Pure & Appl. Chem., Vol. 61, No. 6, pp. 1105-1114, 1989.
Printed in Great Britain.
© 1989 IUPAC

Continuous thermodynamics
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sity, Merseburg, DDR-4200, German Democratic Republic

Abstract - A consistent building of "continuous thermodyna-
mics" is presented; it is applicable to all mixtures con-
taining a large number of very similar chemical species,
Instead of identifying the components by a discontinuacus
index, a continuous identification variable is used such as
the boiling-point temperature. This permits to differen-
tiate, to integrate, or to develop a power series with
respect to this varisble, These operations are impossible
for a discontinuous index. To demonstrate, continuous thermo-
dynamics is applied to flash calculations of petroleum frac-
tions described by a True Boiling Point (TBP) curve, to

the liquid-liquid equilibrium and to the fractionation pro-
cess of polymer solutions described by the well-known molar
mass distribution.

INTRODUCTION

The description of the composition by mole fractions is no problem if the
system contains only two or three components, but a large number of very
similar chemical species occur in many industrial mixtures, for example,in
petroleum, in petroleum fractions, in coal-derived liquids, in polymers, or
in vegetable oils, In these cases, it is difficult or practically impossible
to isolate and to identify the components by ordinary chemical analysis,
Thus, the mole fractions of the components are unknown., Even if they were
known, it would be a very complicated problem to menage a system of &
thousand or more equations for a thousand or more components.

Mixtures of this kind are called complex multicomponent mixtures or poly-
disperse mixtures, Instead of the mole fractions of individual components,
continuous distribution functions are epplied for describing the composi-
tion,

Using such continuous distribution functions involves an inconsistency

with the usual thermodynamics based on mole fractions of individual compo~
nents, Unti] now, two possibilities have been known for overcoming this inconsis-
tency: the pseudocomponent approach and the key component approach., The
pseudocomponent approach consists of approximating the continuous distribu-
tion by a discontinuous (bar) distribution where each bar represents a
pseudocomponent. In this way, the complex mixture can be treated as a
classical multicomponent mixture of these pseudocomponents. Key components
are chemical species present in the mixture., Their amounts are fitted in
such a way that the multicomponent mixture formed by these key components
possesses thermodynamic properties similar to those of the complex mixture.
Clearly, both approaches are crude; the number and manner of selection of
the pseudocomponents or key components are arbitrary.

The contents of continuous thermodynamics consists of overcoming this in-

consistency in an opposite way; chemical thermodynamics is converted into
a form adapted to continuous distribution functions,

FUNDAMENTALS

An ensemble B of a large number of similar chemical species is considered
and the species are assumed to be identified sufficiently by the velue of
one variable z in such a way that two species distinguished by small differen=-
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1106 M. T. RATZSCH

ces of 17 also differ in small amounts of the thermodynamic properties.

This variable is chosen to be the (normal) boiling-point temperature of the
pure species, But other quantities,such as molar mass or segment number, may
be used likewise.

The extensive distribution function w(z) for the ensemble B is defined by
equating the integral

[ W) oz (1)
T

I
to the amount of all species with T -values between <~ 'and T ., Then, the
overall amount of substance n, is given by

B
o]
T
nB = / W('Z‘) dr ; / =/ . (2)
= T
0
The integration has to be performed for the total domein of <= between the
limits of the occurring = -valuses, ) and 29, Dividing w(z) by nB,the

intensive distribution function W(z), corresponding to the mole fractions
in usual thermodynamics, is obtained:

wiz) = W= Lwz) de= 1. (3a,b)
n
B

Petroleum fractions and similar complex mixtures can be characterized by their
True Boiling Point (TBP) curves which may be determined experimentally by
distillation using a column with a large number of theoretical plates and by
applying a high reflux ratio. Therefore, the temperature at the top of the
column is identified with the boiling-point temperature v of the corres-
ponding pure species, The distribution function W(z) is obtained by diffe-
rentiation with respect to 7z .

There is also the possibility to determine the TBP-curves by gaschromato-
graphic simulation., If an indifferent stationary phase is used, the gas
chromatographic separation is effected according to the vapor pressures
which, for similar substances, are clearly related to the boiling-point
temperatures, Thus, the gas chromatogram may be calibrated with respect to
the boiling-point temperatures, By applying flame ionisation detection (FID),
the area below the gas chromatogram proves to be proportional to mass.

In usual thermodynamics an arbitrary extensive quantity z (e.g. volume,
enthalpy, Gibbs free energy) of a phase may be considered as a function of
temperature T, pressure P and the amounts of substances Nyreoa NGt

z =24, (T.Pn,,.0u,ny) . (4)

In the continuous case the extensive distribution function w{t) occurs
instead of nq.....n¢ (refs 1-3):

z = z(T,P;w) . (5)

In continuous thermodynamics,z is a function with respect to T and P, but a
functional with respect to w. A functional is a mapping assigning a number
to each function of a given class of functions, An example is the definite
integral with fixed limits: the integral value is assigned to each func-
tion occurring as integrand, Here, a value z is assigned to each function
w(z) (at given values of T,P)., This value z depends on the total course

of the function w but not on its argument z, (The quantity © always

passes through the total definition range.) Hence, in Eq. (5) w is written
and not w(z). The different kinds of variables, usual variables (such as
T,P), being called for distinction variable scalars, and variable functions
are separated by a semicolon, As an example, the volume v of an ideal
mixture is considered

* S *
v = [ wiz) vg(T) dv ; vey o vy o (6a,b)
4 i=1 i
Here,VS(z) is the molar volume of the pure species of the ensemble B

identified by the boiling-point temperature = . The function V;(r) is
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Ev3
obtained by interpolating the VB-values of real discrete species. To

compare, Eq. (6b) shows an analogous relation in traditional thermodyna-

mics, The most important differences are:

- In continuous thermodynamics the species are identified by a continuous
variable -z instead of a discrete index i.

- The composition is described by a continuocus distribution function w(T)
instead of the amounts of substances Nyseecesn

c
- The thermodynamic quantities (here v) are functionals of the distribution

function w(=), instead of functions of the amounts of substances
n n
1 1e 0 0, c.

To perform thermodynamic considerations,the starting point is the relation
for the chemical potential, In traditional thermodynamics the well-known
relation reads

*
Fy = #4(T,P) + RT 1n Xy + RT 1n 4 ; (7)

pi is the chemical potential of the pure chemical species i. The second

term on the right hand side describes an ideal mixture and the last term
accounts for deviations from such a mixture. For this reason, the activity
coefficient Y5 is introduced where Y; = 1 for Xi = 1

The corresponding relation in continuous thermodynamics reads
p(2) =/u*0('z,T,P) + RT 1n W(%) + RT 1nz(7) (8)

Once the chemical potential is known, all other thermodynamic equilibrium
properties may be calculated by means of the well-known thermodynamic rela-
tions, Since the chemical potential equals the partial molar Gibbs free
energy, the molar Gibbs free energy G itself reads

G(T.PiW) = [ W(z) u (. T,PiW) dv (9)

* Ctay e
=4 W(z)ug(z T.P) dz + RTJ,QW('U) In W(z) d% + RT, W(z) 1n (=) dv.

The molar excess Gibbs free energy cE equals the third term on the right
hand side of this relation, Other thermodynamic quantities may be obtained
in the usual manner. Thus, the molar entropy S, the molar enthalpy H, and
the molar volume V may be calculated by

S = ~3G/5T; H=06 + TS; V = 9G/3P (10)

VAPOR-LIQUID EQUILIBRIUM

Regarding the vapor-liquid equilibrium the most important problem is that
of flash calculations. A feed phase F splits into a liquid phase L and a
gaseous phase G, Temperature, pressure and feed distribution are specified;
the distributions and relative amounts of the outlet streams are to be
calculated, The feed and outlet streams are related through material
balances; the two outlet streams are assumed to be in thermodynamic
equilibrium,

The material balances read in continuous thermodynamics (refs, 4,5)
wFz) = whz) + wE(2) (11)

applying the extensive distribution functions. Whereas in usual thermo-
dynamics the material balances are expressed by as many equations as compo-
nents that are present or as pseudo-components that are postulated, in con-
tinuous thermodynamics only one equation is obtained, valid for the total
interval of the occurring values of the identification variable v . Hence,
in continuous thermodynamics the material balance is & function equation,
i.e. an equation permitting the determination of an unknown function.

According to Eq. (2) integration results in

F L G
ng = Ng + Ng (12)

The degree of vaporization ¢ is defined as the quotient of the amount of
substance in the gaseous phase ng,divided by the amount of substance ng in
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the feed phase
(1): ng/n; (13)

On combining these equations and introducing the intensive distribution func-
tions W(z)»the material balance reads

F L
wWH(z) = (1 - 9) W) + o082, (14)
In continuous thermodynamics the phase equilibrium condition reads

p8z) = ple) (15)

The chemicel potentiasls must be equal for all occurring species, Like the
mass balance; the phase equilibrium relationship applies to the total range
of the occurring t-values. Hence, it is also a function equation. On applying the
expression for the chemical potential shown above and & similar relation
for the vapor phase, the phase equilibrium condition results in (refs. 4,5)

PiC (=) v (7) = W(z)p () PY(2, TV (o) (16)

Here, P is the equilibrium pressure, WG(z) and WL(z) are the intensive
distribution functions in the gaseous and the liguid phase, respectively,

and «(z) is the activity coefficient in the liquid phase, P*(r,T) is the
vapor pressure of the pure chemical species identified by =
at the system temperature T, The quantityy (2) is the fugacity coeffi-

cient of this species in the mixture, and @*(t) designates its fugacity
coefficient as pure gaseous phase. In Eq. (16) the Poynting correction is
neglected. This relation is the continuous version of the well-known dis-
crete relation for the vapor-liquid equilibrium. It also applies to the
total occurring 7 -interval, i.e., it is a function equation.

If the phases are assumed to behave ideally, then (%) = 1,y (7) = 1,
ffﬁw) = 1 and the relation simplifies to the continuous version of
Raoult’s law reading

PWC(7) = wh(z) P*(z,T). (17)

To treat the flash problem the material balance and the phase equilibrium
relationship are to be combined. Both equations are valid for all = -values
of the givenz -interval, They permit the calculation of the unknown

distribution functions wL(r) and WG(zj from WF(zj. On rearranging, they
result in

wh(2) = E wh (=) (18)

(1 = $IP +7 () P*(2.T)¢(w) /ol )

Wir) =2z P*(z’JW*(z){Mr) _ wF(2). (19)
(1 = $)P +7 (=) P2 T) () g (%)

Since both distribution functions are normalized to one, integration and
substraction results in the so~called flash equation

0. [ Poi(e) P*(fc,T)@:(r)/S”(?) W (z) de. (20)
2 (1 =)P +y(2) Pz, TINT) (=)

As pointed out above, the distributions of the coexisting phases, WL(T)
and WG(T), and the relative amount of the gaseous phase, ¢, are to be
calculated from these three equations. Since y~(t) depends on WL(r) and

¢ (~) depends on WG(z), the unknown distribution functions and ¢:, the un-
known scalar, are combined in a complicated way., However, in many cases

considered in practice, »(t) depends on WL(?Q by means of a functional and,

analogously, ¥ (v) depends on WG(r) by means of a functional, In this case,
the problem of the unknown distribution functions may be separated and
solved exactly,
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To show this, ~(-~) is assumed to be calculated by the Flory-Huggins rela-
tion

[

Ing(?) = 1n L8 41 o B F o 7 r(r) wh(z) g, (21a,b)
r

F z
Here, all molecules are imagined to be divided into segments, and r(z) is
the number of segments of the species identified by >, The quantity T is
the (number) average segment number of the liquid phase, It is this

gquantity r which provides the dependsnce of y (=) on WL(z) and, hence, the
coupling of the function equation for WL(v) and the scalar equation for ¢.
However, the quantity r is a functional of WL(z). This means that it is a

scalar itself, but depends on the total course of the function WL(¢). Thus,
it is possible to consider F as an additional scalar unknown and its
defining equation as an additional scalar equation. This equation contains

WL(v). But WL(f) may be replaced by Eq. (18), where now on the right hand
side WL(20 does not occur but only the two unknown scalars ¢ and r.

Hence, in this way, Eq. (18) gives WL(r) in an exact and explicit form. The
two scalar unknowns ¢ and r are to be calculated from two scalar equations:
the flash relation, Eq. (20), and the relation for ¥, Eq. (21b), replacing

WL(T) as discussed, Thus, in this case the flash problem needs only the

calculation of these two equations by numerical methods, Then WL(T) is
given explicitly,

This possibility of separation of the distribution function problem is
always met if the dependence of ;*(7) on WL(z) has the form of a functional,.

Furthermore, if (o(~) depends on WG(z) also by means of a functional, then
again analogous arguments apply.

Hence, in the considered case which is often met , the distribution func-

tions WL(T) and WG(v) are given by simple explicit and exact relations.
Only a small number of scalar equations is to be solved by numerical
methods; the flash equation and one equation for each occurring functional.

In the simplest version of continuous thermodynamics presented above

all chemical species occurring are considered as similar, Thus, they all are
described by one distribution function., In & more refined version the
presence of several ensembles of very similar species in the mixture may be
accounted for describing each ensemble by its own distribution function. In
this way, for example, the aromatic, naphthenic and paraffinic hydrocarbons
in a petroleum fraction may be treated separately, Furthermore, some indi-
vidual components may additionally be present, They can also be included
into the formalism. Such an individual component can be & solvent for the
selective extraction of aromatice or for extractive distillation, In the
refined version the UNIFAC-model provides a convenient method to account
for the real behavior of the liquid phase.

LIQUID-LIQUID EQUILIBRIUM

Here: the most important problem is that of the liquid-liquid equilibrium in
polymer solutions and polymer mixturee, Examples are the high-pressure
synthesis of low density polyethylene (during the synthesis the poly-
ethylene is formed as solute in supercritical polyethylene and then the
pressure is lowered leading to the equilibrium of a polymer-lean and a
polymer-rich phase), the polymer-polymer compatibility and the problem of
polymer fractionation.

Considering polymers,the molar mass distribution function is well-known
from polymer characterization. In the framework of continuous thermodyna-
mice it is applied directly to calculate phase equilibria, To show the
principles, a solution of a solvent A and a polydisperse polymer B is
considered, The individual species of the polymer B are identified by
their segment numbers r, The segment number r is defined as the ratio of
the hard core volume of the species considered and of the hard core volume
of an arbitrarily chosen standard segment, The essence of continuous ther-
modynamics consists of considering r as a continuously variable quantity.
The composition of the polymer is described by the distribution function
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W(r) defined by the statement that W(r) dr gives the relative segment frac-
tion of all polymer species with segment numbers between r and r + dr, If

rog is the lowest and r-~ the largest occurring segment number of polymer
molecules, the normalization relation reads
e
/W(r) dr = 1; ;o= . (22)
o
In continuous’thermodynamics, the condition for equilibrium between two
phases ' and ” as expressed by the chemical potentials writes (refs., 6-8)

Fa = Ma (23)
Pa(r) = p'g(r). (24)

The last relation is valid for all occurring segment numbers from rqg to r0,

In comparison to traditional thermodynamics the continuous identification
variable r occurs,instead of a discrete identification index.

To treat phase equilibria the starting point is formed by the relations
for the chemical potential, In discrete thermodynamics convenient equations
for polymer solutions read

/uA=juA+RT[ln (1-q})+1-;—]+rARTln]“ , (25)

u WS e RT[Ing 1 rBiJ RT 1n 7 (26)
= + n + - + I n

By "By By = B, Isy

Here, the first term is the chemical potential of the pure species., The
second term is the well-known Flory-Huggins contribution;q)B signifies
i

the segment fraction of the species i of the polymer B, and 4 is the
overall segment fraction of the polymer B:

Yos W Y
o= pg =l (27)
B =4 Y8,

Ta and rg are the segment numbers of the species indicated, and r is the

i
number average segment number taken with respect to all species present
in the mixture, The third term describes the deviation from a Flory-Huggins
mixture, It generalizes the classical x-term. For this end, the segmentmolar
activity coefficients A andjkB are introduced,

i

In the continuous treatment the relation for Fa is not changed. However,
the chemical potential for the polymer species now reads

Pa(r) =g o(r) + RT [1nyw(r) + 1 - -r[-] + F RT 1n yg(r) (28)

The species are identified by the continuous variable r instead of the dis-
crete index i and the composition is described by the continuous distribu-
tion function W(r) instead of the segment fractions of the discrete
species,

Application of these relations for the chemical potentials tothe phase equili-

brium condition for the liquid-liquid equilibrium results in
1 - ¢"= (1 -9) expry 5, (29)
¢W(r) = u W (r) exp r¢g(r) (30)
with
o oehhemiiowi ()

5t
ali
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sg(r) = %,7 - -;-l- s Inyi(r) = ngg(r) (32)

In phase separation experiments a feed phase F is split into two coexisting
phases ' and ", If $ is the total amount of segments (solvent + polymer)
in phase " divided by the total amount of segments (solvent + polymer) in
the feed, the mass balance for the polymer species in continuous thermo-
dynamics reads

YFWF(ry = (1 =)y WI(r) sy WI(r), (33)
and, after integration,
Fa(i-a) 0 +ou. (34)

For the total number average segment number r which in continuous thermo-
dynamics is given by

-l : I3
L.orow x L. W)y, (35)
r I"'A rB I"B r

the mass balance relationships lead to
1 -d

-1
r

+ = (36)
=

St
i

In phase separation experiments the composition of the feed (i.e. WF and
WF(r)) is usually known, The relations between the quantities referring to
phase ! and those referring to phase " are provided by Egqs. (33), (34),
and (36). They permit to eliminate in the phase equilibrium relationships
the quantities referring to one of the two existing phases, e.g. the
quantities referring to phase ! On doing so, the phase equilibrium relation-
ships read

oF

1 -0"= 1-y ) (37)
$+ (1 -¢) exp [~ FA fAJ

b y F

W (r)= y " w(r) (38)

S (1-d)exp - rog(r))

When applying these relat1ons, one has to keep inmind that, in the general case,
<B(r) depends on W'(r) via the segmentmolar activity coefficients 75 @nd

TB(r) The equations for these quantities may be obtained from the rela-

tion for the excess segmentmolar Gibbs energy GE. In the general case, the
excess segmentmolar Gibbs energy depends on T, 4 and on the distribution
function W(r) (considering the pressure to be constant), But in many rela-
tions used in practice the dependence on W(r) is neglected as an approxi-
mation, Then also the segmentmolar activity coefficients do not depend on
w(r) and, furthermore,a B does not depend on the 1dent1fication variable r,

Then ¢g 2also does not depend on r and depends on W'(r) only by means

of r"'. But, as shown above, this quantity is a functional of W'(r), i.e.
a scalar., Considering this scalar as an additional unknown of the problem,
the second equation provides a direct and explicit relation to calculate

w”(r) from the feed distribution WF(r).

Of course, this relation contains the unknowns of the problem,$", F“ and
$ (or T); but these quantities are simply unknown scalars and not unknown
functions. Hence, it proves possible to separate in this way the problem
of the unknown distribution functions from the problem of the scalar
unknowns and to solve the function problem exactly. A simple example for
this possibility is provided by Huggins’y -parameter concept (r, = 1)

65 axw (L -y)i x=x(T) (39)
Inyy, =% Ingg =y (1 - y)? (408, b)
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The dependence of the excess segmentmolar Gibbs energy GE on the distribu=-

tion function is often important,and then this dependence may not be
neglected. Therefore, the question is how to proceed in this case. The
inspection of the corresponding relations shows that this dependence
usually is provided by the occurrence of further functionals (e.g. moments)
of the distribution function. This means that also in this case the separa-
tion is possible and that the exact solution of the distribution function
problem is again provided by Eqs. (37), (38). The only difference is that,
in addition to ¢", F" and ¢ {or T), the mentioned functionals occur as
further unknown scalars of the problem. In the following, for the sake simplicity,
such additional unknowns are assumed not to occur ., However, the generali-
zation to more general cases is straight forward,

To generalize the treatment for a series of successive phase equilibria,
i.e, for polymer fractionation (refs, 9-16), the introduction of the preci-
pitation rate K is convenient. In the continuous case K is a continuous
function of r defined as the quotient of the amounts of ssgments of all
polymer species with segment numbers between r and r + dr in phase " and

in the feed phase F, respectively:

wwi(r) dr o, pw(r)

RK{r) = ¢ 41

( pF WF(r) dr yF WF(r) (41)
Combination with Eq. (38) leads to

K(r) = < : (42)

P+ (1-0)expl-rpg(r)
The introduction of the precipitation rate K(r) permits to write the rela-

tions between the distribution functions W'(r) and W'(r) in the coexisting

phases and the distribution function WF(r) of the feed polymer in a sim-
ple form

$'W'(r) = l—;—'fijl oFwF(ry . (43)
y'w'(r) = KL WP wiir) (44)

As discussed above,these relations provide directly the unknown distribuT
tion functions W'(r) and W"(r)., The scalar unknowns of the problem are y",

r“and ¢ (or T). They may be calculated from the relations

. F
1 -y's o . (45)
¢+ (1 -9) exp [- ry 2,]
y's %Ll oF wF(r) dr (46)
é? iy Ll oK) wF w(r) dr - (47)
r r - r ¢

A

The first relation results from the phase equilibrium condition for the
solvent A, The second equation results from the phase equilibrium condi-
tion for the polymer, Eq. (44), by integration. And the last equation
results from the definition of r, Eq. (35), as applied to phase’ .,

As examples the two basic fractionation procedures, the successive precipi-~
tation fractionation (SPF) and the successive solution fractionation (SSF)
will be considered (Fig. 1). In both cases a homogeneous polymer solution
called feed phase F splits by lowering the temperature into two coexisting
phases, a polymer-lean phase’ and a polymer~rich phase ” which are sepa-
rated, In SPF the polymer is isolated from phase” as fraction 1, Phase’
forms directly the feed phase for the next fractionation step etc.

In the case of SSF the polymer fraction 1 is obtained from phase’ ., Phase”
is diluted by adding solvent up to the volume of the original feed phase
corresponding, to a very good approximation, to the same total amount of
segments, Thie phase is used as feed phase for step 2 etc,

In the last fractionation step the polymer of phase ' in the case of SPF,
and of phase ! in the case of SSF forms the final fraction. All coexisting
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pairs of phases ' and " are presumed to be in equilibrium, Hence, it is
possible to apply the equations discussed above. To indicate the different
separation steps 1,2,... the corresponding number, in general i or j, is
added as subscript.
a} ]smp1
J step 2

F1

| F2

b)

solvent

Fig. 1. Fractionation schemes: a) successive precipitation frac-
tionation, b) successive solution fractionation, [ |original
feed or phases with equal volume, [ polymer-lean phase (/),
ZZ7Z1 polymer-rich phase (7).

In SPF phase / from step i is used directly as feed phase for step ( i + 1).
Hence, the following relations are valid:

F 1]
wi+1 = q’)i (48)
Wi, (r) = wi(r) (49)
e T (50)

On adding the subscript i Eqs. (43), (44) read
1 - Ki(r)

/ ! F F
W, = w 51
WL (r) e Yt () (51)
0oy Ky(r)
yawy(r) = 2——yf wi(r) (52)
‘Pi

Hence, successive substitution according to the fractionation scheme
results in

0 Ki(r) 21 -k ()
g wi(r) = = FL——— wh wi(r) (53)
Py e 1=y

This equation enables the direct and explicit calculation of the distribu-
tion of the polymer fraction i, 1(r), to be made from the distribution function

Wi(r) of the original polymer. The structure of this relation corresponds

to the fractionation scheme applied. In steps j = 1,...,i-1 the polymer-
lean phaee /" is taken corresponding to the occurrence of the factor
(1 - (r))/(1 - ¢ ) for j = 4,...,i~1, In step i the polymer-rich phase”

is taken corresponding to the factor K i (r)/dy.

To perform the calculation the composition of the original polymer solu-
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tion, i.e, wi and wi(r), must be given. Furthermore, the equation contains
the unknowns Yy F; and ¢ (or Tj) for all steps j = 1,...,i. These
quantities are to be calculated successively, i.e. at first for j = 1, then
for j = 2 etc,, from the set of three relations, Eqs. (45) - (48), where
the feed distribution of each step may be expressed by the feed distribu-

tion of the first step, Wz(r), on the basis of the above equations.

According to the remarks made above, in SSF the total number of segments
is the same in all feed phases to a very good approximation. This leads to
the relation

1

¥ Lg Waa(r) = by vy wi(r) (54)

On combining this relations with the LLE equations for the distribution func-
tions the distribution function of the i-th polymer fraction W{(r) is given
in direct and explicit form by the relation

i-1
— T km wh wEen (55)
1-g,(r) ge1 30T E

Againsthis relation corresponds to the fractionation scheme. In steps
j=1,...,i=1 the polymer-rich phase ! is taken corresponding to the
occurrence of the factor Kj(r) for j = 1,...,i-1, The denominator ¢ is

, , 1 - K. (r)
Yy wi(r) = -

absent due to the occurrence of ¢ in the relation resulting from the
fractionation scheme. In step i the polymer-lean phase / is taken corres-
ponding to the factor (1 - K;(r))/(1 - &4). The unknown quantities are wg,
r’, and ¢, (or Tj) for j = 1,...,i. They can be calculated successively
with the help of Eqs. (45) - (47), where again the feed distribution of
each step may be expressed by the feed distribution of the first step.
Again,these relations are to be solved numerically for each step.

It can be seen from the treatment that a very important advantage of con-
tinuous thermodynamics in considering polymer fractionation consists in
providing exact and explicit formulas for the distribution functions of all
fractions., Only a relatively small number of equations is to be solved
numerically. The traditional pseudocomponent method leads only to the seg-
ment fractions of the arbitrarily chosen pseudocomponents,
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