairly intermingled. The strong band at $419 \mathrm{~cm}^{-1}$ is usually assigned to a Fec atretching and a $\mathrm{F}_{\mathrm{e}} \mathrm{CN}$ deformation (ref. $8 a, b)$.
The strong polarity of the No group in Npr2- perhaps determines that in monoclinic srNpr.4H2O (ref. 1) and orthorhombic $\mathrm{BaNpr}_{\mathrm{a}} \mathrm{OH} \mathrm{H}_{2} \mathrm{O}$ (ref. 9) the anions pile up along the c crystallographic axes, forming double rowed chains separated about 7A. In the chains the anions are intercalated in an antiparallel
(SrNpr.4H2O) or nearly antiparallel ($\mathrm{BaNpr}_{\mathrm{A}} \mathrm{O} \mathrm{H}_{2} \mathrm{O}$) fashion with the NO groups faced up (and opposed), the interanionic distances being about $4 \AA$ ($4.2 \AA$ in BaNpr. $3 \mathrm{H}_{2} \mathrm{O}(r e f .9 a, b)$. The polar axes of the anions are parallel to the a
axes (see Fig. 1 of ref. 10). This arrangement brings up a strong infrared dichroism in single crystal plates, as proved both for srNpr. $4 \mathrm{H}_{2} \mathrm{O}$ (ref. 11) and $\mathrm{BaNpr} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ (ref. 3).
The correlation diagram presented below will help to understand the vibrational behaviour of the barium salt (ref. 3) which belongs to the Pcali (C5 ${ }_{2}^{5} \mathrm{~N}^{\circ} \cdots$ 29) space group ($Z=4$)(cf. ref. 9).

As shown in(ref. 3), (001) (c-cut) plates display in the No stretching region a very strong and broad absorption band centered at about $1960 \mathrm{~cm}^{-1}$ when transmitted light is analized along (B_{1} mode), and a sharp and narrow band at 1936 $\mathrm{cm}^{-1}\left(\mathrm{~B}_{2}\right)$ when $\mathrm{E} / / \mathrm{b}$. An a-cut(100) plate shows two sharp bands at 1976 and 1936 for $E / / b$. The last band is again due to the B_{2} mode and the band of highest wavenumber is assigned to the longitudinal B_{1} mode which appears due to experimental deffects as it occurs also when $\mathrm{E} / / \mathrm{C}$. Finally, the b-cut(010) shows the strongest dichroic behaviour.

The intensity of the B_{1} band is so strong that even in the thinnest obtainable plates it absorbs the radiation compietely. In order to obtain the real position of the absorption maximun, it is possible to resort to specular reflection spectroscopy. Thus, when light is thrown onto an (ab) face (c-cut) at 15° incidence in the (bc) plane and the polarization analyzer is oriented parallel to the a axis (TE_reflectance) the $T O B_{1}$ mode appears as a sharp and defined feature at $1968 \mathrm{~cm}^{-1}$ (ref. 12).

This spectrum contains the necessary information to simulate the absorption spectrum of a plate as thin as necessary to transmit light in the No stretching region. It can be deduced in this way that thickness of the crystal plate should be reduced at least to $0.2 \mu \mathrm{~m}$ to see the $\nu_{\text {NO }}$ peak (see Fig. 6 of ref. 11). This peak appears at $1962 \mathrm{~cm}^{-1}$. It is to be noted the $26 \mathrm{~cm}^{-1}$ difference existing between this value, corresponding to the B_{1} mode, and $1936 \mathrm{~cm}^{-1}$, assigned to B_{2}. Such a strong (Davydov) correlation splitting should be traced to a strong dipolar coupling between neighbouring No groups in the chains along the c crystallographic axis.

From the wavenumbers of the B_{1} and B_{2} modes it is possible to obtain the values of the interaction force constant (f_{1}) and of the dipole moment derivative ((dm/ds) o) which are, respectively, 0.172 mdyne/ h and $13 \mathrm{D} / \AA$ (ref. 10). The high value of f_{1} confirms the strong interaction between neighbouring vibra ting No groups. Interestingly, f_{1} is about one hundredth of the (bonded) NO stretching force constant ($\mathrm{E}_{\mathrm{N}} \mathrm{O}^{=}=15.91$ mayne/\& (ref. 13)).

This interaction can be broken by isotopic substitution in the No groups. Thus, when exchanging 160 with 180 , at low substitution degree a band assignable to the stretching of isolated N^{180} groups can be seen in the low temperature powder spectrum (ref. 13). At higher 180 concentrations, a feature that can be assigned to the isolated N^{160} stretching can be seen in the spectrum. A simplified GF matrix treatment of the triatomic feno grouping allows the calculation of the vibrational frequencies of isolated groups and clusters of increasing number of isotopically identical groups. Results describe faixly well the contours of the absorption bands for different degrees of substitution (see Figure 4 of ref. 14). Wavenumbers of isolated N160 and $\mathrm{N}^{18} 0$ groups are 1947 and $1904 \mathrm{~cm}^{-1}$, while for complete substitution they are 1968 and $1924 \mathrm{~cm}^{-1}$, respectively.

A further (indirect) proof of the existence of the strong No coupling in $\mathrm{Ba}_{\mathrm{a}} \mathrm{Npr} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ and $\mathrm{S}_{\mathrm{r}} \mathrm{Npr} .4 \mathrm{H}_{2} \mathrm{O}$ is provided by the spectrum of partially 18 O substituted [Fe(o-phen) $\left.{ }_{3}\right]$ [$\left.\mathrm{Fe}_{\mathrm{e}}(\mathrm{CN})_{5} \mathrm{NO}\right] .2 \mathrm{H}_{2} \mathrm{O}$ which shows sharp and narrow bands at 1893 and $1853 \mathrm{~cm}-1$ (ref. 14). These bands are to be compared with the broad and complex bands found for $\mathrm{BaNpr}_{\mathrm{a}} \mathrm{BH}_{2} \mathrm{O}$ (ref. 13). In this compound the bulky cations "isolate" the anions and do not allow any appreciable interaction between their $N O$ groups (ref. 14).

A simpler interactive case $\ddagger \mathrm{s}$ provided by $\mathrm{K}_{3}\left[\mathrm{Mn}(\mathrm{CN}){ }_{5} \mathrm{NO} \mathrm{C} .2 \mathrm{H}_{2} \mathrm{O}\right.$, where the anions are in one set of C_{1} sites and due to interaction give place to only two bands in the $N O$ stretching region (ref. 15), at 1745 and 1732 cm -1, splitting amounts $13 \mathrm{~cm}-1$ therefore. A two-dimensional treatment of the interaction using the value $12 \mathrm{D} / \mathrm{A}$ given in (ref. 6) for ($\mathrm{dm} / \mathrm{ds}$) o) , predicts a splitting of $16 \mathrm{~cm}^{-1}$.

Recently, an excited electronic metastable state of nitroprusside was obtained by irradiating $\mathrm{Na}_{2} \mathrm{Npr} .2 \mathrm{H}_{2} \mathrm{O}$ single crystals at low temperature (lower than 160 K) with the green line (514 nm wavelength) of an Ar+laser (ref. 16), and it was characterized by Móssbauer (ref. 16) and Raman (ref, 17)spectroscopies. The apparently same excited state has been detected also when irradiating a $K_{2} \operatorname{Npr}$ solution with powerful $C W$ or pulsed lasers (ref. $18 \mathrm{a}, \mathrm{b}$).

In orthorhombic $\mathrm{Na}_{2} \mathrm{Npr}, 2 \mathrm{H}_{2} \mathrm{O}$ the anions are disposed as in the strontium and barium salts, in (ab) planes but their polar axes are not parallel to the crystal axis but form with it an angle of 30° (ref. 16, 17).

When a thin a-cut piate of $\mathrm{Na}_{2} \mathrm{Npr}, \mathrm{CH}_{2} \mathrm{O}$ is irradiated at boiling air temperature with the 514 nm line of the Ar-laser new bands appear (ref. 19). For instance, a band assigned to the $N O$ gtretching of the metastable species shows up at $1839-1834 \mathrm{~cm}^{-1}$, with the same polarization behaviour as the ground state band, which appears at 1954-1942 cm^{-1}. This band has its counterpart in the Raman spectrum of the irradiated crystal again at $1838-1834 \mathrm{~cm}^{-1}$ (ref. 17). The downshift of the No stretching band upon excitation has been explained by a population increase of the antibonding π^{*} orbitals of the NO group (ref. 16, 17, 18), which apparently does not suffer the expected bending (ref. 17, 19, 20). Other new bands appear in both spectra but in the infrared spectrum there are bands not reported in Raman, most of which show a strong dichroic behaviour.
The most conspicuous of them is perhaps the band located at $1665 \mathrm{~cm}^{-1}$, in a region that turns difficult its assignment, although it is tempting to trace it to a strongly shifted NO stretching. This and its companion bands dissape pear at about 90 K while the other set of bands (common to infrared and Raman) do it at about 140 K , when heating the irradiated crystal. This different behaviour, which has also been proved for $\mathrm{BaNpr}_{\mathrm{a}} \mathrm{HH}_{2} \mathrm{O}$ (ref. 20), is presently unexplained.

At the beginning of this lecture, the strong π contribution to F^{N} bonding in nitroprusside was mentioned. Interestingly, a strong bond of this sort exists in the μ-oxobis (pentacyanomanganate)(6-) anion, which is one of the few cases where oxygen is linearly bonded due, precisely, to strong π bonding, with complete $p \pi$ donation to the metallic nuclei. The oxygen-to-manganese double bonding and the σ, π bonding between manganese and axial cyanides bring up high electronic conjugation and polarizability to the anion along the NCMnOMnCN (polar) axis.

In the double potassium salt with cyanide, $\mathrm{K}_{7}\left[\mathrm{Mn}_{2}(\mathrm{CN})_{10} \mathrm{O}\right] . \mathrm{CN}$, the axes of the anions are normal to the crystalographic axis and therefore to the long axes of the needle-like crystals bringing about a strong electronic and vibrational dichroism (ref. 21, 22).

Among the infrared features shown by an ordered array of needles are to be pointed out the strongly polarized bands at 2158 and $408 \mathrm{~cm}^{-1}$ which have been assigned to the antisymmetric axial $C N$ and $M_{n} C$ stretchings (ref. 22), respectively. The corresponding, symmetric, Raman modes appear at 1881 and $527 \mathrm{~cm}-1$, respectively. The extraordinarily big differences existing between infrared and Raman wavenumbers point to a strong coupling between the two M_{n} (CN) 5 moieties through the oxygen bridge.

These modes, together with the $M_{n} O M_{n}$ symmetric stretching (all A_{1}) give place to a strong Raman resonance effect. Band progressions are seen at 2133, 1888, 527 and $258.5 \mathrm{~cm}-1$, all due to the axial MC symetric stretching coupled with equatorial and axial $C N$ stretchings, with itself (overtones) and with the $\mathrm{M}_{\mathrm{n}} \mathrm{OM}_{\mathrm{n}}$ symmetric stretching, respectively (ref. 22, 23) :

The experimental excitation profiles fit quite well to the theoretical curves (ref. 23, 24) and confirm in part the assignment proposed for the electronic bands (ref. 25). Our results point to a metal-to-ligand (cyanide) charge transfer (ref. 22, 23) better than to the proposed d-d transition (ref. 25) for the band at 509 nm .

REFERENCES

1. E.E. Castellano, O.E. Piro and B.E. Rivero, Acta Crystallogr. B33, 1728 (1977).
2. L.E. Sutton (ed.), Interatomic Distances, Special Publication No11, The Chemical society, London (1958).
3. E.L. Varetti and P.J. Aymonino, Inorg. Chim. Acta 113, 115 (1986).
4. K. Nakamoto, Infrared and Raman Spectra of Inorganicand Cordination Compounds, 4 th Ed. Wiley, New York (1986).
5. D.B. Brown, Inorg. Chim. Acta 5, 314 (1971).
6. B. Folkesson, Acta Chem. Scand. A28, 491 (1974).
7. E. Wasiliewska, Inorg. Chim. Acta 113, 115 (1986).
 Spectrochim. Acta A29, 353 (1973).
8. a. A.H. Lafranconi, A.G. Alvarez and E.E. Castellano, Actacryst. B29, 1733 (1973) , b. G. Rigotti, P.M. Alzari, A. Navaza, R. Grigera, E.I. Varetti and P.J. Aymonino (a refinement of the structure) to be published.
10.S.R. Gonzalez, P.J. Aymonino and O.E. Piro, J. Chem. Phys. 81, 625 (1984).
11.C.O. Della Védova, J. H. Lesk, E.L. Varetti and P.J. Aymonino, J. Mol.Struct. 70. 241 (1981).
12.O.E. Piro, S.R. González, P.J. Aymonino and E.E. Castellano, Phys. Rev. B, in press.
13.S.R. Gonzalez, O.E. Piro, P.J. Aymonino and E.E. Castellano, Phyg. Rev. B33, 5818 (1986).
14.S.E. Ronco, M.E. Garcia Posse, P.J. Aymonino, O.E. Piro, B.E. Rivero, R. Mercader and E.E. Castellano, J. Cryst. Spect. Res. 16, 585 (1986).
15.D.B. Soria, J.I. Amalvy and P.J. Aymonino, J. Cryst. Spect. Res. 17,135 (1987)
16.U. Hauser, V. Oestreich and H.D. Rohrweck, Z. Physik. A280, 17, 125 (1977 1. Z. Physik. A284, 9 (1978).
9. Th. Woike, W. Krasser, P. S. Bechthold and S. Haussüh, Solid state Commun. 45, 499 (1983) , Solid State Commun. 45, 503 (1983) J J. MoI. Struct. 114, 57 (1984), phys. Rev. Iet. 53, 1767 (1984) ; J. Raman Spectra 17, 83 (1986).
10. a. J.W. Schindier and J.I. Zink, J. An. Chem. Soc. 103, 5968 (1981) b. Y.Y. Yang and J.I. Zink, J. Am. Chem. Soc. 107, 4799 (1985).
19.J.A. Guida, O.E. Firo and P.J. Aymonino, Solid State Commun. 57, 175 (1986).
20.J.A. Güida, O.E. Piro and P.J. Aymonino, to be published elsewhere.
21.R.F. Ziolo, R.H. Stanford, G.R. Rossman and H.B. Gray, J. Am. Chem. Soc. 96, 7910 (1974).
22.A.H. Jubert, J.A. Espindola, E.L. Varetti and P.J. Aymonino, J. Raman Spectrosc. 14, 259 (1983).
23.A.H. Jubert, E.L. Varetti, K. Nakamoto, O. Sala and P.J. Aymonino, J. Raman Spectrosc. in press.
24.M. Mingardi, W. Siebrand, D. Van Labele and M. Jacon, Chem. Phys. Lett. 31, 208 (1975).
25.L. Szterenberg, L.Natkaniec and B. Jezowska-Trzebiatowska, Buli. Acad. Pol. Sciences 29, 213 (1981).
