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Abstract - During the last two decades quasichemical approximation has 
been used in new applications in modelling fluids with orientation effects 
and association. Quasichemical group-contribution models for liquid sol-  
utions, hole versions describing both liquid and gas phases, models for 
the surface region of solutions etc. were worked out. The main features of 
the models and some calculated results for pure and mixed fluids are 
discussed. 

INTRODUCTION 

Though progress in the statistical thermodynamics of fluids is mainly due to integral 
equations for correlation functions, to the perturbation theory and computer simulations (ref. 
1,2), partly empirical approaches are still the most valuable in practical calculations. For 
the correlation and prediction of thermodynamic properties of such complicated systems as 
associated fluids, polymer solutions, liquid crystals, various multicomponent mixtures etc. 
lattice models appeared to be rather helpful. They propose the simplest way to take into 
account strong interactions (repulsive and specific) and to reflect properties due mostly to 
local structure. In physico-chemical studies the quasichemical (or Bethe-Guggenheim) approxi- 
mation (QA) is widely used for local ordering estimations. 

This approximation was formulated firstly for binary lattice systems formed by similarly sized 
molecules interacting via central forces such as a strict regular solution (ref. 3), the Ising 
model etc. It can be written as 

t:2ifi11fi22 = 4exp(-w12/kT) , (1) 

where Nij is the number of pairs of the nearest neighbours i and j (i,j=1,2); w12 is the 
interchange energy, that is the difference u12- (u, 1+u2~)/2 (here, ui * is the interaction 
energy for the i-j pair); T is the absolute temperature, k is the Bojtzman constant. Later, QA 
was applied to systems where molecules differ in sizes and orientation effects take place. 
A rather general model taking into account both these factors was formulated by Barker (ref. 
4 , 5 ) .  New versions of quasichemical models for mixtures and pure fluids with orientation 
effects appeared in the seventies and eighties. Among these, there are group-contribution 
versions of the Barker model for the excess functions of liquid solutions (ref. 6-10) and 
a quasichemical hole group-contribution model which is valid both for liquid and gas phases 
giving the equation of state EOS and the wide range of thermodynamic quantitites (ref. 11). 
The free volume factor was taken into account in the group-contribution model by Nitta et.al. 
(ref. 12). There are special applications of QA to the surface region of solutions with 
polar components (ref. 13) and to liquid crystals (ref. 14). In this paper mainly the results 
obtained in our studies are considered. 

QUASICHEMICAL APPROXIMATION AND THE LAW OF M A S S  ACTION 

In quasichemical models the description is made in terms of pairs of the nearest neighbours 
and equation (1) or several equations of the type are used to find the numbers of various 
pairs. They can be pairs between different contact points of molecular surface, which in 
a general case is considered energetically inhomogeneous. The idea was presented in the 
Barker lattice theory for solutions with orientation effects and association (ref. 4,5). 
Contact points of a molecule equivalent with respect to their energies of interaction with 
neighbouring molecules are considered as belonging to the same type. For example, an alcohol 
molecule is usually allotted three types of contact points: contact points of a hydrocarbon 
p a r t  (type I>, hydrogen (H) and oxygen (0 )  of a hydroxyl group. Thus even for a pure alcohol 
several types of mixed pairs (H-0, H-I ,  0-1) should be taken into account, the H-0 pair cor- 
responding to the hydrogen bond. For each type of mixed contacts we can write a quasichemical 
equation similar to (1). Hole theories introduce vacancies as an extra component, and this 
results in additional quasichemical equations. In this part expresssions for excess thermo- 
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dynamic functions of the k-component lattice system without vacancies will be given. Let n be 
the number of contact point types in the system, Nij is the number of pairs (contacts) of dif- 
ferent types. For the sake of convenience,*we-ll distinguish the pairs i-j and j-i when itj. 
In a homogeneous fluid Nij = Nji = i*./2, Nij being the total number of pairs between i and j 
contact points. Instead of (11, we have 1 J  

N. .N.. / (N. . N. .) = exp (-2w. , /kT) , (2) 1 3  3 1  11 33 1 J  

where wi' = uij- (uii+u..)/2; i,j=l, ..., n. The overall number of equations (2) for the system is n(n-lj/2. J J  

The configurational partition function of the system is given as 

z = z  z (3)  c fv lat 
with Z denoting the free volume factor and Z being the lattice partition function; fv lat 

Zlat a go (N1,. . . ,Nk) .T .  N: ! /N . ! 1 exp (-. C ,N. .u. , /kT) ; ( 4 )  
1 , J  iJ 1 , ~  1 J  1 J  

here, go is the overall number of different configurations for the system, Nij and Ntj arethe 
numbers of i-j pairs given by equations (2) and found in the random approximation respect- 
ively. When the free volume part is not taken into account, thermodynamic functions are 
written as a sum of combinatorial and residual parts. Thus, for the activity coefficients yi 
we have 

lnyi = lnYi comb + Inyi res . ( 5 )  

In the Barker theory Guggenheim combinatorial formula for mixtures of chain molecules was 
used: 

Inyi comb = ln($i/xi) + zqih(0i/+i)/2 , ( 6 )  

where z is the coordination number, zqi is the number of contact points of molecule i, that 
is the number of lattice sites which are its nearest neighbours (zq; is a measure ofmolecular 
surface); xi is the mole fraction of component i, $. and 0. are its volume and surface frac- 
tions: 

k k 
$ .  = r.x./ z r.x, ; Gi = q.x./.Z q.x. , 
1 l l j = l J J  1 1 j=1 3 3 

ri being the number of  lattice sites occupied by molecule i. Other approximations can be used 
instead of ( 6 )  to take into account the influence of molecular sizes. 

The residual part will be written in a form suitable both for the original Barker model and 
for its group-contribution version. The following quantities are introduced: 

qsiz - the number of s-type contact points for molecule i; 
asi = qsi/qi - the fraction of s-type contact points in the molecule i; 
ci = 1 q .x./.C q.x. -thesurface fractionofs-type contactpoints inthe mixture; 

Xs - solutions of the following set of equations (Note a) 

k k 
S i=l S1 1 ~ = 1  J J 

n 
C a Xt Pist 5 1 (7) Xs t=l t 

where nst=exp(- wst/kT), s=l, ..., n; X,i-solutions of the corresponding set of equations for 
pure component i. Through X, the most probable numbers of pairs in the system are obtained, 
asatXsXtnst being the fraction of s-t pairs. We have 

Inyi res = zqis!lasi In(Xs/Xsi) . 
The excess enthalpy is given by 

E k 
H = Nz(jfl qjxj/2) s f t ( c i s c i t X s X t - ~ i ~ i a s i " t i X s i X t i ) s s t  hst , 

where h =a(wst/T)/a (1/T) is the interchange enthalpy. St 
An attractive feature of the model is the uniformity of its formulation. With the equations 
written above it is possible, in principle, to take into account both nonspecific and speci- 
fic interactions, to describe different types of association. That is one of the advantages 

Note a:Equations ( 7 )  follow fromquasichemicalequations (2) and fromstoichiometric relations. 
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of the quasichemical approach in comparison with the theories of association equilibriawhere 
equations expressing the law of mass action should be written individually for each type of 
association. The difference between the two approaches is due to the fact that in the quasi- 
chemical approach we deal with the numbers of pairs of different types and in the theories of 
association equilibria, with the numbers of molecular species (monomers, dimers, etc). It was 
shown (ref. 15) that for the same interaction model both approaches give similar results and 
the relations were found between the parameters (association constants and interchange energy 
for strong bonds). But, in general, the two approaches differ in their capability t o  describe 
different types of association. The most serious restriction of contact points models is 
their inability to describe the dependence of interaction parameters on the structure of 
associates (thus, the energy of the 0-H bond is supposed to be the same for associates AB and 
AB2, for A2, A3, ..., Ai in the case of consecutive association). Some types of association 
patterns (e.g. formation of only trimers or only tetramers) cannot be described by contact 
points models. At the same time theories of association equilibria do not have anydifficult- 
ies in this respect. But there exist also situations when contact points models work well 
whereas the approach using the law of mass action can be hardly realized (e.g. systemswhere 
a network of strong bonds is formed). The law of mass action is very widely used for associ- 
ated systems when equations for excess functions or EOS are derived (ref. 16). Our attention 
will be focussed only on the quasichemical approach. 

In fact,QA can be interpreted in a rather general manner only as a means to estimate local 
ordering without an obligatory connection with lattice models and one can assume that lattice 
models themselves can be considered just as a manner of enumerating the most significant 
configurations. The quality of QA was checked by comparison with strict Onsager-s results for 
the plane lattice, with very accurate expansions (ref. 17) and with the results of computer 
simulations (ref. 18,19). It has appeared to be rather satisfactory excluding the critical 
region. Several attempts were made to improve QA (ref. 2 ) ,  but as a rule its classical form 
is used, and this is done throughout the paper. 

QUASICHEMICAL GROUP-CONTRIBUTION MODELS FOR LIQUID 
SOLUTIONS 

The models under consideration were first dealt with in a study of Kehiaian et al. (ref. 6), 
and later several versions differing in some details were proposed (ref. 7-10). The models 
exploit the general idea of a group-contribution approach, i.e. the additivity of the contri- 
butions of groups to thermodynamic properties represented as a sum of combinatorial and 
residual parts. In cornparison with UNLFAC and ASOG, their specific feature is the use of QA 
for the calculation of the numbers of pairs between neighbouring groups. The models are in 
fact some extensions of the Barker-Guggenheim model and relate to the quasilattices without 
vacancies (therefore, volume changes on mixing are not considered). Not only linear, but also 
bulky molecules are now included. Molecular volumes ri and surfaces qi estimated according to 
Bondi-s tables (ref. 20), and the Flory-Huggins (ref. 6) or Guggenheim-Staverman (ref. 8-10) 
combinatorial term is introduced. The version used in our work (ref. 8,9) differs from the 
Kehiaian model in the following: (1) in using the Guggenheim-Staverman expression for the 
combinatorial term, ( 2 )  in the manner of subdivision some heteroatomic polar groups into dif- 
ferent contact parts, (3) in form ( 7 )  of quasichemical equations convenient for calculations 
in the whole concentration range, including infinite dilution. The residual contribution to 
the chemical potential is represented by expression (81, the excess enthalpy is given by (9), 
s and t denoting different groups. The interchange free energy wSt is considered as tempera- 
ture dependent according to the formula used by Kehiaian et al. (ref. 6): 

Three parameters are introduced for each pair of different groups s and t: wEt = wst(To) and 
hEt = hst(To) - interchange free energy and interchange enthalpy at some reference tempera- 
ture To; Cpst - interchange heat capacity. For the calculations in a small temperature range, 
the hst parameter may be considered temperature independent, and the last term in the 
expression (10) disappears. The model was applied to systems formed by alkanes, alkanols,per- 
fluoroalkanes (ref. 8,9,21,22), to mixtures of alkanes and alkanols with cellosolves (ref. 2), 
alkenes and alkynes (ref. 23). As an illustration, systems composed of alkanes, alkanols, and 
perfluoroalkanes are considered in more detail. The division of the molecules into groups and 
subgroups was made bearing in mind that in one group structural units with identical inter- 
action energies are included. The subgroups of the same group differ only in their geometri- 
cal characteristics (the volume, the surface area). Thus, alkane molecules are assumed to 
consist of "CH2" groups, with CH2 and CH3 subgroups, molecules of perfluoroalkane are composed 
of "CF2" groups, with CF2 and CF3 subgroups. Alcohol molecules are considered to be formed of 
groups of three types - "CH2" (the hydrocarbon radical), H and 0 of the hydroxyl group. It 
seems that with the subdivision of the hydroxyl into two parts (groups), H and 0, we have 
better possibilities to take into account orientation effects than with the models consider- 
ing the OH group as a whole (ref. 10). The representation of heteroatomic polar groups as 
composed of different contact parts (different "groups") influences significantly the calcu- 
lated results, helping to reproduce the asymmetry of excess function curves for strongly 
associated systems. Calculations for alkanol-alkane systems with z=10 and 2=4 have shown 



1118 N. A. SMIRNOVA 

that the value of z does not influence the estimated results much. The results below relate 
to z=lO. The volume and the surface area for standard segment are: v* = 18.927 cm3/mole and 
a* = 3.13~1019 cm2/mole. There was some arbitrariness in the determination of geometrical 
characteristics for H and 0 groups, as only rOH = (rH+ro) and qOH = (qH+qo) are fixed bythe 
Bondi tables. Particular rH and rg values are not significant, so it was assumed arbitrarily 
that ro=rOH; rR=O. The values of qH and qo influencing the residual part were chosen taking 
into consideration that qiz is proportional to the number of contacts in which this group 
takes part. The values qHz and qQz are to show the ability of the hydroxyl group to form one 
hydrogen bond through the hydrogen atom and two bonds through the oxygen atom. But these are 
effective parameters, and their values can differ from 1 and 2 (notice that for Z=10 qOHZ = 
4.6). The best agreement with the experiment was obtained for qHz=l; qOz=qOHZ-l. The model 
parameters are given in Appendix. Satisfactory GE and HE values were predicted for alkane- 
alkanol solutions (ref. 211, for the limiting activity coefficients in binary and ternary 
alkanol-alkane-perfluoroalkane mixtures (ref. 22), for the mutual solubilities of perf luoro- 
alkanes and alkanols or alkanes at temperatures far from the critical point of solubility. In 
general, the results for alkane-alkanol solutions are better than those obtained with a model 
close to ours, but considering the OH group as a whole, without subdivision to H and Ocontact 
parts (ref. 10). Hence, we point out once again the usefulness of such subdivision. For the 
calculations of the activity coefficients and phase equilibria in a wide temperature range as 
well as for the calculations of the excess enthalpies an approximation considering hst as 
a temperature dependent parameter has evident advantages, in comparison with a cruder approxi- 
mation hst = const. But in some cases even with cpst # 0 the calculated HE curves did not repro- 
duce the asymmetry of experimental functions. This was observed for alkanol-alkane and alkanol 
-alkyne solutions, where experimental phase equilibria and HE data used for the parameter 
estimation related to very different temperatures (ref. 231, the standard temperature To,cor- 
responding to the phase equilibria data. It seems that for a better parameter estimation it is 
desirable to include HE data near the standard temperature. 

Certainly, the possibilities offered by the model under consideration should not be overesti- 
mated. There are general shortcomings of the group-contribution approach, and problems of the 
dependence of energy parameters on the position of the group in the molecule, on the presence 
of other groups etc. are very important. It seems that in comparison with UNIFAC and ASOG the 
quasichemical models have some advantages in the quality of a simultaneous GE and HE descrip- 
tion and in the treatment of association. But at the same time they cannot compete withUNIFAC 
and ASOG in the simplicity, thoroughness of the parameter list and convenience of practical 
calculations. 

Solutions with intramolecular hydrogen bond formation. The specifity of solutions where not 
only intermolecular but also intramolecular hydrogen bonds are formed cannot be reflected by 
the models discussed above. Not making any difference between the two types of bonds, the 
models prescribe that there are no specific contacts for associated component in nonpolar 
solvent at infinite dilution. But, in fact, if molecules A are capable of intramolecular 
hydrogen bond formation, such bonds will exist even at XA+O, and this should influence the 
thermodynamic properties. A method to deal with such systems using the quasichemical group- 
contribution model was proposed and applied to cellosolve solutions (ref. 2 ) .  General con- 
ditions of chemical equilibria are written for the mixture composed of three molecular 
species: A, - molecule A with an intramolecular hydrogen bond (cyclic form), A1 - molecule A 
without internal bonds (linear form) and molecule B: 

To find the activity coefficients of the species, we can use equations (5) and (8) for 
a three-component mixture with known concentrations of cyclic and linear forms. The methodwas 
proposed for the determination of these concentrations using spectroscopic data related 
high dilutions. 

The hole group-contribution model. Unlike models without vacancies describing liquids, hole 
models are valid for both liquid and gas phases of the system. A hole model for pure and 
mixed fluids with arbitrary molecular sizes was suggested by Sanchez and Lacombe (ref. 25) 
under the assumption of complete randomness in the distribution of molecules and holes on the 
lattice. The model has further extensions (ref. 26-29), the group-contribution hole model was 
formulated in random approximation (ref. 30). Though in some models local ordering is con- 
sidered, none of them takes into account orientational effects due to non-homogeneity of the 
molecular surface; this is why their possibilities to describe systems with polar components 
and association are restricted. The group-contribution approach for such systems could not be 
developed. A hole model which takes into account orientational effects, along with the in- 
fluence of molecular size and shape, was proposed in our work with Viktorov (ref. 11). In 
fact, it was an extension of the model described in the preceding part for systems with 
vacancies. It is supposed that molecules of k-component mixture and vacancies (holes) are 
distributed on the lattice, each molecule of component i occupying r; sites. Formally the 
holes are treated as a kind of species (component or group number zero) with ro = 1, qo=l. 
For them qso=O if s 2 0, s denoting the group type, qoo=l. 

to 
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The volume of mixture containing Ni molecules of component i (i=l,.. .,k) and No vacant sites 
are defined by 

k 
V = v’(N + .z riNi) , 

0 1=1 

v1 being the volume per site (the standard segment volume). 

The lattice partition function can be represented by formula (4) written for a system with 
components i=O,l, ... *k. The numbers of contacts are found from equations (71, where s and t 
run from zero to n. The lattice partition function depends upon T, NI, ..., Nk and on volume 
via No subject to relation (11). The derivation of thermodynamic quantities is straight- 
forward. The equation of state is defined by 

where P is the pressure, v*= V‘NA is the molar standard segment volume (NA-the Avogadro 
constant)’ 6 = v l . Z  Niri/V is the reduced density, li is the bulkiness factor for molecule 4 k 

1 = 1  k k 
Q = 5 (i41 xiqiIizl xiri - 1) , 

and Xg is the solution of quasichemical equations for holes. If z+O li = O  (linear molecules), 
from (12) we obtained EOS by Sanchez and Lacombe. 

For the calculations to be made, we must possess the geometrical (rs, 9,) and energy (wst, 
hsc, cst) parameters for the system under consideration. They, excluding qs, were adjusted 
using some experimental data. The q, parameters were calculated from the rs values and from 
the prescribed values of the molecular bulkiness factor. The results of calculations pre- 
sented in the publications (ref. 11) related to pure n-alkanes from butane to hexadecane, 
n-alkanols from ethanol to hexadecanol, acetic acid, hydrogen sulfide and water. Binary mix- 
tures of n-alkanes with n-alkanes, alkanols, acetic acid, water and hydrogen sulfide, alkanol 
-alkanol mixtures about 80 systems on the whole) and some ternary systems were included. Now 
the list of substances under investigation includes also light alkanes C1 -C3, C02, N2, 
I-alkenes and I-alkynes cg-C16. Binary mixtures of n-alkanes C1 -C16 with n-alkanes C1 -Cl6, 
H2S, C02, Ng are investigated, calculations are made for mixtures of alkenes and alkynes 
Cg-Cl6 with alkanes C4-Cl6. The majority of the systems are treated at several tempera- 
tures or pressures, and for some mixtures a high pressure region (up to 50MPa) is included. 
Among the mixtures under consideration are systems with a supercritical component (e.g., 
mixtures containing light alkanes, H2S, C02, Ng) , systems with azeotropes (alkanol-alkane, 
alkyne-alkane etc.) and with miscibility gaps (alkane-water). For each of alkanes C1 -C3, 
for Hg0, H2S, C02, N2 parameters were estimated individually. n-Alkanes C4-Cj6, n-alkanols 
Cg-Ci6, I-alkenes and I-alkynes Cg - C16 were treated in the group-contribution manner. 
n-Alkane molecules (from butane and higher) were subdivided into CH3 and CH2 groups dif- 
fering in their geometrical and energy characteristics. For alkanols, the hydroxyl group was 
added and subdivided into 0 and H contact parts, the 0-H interaction representing the 
hydrogen bond. In acetic acid, water and hydrogen sulfide molecules the H contact parts were 
also distinguished. I-Alkenes were considered as composed of CH3, CH2 and CH2=CH groups, the 
specific group for I-alkyne was CHX. The model parameters necessary for the description of 
the pure component properties were estimated from the saturated vapour pressure and liquid 
density data. If a group-contribution approach is implemented, then with these parameters 
one can predict the properties of those mixtures where no new types of contacts are present 
in comparison with the pure liquids (alkane c4-cl6 - alkane C4-Cl6, alkanol Cg-Cl6 - 
alkane C4 - C16, alkanol - alkanol mixtures for example). To obtain a better description of 
excess functions, the parameters in some cases were corrected using GE and HE data for mix- 
tures. Thus the CH2 and CH3 group-interaction parameters were corrected using data for 
decane-hexane mixture. Experimental data on alkane-alkanol and alkanol-alkanol solutions 
were not used for the parameter estimations. Binary mixing functions and vapour-liquid equi- 
librium data were necessary to find parameters of interaction between substances described 
individually and other compounds. The temperature range to which the parameters relate varies 
for different systems, but the 270-350 K interval is usually included. Calculations of 
thermodynamic quantities and phase equilibria carried out for many systems have shown that, 
in general, the model gives satisfactory results, both for pure nonpolar or polar compounds 
and for mixtures. Some experimental points along with theoretically calculated curves are 
given in Figs 1-3. The results on saturated vapour pressure of alkanes C4-C16 are much 
better than the hole group-contribution model of Ischizuka et al. (ref. 30) gives and are 
comparable with those following from the Sanchez and Lacombe theory with an individual 
description of each system (ref. 25). In comparison with Redlich-Kwong and Peng-Robinson 
equations of state, the present model gives usually more accurate results for fluids com- 
posed of long-chained and/or polar molecules, but in the case of short nonpolar molecules, 
such as light alkanes, it is in general less successful, especially near the critical point. 
The densities of liquid phase are usually better reproduced by the hole model and those of 
vapour phase by the cubic equations of state. The hole model under consideration ensures 
approximately the same accuracy of GE and HE prediction for liquid solutions with associat- 
ing components as the quasichemical group-contribution approach described in the preceding 
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Fig. 3. Excess volumes for solutions of: (a) (at 298.16K) n-hexane + n-decane 
( 1  1, + n-hexadecane (21, + n-decanol (3) ; (b) (at 298.16K) n-heptane + n-dodecane 
(11, + n-butanol ( 2 ) ;  (c) (at 310.95K) n-pentane +hydrogen sulphide; (ref. 11). 

part; VE is obtained in addition. In comparison with UNIFAC, we obtain better excess 
enthalpies. In the case of n-alkane mixtures we obtained good results for GE and VE and only 
a qualitative prediction for HE. The failure of the model in HE prediction may be connected 
with its inability to take into account the short-range orientational order due to repulsive 
forces, which is very important for alkanes (ref. 31). A comparison with phase equilibria 
calculations using other hole models shows that, as a rule, our results are at least of the 
same quality, but for light components Kleintjens-Koningsveld EOS (ref. 27) is somewhat more 
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Precise than ours. In general it should be accepted that the proposed model is far from being 
the most precise in the description of special classes of systems (n-alkanes for example),but 
its main advantage is the wide range of systems it can treat, including associated fluids and 
fluids composed of long-chained molecules. The application to such complicated systems the 
preferences of the model are revealed best. The second amendment is the possibility of agroup 
-contribution treatment which significantly enlarges the predictive power of the model. Among 
the main shortcomings of the present model we should name its insufficient description of the 
temperature dependence of thermodynamic properties and a poor reproduction of the critical 
behaviour of pure components and mixtures. 

It seems that the improvements of the model should be aimed predominantly at a better descrip 
tion of fluids formed by small nonpolar molecules as just here the model is inferior to the 
best modern approaches. We see several possibilities to make improvements. One of them is to 
change t8e combinatorial part of thermodynamic functions using a good EOS for fluids of hard 
bodies differing in size and shape. Rather inspiring results were obtained for nonpolar sub- 
stances by combining the Carnahan-Starling or Boublik-Nezbeda EOS and an attractive part of 
the Van-der-Waals type (refs 24,311. It is reasonable to assume that with the equation of the 
type and with the residual part found in quasichemical approximation we-11 succeed in de- 
scribing both nonpolar and polar systems. Then there are possibilities to modify the classi- 
cal QA itself. 

LATTICE MODEL FOR SURFACE REGION OF SOLUTIONS WITH POLAR 
COMPONENTS 

In the series of our publications (refs 13,321 the multilayer model was proposed for the de- 
scription of surface properties of solutions containing polar and associated components. As in 
the models described previously, the idea of molecules having different types of contact parts 
was exploited and the numbers of contacts were estimated in QA. Mixtures of spherical or 
linear molecules are considered. It is supposed that above the solution there is ahomogeneous 
phase S of a constant composition (it may be vacuum, a solid or some liquid phase immiscible 
with the solution), the surface of the solution being plane. The lattice is divided into 
layers of sites parallel to the surface. For each layer p we should find the numbers of 
pairs Np9 between contact points i and j belonging to the same layer (q=p) or to the adjacent 
layers t;h=p-l ,p+l). Quasichemical equations have the form 

N!?N??/ (NP?N??) = exp (-2w. . /kT) 
1 J  11 11 3 3  1.1 

From the grand partition function the equations were derived determining the concentration 
and orientation profiles of the solution, surface tension and adsorption. Using the mode1,the 
liquid-vacuum interface was investigated for many binary and several ternary systems (sol- 
utions of organic compounds, alloys). Hydrogen bond formation was taken into account for such 
solutions as acetone-chloroform, alkanol-alkane, cellosolve-alkane and cellosolve-alkanol. We 
could conclude that the model is rather promising for the investigation of adsorption from 
solutions of complicated chemical nature. The calculations help to understand in which way the 
nature of polar groups, association processes and the length of hydrocarbon radicals influence 
the surface properties of solutions. The model may be formulated in a hole version and thenbe 
applied to the vapour-liquid interface. It is not difficult to modify the model for the de- 
scription of adsorption from solution on the nonuniform solid surface. 

CONCLUSIONS 

Thus, various applications of QA were considered in the paper. A number of advantages of the 
approach were outlined: a reasonable description of local ordering while taking into account 
orientational effects and association, the possibility to carry out a group-contribution 
treatment, the generalized mathematical form of equations suitable for various types of 
systems. QA looks rather attractive for an estimation of the residual part of thermodynamic 
quantities. Using this approximation in combination with good equations for the combinatorial 
part seems a promising tool in fluid properties modelling. 
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APPENDIX 

Parameters of the quasichemical group-contribution model for systems composed of alkanes, 
alkanoles, alkenes and perfluoroalkanes (refs 8,23) .  

Geometrical parameters 

Groups "CH2" H 0 "CEC" "CF2" - 
Subgroups CH3 CH2 CH2'CH CH=CH CF3 CF2 

0 ,7220  0.5406 0.0 0.4248 1.0785 0.8959 1.1271 0.8101 
1.1025 0.7349 

rS 
9s 0.6773 0.4313 0.1 0.3664 0.9393 0.6901 

Energetical parameters 
- 

H-CH? H-CH2 0-c=c - 
CH -C=C and 

H-C=C s-t contact and 0-H CH2-CF2 CF2-0 CF2-H 0-H and 2 O-CH2 0-CH2 - 

0.497 -4.3650 0.0556 0.5155 0.7829 - 2.9706 0.3218 0.00875 2.2386 Wst 
0 .327  -5.0822 0.0634 0.4407 0.4960 - 4.6106 0.6300 0.02357 0.5402 

Cpst 0 0 0 0 0 -21.08 2.119 -0.0367 -1.1664 

-0 

::t 

298.16 298.16 298.16 298.16 298.16 377.15 377.15 377.15 377.15 TO 




