INTERNATIONAL UNION OF PURE AND APPLIED CHEMISTRY

ANALYTICAL CHEMISTRY DIVISION COMMISSION ON RADIOCHEMISTRY AND NUCLEAR TECHNIQUES*

TOTAL AND SPONTANEOUS FISSION HALF-LIVES FOR URANIUM, PLUTONIUM, AMERICIUM AND CURIUM NUCLIDES

Prepared for publication by NORMAN E. HOLDEN Brookhaven National Laboratory, Upton, New York 11973, USA

* Membership of the Commission during the period (1985-89) this report was prepared was as follows:

Chairman: 1985-87 J. C. White (USA); 1987-89 D. C. Hoffman (USA); Secretary: 1985-87 D. C. Hoffman (USA); 1987-89 H. R. von Gunten (Switzerland); Titular Members: J.-P. Adloff (France; 1987-89); J. Foos (France); K. S. Kasprzak (USA); Y.-F. Liu (China; 1987-89); M. Sakanoue (Japan; 1985-87); I. Zvára (USSR); Associate Members: H. J. Ache (FRG); J.-P. Adloff (France; 1985-87); H. A. Das (Netherlands); H. R. von Gunten (Switzerland; 1985-87); R. J. Ch. Hagemann (France; 1987-89); G. Herrman (FRG; 1987-89); P. Karol (USA); Y.-F. Liu (China; 1985-87); S. G. Luxon (UK); W. Maenhaut (Belgium; 1986-89); M. Sakanoue (Japan; 1987-89); H. Sano (Japan; 1987-89); M. Sankar Das (India; 1987-89); E. Yellin (Israel); T. Shiokawa (Japan; 1986-89); E. Steinnes (Norway); M. Peisach (RSA); N. K. Aras (Turkey; 1987-89); B. F. Myasoedov (USSR); N. E. Holden (USA).

Republication of this report is permitted without the need for formal IUPAC permission on condition that an acknowledgement, with full reference together with IUPAC copyright symbol (© 1989 IUPAC), is printed. Publication of a translation into another language is subject to the additional condition of prior approval from the relevant IUPAC National Adhering Organization.

CONTENTS

			page
			1/05
Introduction			1485
Uranium Isotopes			1486
Plutonium Isotope	8		1486
Americium Isotope	3		1487
Curium Isotopes			1487
Discussion of Res	ults		1487
Tabulated Results			1488
Table 1.	Spontaneous fission half-life of	232 _U	1488
Table 2. Table 2	Total half-life of ²³² U	: 2331	1488
Table 3.	Total half-life of 233U		1489
Table 5.	Spontaneous fission half-life of	234 _U	1489
Table 6.	Total half-life of ²³⁴ U		1489
Table 7.	Spontaneous fission half-life of	2350	1489
Table 8. Table 9.	Spontaneous fission half-life of	: 236 ₁₁	1490
Table 10.	Total half-life of 236U		1490
Table 11.	Total half-life of ²³⁸ U		1490
Table 12.	Spontaneous fission half-life of	238U	1491
Table 13.	Spontaneous fission half-life of	250Pu	1491
Table 14.	Alpha half-life of 238py		1491
Table 15. Table 16.	Spontaneous fission half-life of	238 _{Pu}	1492
Table 17.	Spontaneous fission half-life of	239 _{Pu}	1492
Table 18.	Total half-life of ²³⁹ Pu	0/0	1492
Table 19.	Spontaneous fission half-life of	240Pu	1493
Table 20. Table 21	Total halt-life of 240Pu	241 _p .,	1493
Table 21.	Alpha half-life of $241p_{11}$		1493
Table 23.	Total half-life of 241Pu		1494
Table 24.	Spontaneous fission half-life of	242 _{Pu}	1494
Table 25.	Total half-life of ²⁴² Pu	0//	1494
Table 26.	Spontaneous fission half-life of	244Pu	1495
Table 2/.	Total halt-life of 247Pu	241	1495
Table 20.	Total half-life of 241 Am	Am	1495
Table 30.	Spontaneous fission half-life of	242m _{Am}	1496
Table 31.	Partial half-lives of ^{242m} Am		1496
Table 32.	Total half-life of ²⁴³ Am	- 2/2	1496
Table 33.	Spontaneous fission half-life of	243Am	1496
Table 34. Table 35	Total balf-life of 2420m	Cm	1497
Table 36.	Spontaneous fission half-life of	243 _{Cm}	1497
Table 37.	Total half-life of ²⁴³ Cm		1497
Table 38.	Spontaneous fission half-life of	244 _{Cm}	1498
Table 39.	Total half-life of 244Cm	- 245-	1498
Table 40. Table 41	Spontaneous fission half-life of	24 ⁵ Cm	1498
Table 41.	Total half-life of 246Cm		1490
Table 43.	Spontaneous fission half-life of	246 _{Cm}	1499
Table 44.	Total half-life of ²⁴⁷ Cm	0/0	1499
Table 45.	Spontaneous fission half-life of	248Cm	1499
Table 46.	Total half-life of 400Cm	: 250cm	1500
18010 4/. Tablo 48	Total half-life of 250cm	*um	1500
Table 49.	Recommended half-lives and uncer	tainties	1500
Acknowledgement			1501

References

1501

Total and spontaneous fission half-lives for uranium, plutonium, americium and curium nuclides

<u>Abstract</u> - Measurements of the half-lives of some long-lived nuclides of elements Z = 92, 94, 95 and 96 have been compiled and evaluated. Recommended values are presented for $^{232-236,238}$ U, for $^{236,238-242,244}$ Pu, for 241,242m,243 Am, and for $^{242-248,250}$ Cm. Values are presented for both spontaneous fission half-life and total half-life. Problems with reported uncertainties are also discussed.

INTRODUCTION

The long-lived nuclides of the uranium, plutonium, americium and curium elements are of interest for their use in nuclear reactors, for nuclear reactor burnup studies in waste management, and in certain safeguard applications, e.g., α counting is often used to determine the amount of material present. The total half-life, which for heavy elements is often synonomous with the half-life for α decay, and the half-life for spontaneous fission are evaluated for these various long-lived nuclides of interest. For many of these nuclides, there is also a decay mode of heavy fragment radioactivity (ref. 1). However in terms of the contribution to the total half-life value to be recommended, this heavy fragment radioactivity decay mode is usually much smaller than that of the spontaneous fission decay mode, although this is not true in all cases (ref. 2). Since the spontaneous fission decay mode half-life is usually only a small perturbation on the value of the half-life of the alpha decay mode, heavy fragment radioactivity decay will not be considered in this paper.

All of the various experiments have been reanalyzed and recommended half-life values are presented for ^{232-236,238}U, ^{236,238-242,244}Pu, ^{241,242m,243}Am, and for ^{242-248,250}Cm. These recommended half-life values supersede preliminary estimates previously presented, in particular with respect to their reported uncertainties.

Total half-lives for the uranium nuclides were reviewed some years ago (ref. 3). At that time, ²³⁸U was the only nuclide for which a spontaneous fission value was evaluated. More recently, the uranium and plutonium nuclides (ref. 4), and the americium and curium nuclides (ref. 5) were separately reviewed and values were recommended for both total and spontaneous fission half-lives.

It will be noted that many of the uncertainties recommended here considerably exceed, by up to an order of magnitude, uncertainties quoted by the individual authors in their publication; *e.g.* the total half-life of 238,240,241 Pu, 244,246 Cm and the spontaneous fission half-life of 244 Cm.

The general procedure followed in this paper has been to review each experiment and to revise the published values for the latest estimates of various parameters originally reported by the authors; e.g. improved data on branching ratios assumed, on the half-lives of other nuclides involved, etc. When detailed information on the uncertainties was available in each of these experiments, the standard deviation for the experiment was combined with one third of the systematic error to provide the uncertainty quoted in the table for each experiment. The result of this procedure should be that the limit of error of the half-life would be obtained from the sum of the systematic error plus three standard deviations; i.e. 3σ . Where there was no adequate discussion of the systematic error and the total error quoted was extremely small; e.g. 0.1 percent or less, a systematic error of 0.1 percent was estimated. One-third of this amount, about 350 parts per million (ppm), was added to the published error to obtain the figure tabulated in the various tables. The uncertainty listed for the recommended value in each table was calculated from a weighted average of the listed measurements using a variance weighting technique; either the reciprocal square of the author's reported uncertainty, or as revised according to the above scheme. Exceptions to the weighted average rule had to be made for some nuclides and will be discussed under the appropriate section for those nuclides. In such cases, recommendations were made using either a selected value considered superior to other listed measurements, or a weighted average was calculated for each of the different experimental techniques used and an unweighted average of these half-lives was recommended. All of the tables indicate the particular method chosen.

URANIUM ISOTOPES

In general, the recommended values for the half-lives of the various nuclides are obtained by weighting each reported value by the variance reported by the author for the experiment. In a few cases, values have been revised when the experiment was evaluated. In the case of 233 U, details were missing from Geidel'man's paper (ref. 6) such as the measured specific activity, the mass of 233 U assumed and the mass spectrometric analysis. As a result, the experiment could not be evaluated on the same basis as other measurements. The final uncertainty was increased by 50%, to account for the missing information.

In the case of 234 U, the measurement by DeBievre (ref. 7) used a variety of methods on 83 sources. Upon questioning some of the data, the authors agreed to revise the final value of the half-life as indicated in Table 6. This is one of the few experiments where multiple sources were prepared and measured. Lounsbury's results (ref. 8) have been revised for the specific activity of the other uranium nuclides due to better estimates of the respective half-lives. The problem of 232 U contamination was not discussed and the uncertainty was increased by 50% to account for this potential error in a source which is only 1% enriched in 234 U.

For the total half-life of ²³⁸U, only one value is listed in the table. Earlier determinations were based on measurements of the specific activity of natural uranium samples and the assumption of secular equilibrium between ²³⁴U and ²³⁸U in those samples. In a radioactive decay chain, when a daughter nuclide has a much smaller half-life than its parent nuclide, at a time interval very long compared to the daughter's lifetime, the growth and decay of the daughter is controlled by the parent and the two nuclides are in secular equilibrium *i.e.*, their specific activities, $N\lambda$, are equal, where N is the number of atoms and λ is the decay constant (λ = natural logarithm 2 / half-life). Since the half-life of ²³⁴U is only 10⁵ years and the age of the earth is orders of magnitude greater, 10⁹ years, all of the ²³⁴U originally formed in natural uranium has long since decayed. The ²³⁴U now present in uranium is due to the ²³⁶U decay series, *i.e.*,

$$^{238}U(\alpha) \rightarrow ^{234}Th(\beta) \rightarrow ^{234}Pa(\beta) \rightarrow ^{234}U.$$

In a closed system, the ²³⁸U and the ²³⁴U should be in secular equilibrium. This implies that a measurement of the specific activity of a natural uranium sample, when corrected for the small amount of ²³⁵U activity ($\approx 2.2\%$) would provide a valid determination of the equal amounts of activity of ²³⁸U and ²³⁴U present. However, Holden (ref. 3) has shown that this assumption of secular equilibrium is not valid. There is a disequilibrium in uranium sources found in various parts of the world. The specific activity of natural uranium can vary by up to a factor of two in different sources. As a result, only the measurement by Jaffey (ref. 9) is given in the table and is the recommended value.

In the case of the spontaneous fission half-life for 238 U, results are presented for the specific activity as reported. Measurements using fission track detection in 2π geometry; e.g. mica-uranium, or lexan-uranium sandwiches have a problem with partial fission track fading in the geological materials (ref. 10). Fission track fading would underestimate the specific activity and lead to overestimating the half-life. These measurements do have half-lives which are from 10% to 30% too large compared to all other techniques. These experiments have not been included in the averaging because of this systematic error. Other techniques used in the measurement of 238 U have been separately weighted and the results averaged and converted into a half-life recommendation.

PLUTONIUM ISOTOPES

In the measurements of the plutonium nuclides, weighted averages have usually been recommended, except for cases where authors report exceedingly small absolute values for the overall uncertainty. In a later section, the problem of treating good measurements which are mutually exclusive will be addressed. If one applies weighted averages to determine the α half-life of ²⁴⁰Pu, three of the five most recent measurements fall some ten standard deviations away from the recommended value. A half-life has been recommended on the basis of the unweighted average of the various techniques or methods utilized to measure this half-life.

If one used weighted averages for the total half-life of 241 Pu, all of the recent measurements that were performed at the accuracy level of tenths of one percent would carry no weight in the evaluation of this half-life. Since Strohm (ref. 11) quotes an

absolute accuracy for the ²⁴¹Pu half-life of 488 parts per million, while examining only one sample, his result would eliminate all other careful measurements from consideration. An unweighted average of the various techniques was again recommended. In the case of the α half-life of ²³⁹Pu, a single source was measured by a large number of laboratories using various techniques. The highly precise values reported had a range of results from the various laboratories which was an order of magnitude greater than the usual standard deviation quoted in most of these experiments. An unweighted average of the half-life for the various techniques was recommended.

For the α half-life of ²⁴²Pu, the range of results was ten to fifteen times larger than the typical uncertainty quoted by the authors. A weighted average of the half-life was recommended, with the uncertainty calculated from the external error.

AMERICIUM ISOTOPES

Most of the recommended values for the americium half-lives are based on a weighted average of the reported results. In the case of ²⁴¹Am, the reported uncertainties were revised to insure that comparable experiments were treated with comparable weights.

For the spontaneous fission half-life of ^{241}Am , the range of reported results was larger than quoted uncertainties by more than an order of magnitude. A value was selected using the better measurements and the uncertainty was chosen so as to overlap the range of the most recent measurement.

CURIUM ISOTOPES

For spontaneous fission of 242 Cm, the measurement which should carry most of the weight in the evaluation completely disagrees with all other recent measurements by five to ten σ . A selected value was chosen with an uncertainty to encompass the range of recent measurements.

For the case of ²⁴⁴Cm, the most accurate measurements, according to the published errors, disagree by sixteen σ . A weighted average was recommended with the uncertainty being controlled by the external error. Similar problems for total half-lives of ^{244,246}Cm were treated in the same manner.

DISCUSSION OF RESULTS

In most cases, the recommended values and uncertainties in the tables are based on variance weighted averages. Other recommendations are based on selecting the one good recent measurement of the particular half-life. In a few cases, the discrepancies in values and uncertainties quoted required the averaging of techniques to produce a reasonable recommendation. The recommended values listed in the following tables are given in units of either day (d) or year (a). Before concluding, a few words are in order on the problem of error estimation.

It has been noted above that various measurements in the tables quote uncertainties by authors such that they both disagree with and exclude many other good recent measurements from consideration. Undoubtedly, systematic errors have not been carefully considered in these publications. When experiments are performed at the level of five to ten percent accuracy, recording the number of counts is an important consideration. In Poisson statistics, increasing the number of counts can improve the overall accuracy, which varies inversely with the total number of counts. However, by the time that the overall accuracy reaches the level of one-half percent or better, the estimate of all systematic errors begins to control the total accuracy. The effort to continue to improve the statistical precision, by continuing to collect raw data points, does not significantly improve the total error, except superficially, in the absence of any effort to estimate the systematic error. If one uses variance weighting indiscriminately in such cases, one penalizes the authors who attempt the difficult task of estimating the systematic error, while benefiting the authors who make no such attempt to determine all of their sources of error, (an admittedly difficult task).

In the review of nuclear data by the International Atomic Energy Agency (ref. 12), their general comment on uncertainties included a statement questioning the validity of any presently stated uncertainties of less than 0.1% for half-lives.

The same criteria has also been applied here in a few cases. No half-life has been recommended with an accuracy of better than 0.1%; see the total half-life of 233 U as an example. The rationale for this rule is that systematic errors up to ten times smaller than the total statistical uncertainty quoted could have an appreciable effect on that total uncertainty, if there were a number of such errors. Recommending values at accuracy levels of a few hundred ppm would imply that all potential errors in the experiment at the level of ten ppm had been investigated, documented, and their effect on the result taken into account. An experiment, in which such a thorough study has been both performed and documented, has yet to be reported to my knowledge.

If one had a choice in designing the ideal experiment to measure the half-life, one would choose to determine many samples, using a number of duplicate instruments and utilizing a variety of different methods or techniques. This should provide the necessary information to correctly estimate the systematic error. Some effort toward this goal has been made in the last decade in the measurements on the half-life of 239 Pu and 240 Pu by the U.S. Half-life Evaluation Committee. However, this effort usually involved only one sample and for 239 Pu, one of the measurements was discarded because it was lower than the other results (ref. 13). It should be emphasized that this is never a sufficient reason of and by itself to discard data.

TABULATED RESULTS

Table 1. Spontaneous fission half-life of ²³²U

Reference Author (Year)	As Reported $T rac{1}{2} / 10^{13}$ a	Comments
Jaffey ¹⁴ (1951)	8. ± 5.5	
Segre ¹⁵ (1952)	> 0.8	Not used; Ionization Chamber
Recommended Value	$e = 8. \pm 6. \times 10^{13} a;$	Selected Value

Table 2. Total half-life of 232U

Reference Author (Year)	As Revised Tを/a	Comments
James ¹⁶ (1949)	70.	Not used; Ingrowth with pulse analysis
Sellars ¹⁷ (1954)	73.6 ± 1.0	2πα counting; Mass spectrometry; Revised probable error to Standard deviation
Chilton ¹⁸ (1964)	72.1 ± 0.5	99.2% enriched sample; 2πα counting; Coulometry
	71.4 ± 0.6	99.2% enriched sample; Calorimetry
Aggarwal ¹⁹ (1979)	68.90 ± 0.39	Specific activity; Relative activity to ²³³ U

Weighted Average = $70. \pm 1. a;$

Recommended Value

Table 3. Spontaneous fission half-life of ²³³U

Reference Author (Year)	As Reported <i>T</i> さ/10 ¹⁷ a	Comments
Segre ¹⁵ (1952)	> 2.7	Ionization Chamber
Aleksandrov ²⁰ (1966)	1.2 ± 0.3	No mention of correction for 232 U. Just 0.03% of 232 U could account for discrepancy with other measurements.
von Gunten ²¹ (1981)	> 2.7	97.11% enriched; Rotating Bubble Chamber; Corrected for (α,n,f) reaction
Recommended Value = $> 2.7 \times 10^{17} a;$		Selected Value

1488

Table 4. Total half-life of 233U

Reference Author (Year)	As Revised $T\frac{1}{2}/10^5$ a	Comments
Jaffey ²² (1974)	1.5910 ± 0.0015	99.477% enriched; Intermediate geometry α counting
Vaninbroukx ²³ (1976)	1.5925 ± 0.0013	99.762% enriched; Low geometry ctg. 99.9986% enriched; liquid scint. ctg.
Geidel'man ⁶ (1979)	1.5937 ± 0.0017	98.112% enriched; 4π α-x coincidence; Uncertainty x 1.5 for missing details
Aggarwal ²⁴ (1980)	1.5885 ± 0.0026	99.703% enriched; α counting and liquid scintillation counting
Recommended Value = 1	$1.592 \pm 0.002 \times 10^5$ a;	Weighted Average using uncertainty rule

Recommended Value = $1.592 \pm 0.002 \times 10^5$ a;

Table 5. Spontaneous fission half-life of ²³⁴U

Reference As Revised $T \frac{1}{2} / 10^{16}$ a Comments Author (Year) Segre¹⁵ (1952) Not used; Ionization Chamber > 0.6 Ghiorso²⁵ (1952) 1.6 ± 0.7 Not used; Revised; Ionization chamber von Gunten²¹ (1981) 1.42 ± 0.08 99.36% enriched; Rotating Bubble Chamber; Corrected for (α, n, f) reaction Wang²⁸ (1987) 1.9 ± 0.15 99.84% enriched; Phosphate glass detector; $232 U\ Corrected$ for; Increased uncertainty by 50% to account for overestimate of the zenith angle of fission fragments

Weighted Average = $1.5 \pm 0.2 \times 10^{16}$ a;

Table 6. Total half-life of ²³⁴U

Recommended Value

As Revised Tた/10 ⁵ a	Comments
2.475 ± 0.049	Not used; Medium geometry α counting
2.47 ± 0.06	Not used; a counting
2.439 ± 0.036	Not used; ≈1% enriched; Author withdrew data; 50% increase in Uncertainty for missing details
2.450 ± 0.009	Enriched to 99.873%; Revised value, see text for a detailed discussion
2.458 ± 0.013	1.08% enriched; Revised value; Low geometry α counting
2.4604 ± 0.009	93.437% enriched; 4πα-x Coincidence; Revised uncertainty
2.4570 ± 0.009	93.437% enriched; liquid scintillator; Revised uncertainty
2.457 ± 0.006	Not used; Mass intercomparison; Confirms direct measurements
	As Revised $T \pm /10^5$ a 2.475 \pm 0.049 2.47 \pm 0.06 2.439 \pm 0.036 2.450 \pm 0.009 2.458 \pm 0.013 2.4604 \pm 0.009 2.4570 \pm 0.009 2.457 \pm 0.006

Table 7. Spontaneous fission half-life of ²³⁵U

Reference Author (Year)	As Reported $T^{\frac{1}{2}}/10^{18}$ a	Comments
Segre ¹⁵ (1952)	0.18	Not used; Ionization chamber
Aleksandrov ²⁰ (1966)	0.35 ± 0.09	Not used; Fission track detectors
Gruetter ³² (1973)	> 1.8	Not used; No corrections Rotating bubble chamber;
von Gunten ²¹ (1981)	9.8 ± 2.8	99.76% enriched; Rotating bubble chamber Corrected for (α,n,f) reaction
Recommended Value =	$1.0 \pm 0.3 \times 10^{19} a;$	Selected Value

1489

Reference Author (Year)	As Reported Tな/10 ⁸ a	Comments
Nier ³³ (1939)	7.04 ± 0.31	207 _{Pb} /206Pb Ratio
Sayag ³⁴ (1951)	6.94 ± 0.40	α counting
Fleming ²⁷ (1952)	7.12 ± 0.31	α counting; medium geometry
Knight ³⁵ (1950)	7.10 ± 0.32	α counting; 50% geometry
Wurger ³⁶ (1957)	6.93 ± 0.27	α counting
White ²⁸ (1965)	7.12 ± 0.18	α counting
Banks ³⁷ (1966)	7.02 (+ 0.14 - 0.06)	207 _{Pb/} 206 _{Pb} Ratio
Deruytter ³⁸ (1965)	6.97 ± 0.19	α counting; silicon detector
Jaffey ⁹ (1971)	$7.037 ~\pm~ 0.011$	α counting; intermediate geometry
Weighted Average = 7	$.04 \pm 0.01 \times 10^8 a;$	Recommended Value

Table 8. Total half-life of ²³⁵U

Table 9. Spontaneous fission half-life of ²³⁶U

Reference Author (Year)	As Reported $T \frac{1}{2} / 10^{16}$ a	Comments
Jaffey ³⁹ (1949)	2. ± 1.6	
Conde ⁴⁰ (1971)	2.7 ± 0.3	$238U/236U = 0.30 \pm 0.03$
von Gunten ²¹ (1981)	2.43 ± 0.13	99.68% enriched; Rotating bubble chamber Corrected for (α,n,f) reaction
Belenky ⁴¹ (1983)	2.7 ± 0.4	Multiple neutron coincidence
Weighted Average = 2.5	$5 \pm 0.1 \times 10^{16} a;$	Recommended Value

Table 10. Total half-life of ²³⁶U

Reference Author (Year)	As Revised $T st / 10^7$ a	Comments
Jaffey ⁴² (1951)	2.46 ± 0.14	α counting; Increased uncertainty by 50% for missing details
Fleming ²⁷ (1952)	2.391 ± 0.057	α counting; Increased uncertainty by 50% for missing details
Flynn ⁴³ (1972)	2.3422 ± 0.0039	Revised uncertainty; Intermediate geometry α counting
Weighted Average = 2	$342 \pm 0.004 \times 10^7 a;$	Recommended Value

Table 11. Total half-life of ²³⁸U

Reference Author (Year)	As Reported T≒⁄10 ⁹ a	Comments
Jaffey ⁹ (1971)	4.468 ± 0.022	Intermediate geometry α counting
Recommended Valu	$e = 4.47 \pm 0.02 \times 10^9 a;$	Selected Value

Reference Author (Year)	As Reported/ $(10^{-17} a^{-1})$ Specific Activity	Comments
Whitehouse ⁴⁴ (1950)	8.38 ± 0.52	Ionization Chamber
Segre ¹⁵ (1952)	8.60 ± 0.29	Ionization Chamber
Fleischer ⁴⁵ (1964)	6.85 ± 0.20	Not used; Mica-uranium Sandwich
Roberts ⁴⁶ (1968)	7.03 ± 0.11	Not used; Mica-uranium Sandwich
Spadavecchia ⁴⁷ (1967)	8.42 ± 0.10	Rotating Bubble Chamber
von Gunten ⁴⁸ (1969)	8.66 ± 0.22	Fission Products from ²³⁸ U
Galliker ⁴⁹ (1970)	8.46 ± 0.06	Rotating Bubble Chamber
Storzer ⁵⁰ (1970)	8.49 ± 0.76	Fission Tracks in Dated Uranium Glass
Kleeman ⁵¹ (1971)	6.8 ± 0.6	Not used; Lexan-uranium Sandwich
Thury ⁵² (1971)	8.66 ± 0.43	Third Order Coincidence
Leme ⁵³ (1971)	7.30 ± 0.16	Not used; Mica-uranium Sandwich
Khan ⁵⁴ (1973)	6.82 ± 0.55	Not used; Mica-uranium Sandwich
Ivanov ⁵⁵ (1975)	7.12 ± 0.32	Not used; Mica-uranium Sandwich
Emma ⁵⁶ (1975)	7.2 ± 0.2	Not used; Mica-uranium Sandwich
Wagner ⁵⁷ (1975)	8.7 ± 0.6	Fission Tracks in Dated Uranium Glass
Thiel ⁵⁸ (1976)	8.57 ± 0.42	Fission Tracks in Dated Uranium Glass
Kase ⁵⁹ (1978)	8.22 ± 0.20	Ionization Chamber
Popeko ⁶⁰ (1980)	7.9 ± 0.4	Multiple Neutron Coincidence
Spaggiari ⁶¹ (1980)	9.26 ± 0.17	Not used; Mica-uranium Sandwich
Baptista ⁶² (1981)	6.6 ± 0.2	Not used; Mica-uranium Sandwich
Hadler ⁶³ (1981)	8.6 ± 0.4	Not used; Mica-uranium Sandwich
de Carvalho ⁶⁴ (1982)	11.8 ± 0.7	Not used; Fission Tracks (Ordinary Glass)
Belenky ⁴¹ (1983)	8.35 ± 0.40	Multiple Neutron Coincidence
Vartanian ⁸⁵ (1984)	8.23 ± 0.43	Not used; Fission Tracks in Plastic, Uranium Foils
lvanov ⁶⁶ (1985)	8.29 ± 0.27	Double Ionization Chamber

Table 12. Spontaneous fission half-life of ²³⁸U

Recommended <u>Half-life</u> Value = $8.2 \pm 0.1 \times 10^{15}$ a; Unweighted Average of Techniques

Table 13. Spontaneous fission half-life of ²³⁶ P	u
---	---

Reference Author (Year)	As Revised T≒⁄10 ⁹ a	Comments
Ghiorso ²⁵ (1952)	3.4 ± 1.2	Not used; Revised value Ionization chamber
Selickij ⁶⁷ (1988)	2.09 ± 0.06	Two sources; Fragment detection in 2π geometry
Recommended Value	$= 2.1 \pm 0.1 \times 10^9$ a;	Selected Value

Table 14. Total half-life of ²³⁶Pu

Reference Author (Year)	As Reported T½/a	Comments
James ¹⁶ (1949)	2.7 ± 0.3	α counting
Hoffman ⁶⁸ (1957)	2.85 ± 0.10	α counting
Nakanishi ⁶⁹ (1984)	2.87 ± 0.01	Activity Ratios; Silicon Surface Barrier Detector

Weighted Average = 2.87 ± 0.01 a;

Recommended Value

Reference Author (Year)	As Revised T½/a	Comments
Jaffey ⁷⁰ (1950)	89.59 ± 0.44	2π α counter; Revised uncertainty
Mech ⁷¹ (1956)	86 ± 3.5	Relative activity to ²⁴⁰ Pu
Hoffman ⁷² (1957)	86.41 ± 0.32	α counting; Revised uncertainty
Stohm ¹¹ (1974)	87.77 ± 0.053	Calorimetry; Revised uncertainty
Polyukov ⁷³ (1976)	86.98 ± 0.23	4π , low geometry $lpha$ counting Revised uncertainty
Diamond ⁷⁴ (1977)	87.71 ± 0.06	α counting; Revised uncertainty
Sevostijanov ⁷⁵ (1981)	86.54 ± 0.33	α counting; Revised uncertainty
Aggarwal ⁷⁶ (1981)	87.98 ± 0.25	Relative activity to ²³⁹ Pu Revised uncertainty
Weighted Average = 87	.7 ± 0.1 a;	Recommended Value

Table 15. Alpha half-life of ²³⁸Pu

Weighted Average

Table 16. Spontaneous fission half-life of ²³⁸Pu

Reference Author (Year)	As Revised T≒⁄10 ¹⁰ a	Comments
Segre ¹⁵ (1952)	3.8	Not used; Revised; Ionization Chamber
Jaffey ⁷⁷ (1949)	4.7 ± 0.6	Revised Value;
Druin ⁷⁸ (1961)	5.1 ± 0.6	Revised; Nuclear Photographic Emulsions
Hastings ⁷⁹ (1972)	4.77 ± 0.14	α/fission Ratio Silicon Surface Barrier Detectors
Gay ⁸⁰ (1975)	4.63 ± 0.12	Fission Fragment Coincidences in Mica
Selickij ⁶⁷ (1988)	5.01 ± 0.21	4 sources; Fragment Detection in 2π Geometry

Weighted Average = $4.75 \pm 0.09 \times 10^{10}$ a; Recommended Value

Table 17. Spontaneous fission half-life of ²³⁹Pu

Reference Author (Year)	As Reported $Tlpha/10^{15}$ a	Comments
Segre ¹⁵ (1952)	5.5	Not used; Ionization Chamber
Druzhinin ⁸¹ (1985)	7.8 ± 1.6	α/f ission activity
Recommended Value =	8. ± 2. x 10 ¹⁵ a;	Selected Value

Table 18. Total half-life of ²³⁹Pu

Reference Author (Year)	As Revised $T lpha / 10^4$ a	Comments
Aleksandrov ⁸² (1975)	2.4060 ± 0.0019	$4\pi \ \alpha-x$ coincidence; Revised uncertainty
Glover ⁸³ (1975)	2.4115 ± 0.0080	Not used *; Low geometry α counting
Jaffey ⁸⁴ (1977)	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	Intermediate geometry α counting; Isotope dilution mass spectrometry
Lucas ⁸⁵ (1978)	2.4112 ± 0.0033	α counting; Revised uncertainty
Gunn ⁸⁶ (1978)	2.4102 ± 0.0010	Calorimetry; Revised uncertainty
Marsh ⁸⁷ (1978)	2.4164 ± 0.0017	Mass spectrometry; Revised uncertainty
Seabaugh ⁸⁸ (1978)	2.4101 ± 0.0010	Calorimetry; Revised uncertainty
Prindle ⁸⁹ (1978)	2.4089 ± 0.0019 2.4019 ± 0.0015	Mass spectrometry; Revised uncertainty α counting; Revised uncertainty
Vaninbroukx ⁹⁰ (1978)	2.4085 ± 0.0014 2.4114 ± 0.0013	Not used *; Low geometry α counting Not used *; Liquid scintillator
Brown ⁹¹ (1981)	2.4088 ± 0.0025	Low geometry α counting; Revised uncertainty
	· · · · · · · · · · · · · · · · · · ·	* Experiments considered preliminary.
Recommended Value = $2.410 \pm 0.003 \times 10^4$ a;		Unweighted average of techniques with uncertainty rule invoked

Table 19. Spontaneou	s fission half-life of ²⁴⁰ Pu
----------------------	--

Reference Author (Year)	As Revised $T\frac{1}{2}/10^{11}$ a	Comments
Kindermann ⁹² (1953)	1.314 ± 0.026	Not used; Low geometry α counting
Barclay ⁹³ (1954)	1.225 ± 0.030	Not used; Low geometry α counting
Chamberlain ⁹⁴ (1954)	1.20	Not used; Low geometry α counting
Mikheev ⁹⁵ (1959)	1.20	Not used; α counting; gas scintillator
Watt ⁹⁶ (1962)	1.34 ± 0.015	Not used; Low geometry α counting
Malkin ⁹⁷ (1963)	1.45 ± 0.02	Not used; α counting; gas scintillator
White ⁹⁸ (1967)	1.27 ± 0.05	Not used; No details available
Fieldhouse ⁹⁹ (1967)	1.176 ± 0.025	Not used; Revised; Spontaneous Fission neutron emission rates
Budtz-Jorgensen ¹⁰⁰ (1980)	1.15 ± 0.03	Fragment spectra; ionization chamber
Androsenko ¹⁰¹ (1984)	1.15 ± 0.03	Spontaneous fission neutron Emission rates
Selickij ⁶⁷ (1988)	1.17 ± 0.03	Two Sources; Fragment detection in 2π geometry
Weighted Average = 1.16 ± 0.02	x 10 ¹¹ a;	Recommended Value

Weighted Average = $1.16 \pm 0.02 \times 10^{11} a;$

Table 20. Total half-life of ²⁴⁰Pu

Reference As Revised $T \frac{1}{2} / 10^3$ a Author (Year) Comments Inghram¹⁰² (1951) 6.505 ± 0.045 Not used; Mass spectrometry Butler¹⁰³ (1956) 6.600 ± 0.100 Not used; α counting Dokuchaev¹⁰⁴ (1959) 6.610 ± 0.055 Not used; Low geometry α counting Not used; Calorimetry; Revised value Oetting¹⁰⁵ (1967) 6.533 ± 0.010 Jaffey¹⁰⁶ (1978) 6.569 ± 0.006 Intermediate geometry α counting Rudy¹⁰⁷ (1984) 6.5524 ± 0.0017 Calorimetry Lucas¹⁰⁸ (1984) 6.5522 ± 0.0052 α counting Steinkruger¹⁰⁹ (1984) 6.571 ± 0.007 Low geometry a counting Mass spectrometry; revised uncertainty Beckman¹¹⁰ (1984) 6.574 ± 0.0062 Recommended Value = $6.56 \pm 0.01 \times 10^3$ a; Unweighted Average of Techniques With Uncertainty Range Extended

Table 21. Spontaneous fission half-life of ²⁴¹Pu

Reference Author (Year)	As Reported $T \frac{1}{2} / 10^{16}$ a	Comments	
Druzhinin ⁸¹ (1985)	< 6.	α/f activity measured	
Recommended Value <	6. x 10 ¹⁶ a	Selected Value	_

Table 22. Alpha half-life of ²⁴¹Pu

Reference Author (Year)	As Revised Tを/10 ⁵ a	Comments
Bigham ¹¹¹ (1958)	6.35 ± 0.32	α spectrometry relative to 239 + 240 pu
Brown ¹¹² (1960)	5.84 ± 0.12	Revised value; α spectrometry/total Pu α emission
Smith ¹¹³ (1961)	5.97 ± 0.20	Revised value; $lpha/eta$ branching, $lpha$ spectrometry
Bertolini ¹¹⁴ (1966)	5.98 ± 0.10	Revised; Growth method; Ge(Li) detectors
Ahmad ¹¹⁵ (1968)	5.88 ± 0.21	α/γ coincidence
Gunnink ¹¹⁶ (1976)	5.85 ± 0.075	γ emission probabilities; Ge(Li) detectors
Vaninbroukx ¹¹⁷ (1978)	6.04 ± 0.06	a spectrometry; ingrowth method Solid state detectors
Weighted Augman = 50	$6 \pm 0.04 \times 10^5$ at	Becommended Value

Reference Author (Year)	As Revised T½/a	Comments
Strohm ¹¹ (1974)	14.355 ± 0.007	Calorimetry
Whitehead ¹¹⁸ (1977)	14.56 ± 0.15	Ingrowth of 241 Am γ ray
Garner ¹¹⁹ (1979)	14.38 ± 0.07	Mass spectrometry
Vaninbroukx ¹²⁰ (1978)	14.60 ± 0.10	Ingrowth of 241 Am γ ray
Aggarwal ¹²¹ (1980)	14.42 ± 0.09	a spectrometry
Marsh ¹²² (1980)	14.38 ± 0.06	Mass spectrometry
Aggarwal ¹²³ (1981)	14.52 ± 0.08	a spectrometry
Aggarwal ¹²⁴ (1981)	14.44 ± 0.06	α spectrometry, α proportional counting
Aggarwal ¹²⁵ (1982)	14.32 ± 0.06	Mass spectrometry; Revised uncertainty
DeBievre ¹²⁶ (1983)	14.33 ± 0.02	Mass spectrometry
Hiyama ¹²⁷ (1984)	14.29 ± 0.15	Mass spectrometry
Aggarwal ¹²⁸ (1985)	14.38 ± 0.02	Mass spectrometry
Timofeev ¹²⁹ (1986)	14.57 ± 0.10	Mass spectrometry
December ded Value -	14.4 0 1 0	Unweighted Augmans of Techniques

Table 23. Total half-life of ²⁴¹Pu

Recommended Value = $14.4 \pm 0.1 a;$

Unweighted Average of Techniques

Table 24. Spontaneous fission half-life of ²⁴²Pu

Reference Author (Year)	As Revised Tを/10 ¹⁰ a	Comments
Studier ⁷¹ (1956)	6.7 ± 0.7	Quoted by Mech ⁷¹
Butler ¹³⁰ (1956)	6.65 ± 0.10	α /fission ratio
Mech ⁷¹ (1956)	6.79 ± 0.19	Revised Value for $^{242}Pu \alpha T_{22}$
Druin ⁷⁸ (1961)	6.6 ± 0.7	Gas scint.; Relative to ²³⁸ Pu α T _½
Malkin ⁹⁷ (1963)	7.45 ± 0.17	Gas scintillator; Specific activity
Meadows ¹³¹ (1977)	6.74 ± 0.05	$\alpha/fission$ ratio
Khan ¹³² (1980)	7.43	Not used; Mica fission track detector
Selickij ⁶⁷ (1988)	6.86 ± 0.26	Fission fragment detection in 2π geometry

Weighted Average = $6.77 \pm 0.07 \times 10^{10} a$; Recommended Value

Table 25. Total half-life of ²⁴²Pu

Reference Author (Year)	As Reported <i>T</i> ち/10 ⁵ a	Comments
Butler ¹³⁰ (1956)	3.649 ± 0.05	Not used; Relative α activity to ²³⁸ Pu
Butler ¹⁰³ (1956)	3.790 ± 0.05	Not used; Ion Chamber energy analysis
Mech ⁷¹ (1956)	3.855 ± 0.100	Not used; Relative $lpha$ activity to 240 Pu
Bemis ¹³³ (1969)	3.823 ± 0.016	Relative α activity to ²³⁹ Pu
Durham ¹³⁴ (1970)	3.674 ± 0.07	Relative α activity to ²³⁸ Pu
Osborne ¹³⁵ (1976)	3.763 ± 0.009	Calorimetry
Bulyanitsa ¹³⁶ (1976)	3.702 ± 0.014	$4\pi\alpha - x$ coincidence
Meadows ¹³¹ (1977)	3.708 ± 0.024	Relative α activity to ²³⁹ Pu
Aggarwal ¹³⁷ (1979)	3.754 ± 0.025	Relative a activity to 239 Pu and 238 Pu
Weighted Average = 3.7	$75 \pm 0.02 \times 10^5 a;$	Recommended Value

Table 26.	. Spontaneous	fission	half-life	of ²⁴⁴ Pu
-----------	---------------	---------	-----------	----------------------

Reference Author (Year)	As Revised Tた/10 ¹⁰ a	Comments
Fields ¹³⁸ (1955)	2.5 ± 0.8	Not used; Ionization chamber
Fields ¹³⁹ (1966)	6.67 ± 0.32	Revised value
Gokhberg ¹⁴⁰ (1977)	6.8 ± 0.8	No details
Khan ¹³² (1980)	7.32	Not used; Fission track detector
Moore ¹⁴¹ (1982)	6.56 ± 0.30	lon chamber; α counting; α spectrometry
Weighted Average =	$6.6 \pm 0.2 \times 10^{10} a;$	Recommended Value

Table 27. Total half-life of ²⁴⁴Pu

Reference Author (Year)	As Revised Tを/10 ⁷ a	Comments
Butler ¹³⁰ (1956)	6.65 ± 0.10	Not used; Relative α activity to ^{238}Pu
Diamond ¹⁴² (1956)	7.3 ± 2.	Revised; anti-coincidence prop. counter
Butler ¹⁰³ (1956)	7.6 ± 2.	α counting
Fields ¹³⁹ (1966)	8.12 ± 0.26	Revised value
Bemis ¹³³ (1969)	7.99 ± 0.10	Revised; Relative activity to ²³⁹ Pu
Weighted Average = 8.00	$\pm 0.09 \times 10^7 a;$	Recommended Value

Table 28. Spontaneous fission half-life of ²⁴¹Am

Reference Author (Year)	As Reported $T lpha / 10^{14}$ a	Comments
Segre ¹⁵ (1952)	> 0.14	Not used; Ionization chamber
Mikheev ⁹⁵ (1960)	> 2.	Not used; Gas scintillator
Druin ¹⁴³ (1961)	2.3 ± 0.8	Gas scintillator
Galliker ⁴⁹ (1970)	0.90 ± 0.04	Rotating bubble chamber
Gold ¹⁴⁴ (1970)	1.147 ± 0.024	Mica fission track detector
$Paul^{145}$ (1986)	1.8 ± 0.4	Mica fission track detector
Moody ¹⁴⁶ (1987)	0.64	Phosphate glass track detector
Recommended Value =	$1.0 \pm 0.4 \times 10^{14} a;$	Selected Value; Uncertainty overlaps range

Table 29. Total half-life of ²⁴¹Am

Reference Author (Year)	As Revised Tた/a	Comments
Hall ¹⁴⁷ (1958)	458.1 ± 0.5	Not used; Low geometry α counting
Wallman ¹⁴⁸ (1958)	457.7 ± 1.8	Not used; Low geometry α counting
Oetting ¹⁴⁹ (1967)	432.7 ± 0.7	Calorimetry
Stone ¹⁵⁰ (1968)	436.6 ± 3.0	Low geometry α counting
Brown ¹⁵¹ (1968)	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	Coulometric α counting Relative Activity to ²⁴³ Am
Jove ¹⁵² (1972)	426.3 ± 2.1	Calorimetry
Strohm ¹¹ (1974)	432.5 ± 1.0	Calorimetry (power decay); Revised uncertainty
	435.0 ± 1.0	Calorimetry (specific power); Revised uncertainty
Polyukhov ¹⁵³ (1974)	432.8 ± 1.6	4π $lpha$ counting; Revised uncertainty
Ramthun ¹⁵⁴ (1975)	432.0 ± 0.7	Calorimetry; Revised Uncertainty

Weighted Average = 432.7 ± 0.6 a;

Recommended Value

Reference Author (Year)	As Revised $T \frac{1}{2} / 10^{12}$ a	Comments
Caldwell ¹⁵⁵ (1967)	1.0 ± 0.4	Not used; Revised; Fission- Fragment - Neutron coincidence
Zelenkov ¹⁵⁶ (1986)	> 3.0	α/fission; Silicon surface barrier detectors
Recommended Value	$= > 3. \times 10^{12} a;$	Selected Value

Table 30. Spontaneous fission half-life of ^{242m}Am

Table 31. Partial half-lives of ^{242m}Am

Reference Author (Year)	As Revised Tを/a	Comments
Street ¹⁵⁷ (1950)	10000.	α decay branch
Hoff ¹⁵⁸ (1955)	850.	Electron capt. decay branch
Barnes ¹⁵⁹ (1959)	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	Revised Value; a decay branch Electron capt. branch Total half-life
Henderson ¹⁵⁹ (1959)	182. ± 8.	$m{eta}$ decay branch; quoted by Barnes 159
Zelenkov ¹⁶⁰ (1980)	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	β decay branch α decay branch Total half-life

Weighted Average = $141. \pm 2.$ a;

Recommended Value

Table 32. Total half-life of ²⁴³Am

Reference Author (Year)	As Revised <i>T</i> ゙ぇ/10 ³ a	Comments
Street ¹⁵⁷ (1950)	10.	Not used; Daughter growth
Diamond ¹⁶¹ (1953)	8.1 ± 0.6	Not used; Revised value; Relative activity to ²⁴¹ Am
Wallman ¹⁴⁸ (1958)	7.95 ± 0.05	Not used; Low geometry a counting
Barnes ¹⁵⁹ (1959)	7.29 ± 0.16	Not used; Relative activity to $^{241} Am$
Beadle ¹⁶² (1960)	7.22 ± 0.05	Not used; Revised value; Relative activity to ²⁴¹ Am
Brown ¹⁵¹ (1968)	7.34 ± 0.065 7.39 ± 0.05	Relative activity to $^{241} Am$ Coulometric $lpha$ counting
Polyukhov ¹⁶³ (1974)	7.38 ± 0.034	α counting; Relative activity to ²⁴¹ Am
Aggarwal ¹⁶⁴ (1980)	7.36 ± 0.042	Revised; relative activity to $^{241}\mathrm{Am}$
Weighted Average = 7.3	$7 \pm 0.02 \times 10^3 a;$	Recommended Value

Table 33. Spontaneous fission half-life of ²⁴³Am

Reference Author (Year)	As Reported T≒⁄10 ¹⁴ a	Comments
Aleksandrov ¹⁶⁵ (1966)	> 0.33 ± 0.03	Glass fission track detector
Grozdev ¹⁶⁶ (1966)	2. ± 0.5	Glass fission track detector
Recommended Value =	$2.0 \pm 0.5 \times 10^{14} a;$	Selected Value

Reference Author (Year)	As Revised T'z/10 ⁶ a	Comments
Hanna ¹⁶⁷ (1951)	7.2 ± 0.2	Fission fragment counting, Ion chamber
Armani ¹⁶⁸ (1967)	6.82 ± 0.18	Revised value; Li—I fission neutron counting
Zhang ¹⁶⁹ (1979)	7.46 ± 0.06	Mica fission track detector
Raghuraman ¹⁷⁰ (1982)	7.15 ± 0.15	Solid state track detector
Umezawa ¹⁷¹ (1982)	6.89 ± 0.17	Mica fission track detector
Zelenkov ¹⁵⁶ (1986)	6.98 ± 0.33	Revised value; α/fission Silicon surface barrier detectors

Table 34. Spontaneous fission half-life of ²⁴²Cm

Recommended Value = $7.0 \pm 0.2 \times 10^6$ a;

Selected Value; Uncertainty covers the range of recent measurements

Table 35. Total half-life of ²⁴²Cm

Reference Author (Year)	As Revised Tた/d	Comments
Hanna ¹⁷² (1950)	162.5 ± 1.	Low geometry a spectrometry
Glover ¹⁷³ (1954)	162.46 ± 0.33	Revised uncertainty; Low geometry α counting
Hutchinson ¹⁷⁴ (1954)	163.0 ± 1.8	Calorimetry
Flynn ¹⁷⁵ (1965)	163.1 ± 0.4	Revised value; 2π α counting
Kerrigan ¹⁷⁶ (1975)	163.2 ± 0.2	Calorimetry
Diamond ¹⁷⁷ (1977)	162.76 ± 0.10	Revised uncertainty; Intermediate geometry α counting
Zhang ¹⁶⁹ (1979)	163.02 ± 0.17	Revised uncertainty; Low geometry α counting
Jadhav ¹⁷⁸ (1980)	162.13 ± 2.25	α spectrometry, solid state detector
Usuda ¹⁷⁹ (1981)	161.35 ± 0.16	2π $lpha$ counting; Revised uncertainty
Aggarwal ¹⁸⁰ (1982)	162.82 ± 0.27	Relative activity to ²⁴⁴ Cm; Revised uncertainty
	163.17 ± 0.12	α counting; Revised uncertainty
Wiltshine ¹⁸¹ (1984)	163.03 ± 0.22	Low geometry α counting; Revised uncertainty
Weighted Average = 162	.8 ± 0.2 d;	Recommended Value

Weighted Average = $162.8 \pm 0.2 d$;

Table 36. Spontaneous fission half-life of ²⁴³Cm

Reference Author (Year)	As Reported Tた/10 ¹¹ a	Comments	
Polynov ¹⁸² (1987)	5.5 ± 0.9	Mica fission track detector	
Recommended Value =	= $5.5 \pm 0.9 \times 10^{11} a;$	Selected Value	

Table 37. Total half-life of ²⁴³Cm

Reference As Revised Author (Year) 7½/a		Comments	
Asaro ¹⁸³ (1953)	35.	Not used; No details	
Choppin ¹⁸⁴ (1958)	28.4 ± 0.8	Revised value for the 244 Cm T _{ig}	
Timofeev ¹⁸⁵ (1986)	29.13 ± 0.10	Relative activity to ²⁴⁴ Cm	
Weighted Average = 29.1 ± 0.1 a;		Recommended Value	

Reference Author (Year)	As Revised $T + 10^7$ a	Comments
Ghiorso ²⁵ (1952)	1.39 ± 0.20	Revised value; Ionization chamber
Malkin ¹⁸⁶ (1963)	1.46 ± 0.05	Gas scintillator
Metta ¹⁸⁷ (1965)	1.346 ± 0.006	lpha/spontaneous fission ratio
Armani ¹⁶⁸ (1967)	1.33 ± 0.03	Li-I fission neutron counter
Barton ¹⁸⁸ (1970)	1.250 ± 0.007	Low geometry fission fragment counting
Hastings ¹⁸⁹ (1972)	1.343 ± 0.006	a∕fission ratio; Silicon surface barrier detector
Weighted Average = 1	$.32 \pm 0.02 \times 10^7 a;$	Recommended Value

Table 38. Spontaneous fission half-life of ²⁴⁴Cm

Table 39. Total half-life of ²⁴⁴Cm

Reference Author (Year)	As Revised Tた/a	Comments
Stevens ¹⁹⁰ (1954)	19.2 ± 0.6	Not used; Relative activity to ²⁴² Cm
Friedman ¹⁹¹ (1954)	17.9 ± 0.5	Not used; Relative activity to 242 Cm
Carnall ¹⁹² (1961)	17.59 ± 0.067	Specific activity; Revised uncertainty
Bentley ¹⁹³ (1968)	18.099 ± 0.032	2π and low geometry α counting; Revised uncertainty
Kerrigan ¹⁹⁴ (1972)	18.13 ± 0.037	Calorimetry; Revised uncertainty
Polyukhov ¹⁹⁵ (1982)	18.24 ± 0.247	Specific activity; Revised uncertainty
Weighted Average = 18.1	± 0.1 a;	Recommended Value

Table 40. Spontaneous fission half-life of ²⁴⁵Cm

Reference Author (Year)	As Reported <i>T</i> ½/10 ¹² a	Comments
Druzhinin ¹⁹⁶ (1985)	1.4 ± 0.2	α /fission ratio
Recommended Value = 1.4	$\pm 0.2 \times 10^{12} a;$	Selected Value

Table 41. Total half-life of ²⁴⁵Cm

Reference Author (Year)	As Revised Tォ/10 ³ a	Comments
Hulet ¹⁹⁷ (1954)	20.	Not used; Daughter x-rays measured
Friedman ¹⁹¹ (1954)	11.3 ± 5.	Not used; Revised value; Relative activity to ²⁴⁴ Cm
Browne ¹⁹⁸ (1955)	14.3 ± 2.9	Not used; a counting
Huizenga ¹⁹⁹ (1957)	7.5 ± 1.9	Not used; No details H.Diamond, private communication
Carnall ¹⁹² (1961)	9.32 ± 0.28	Not used; Relative activity to 244 Cm
Metta ²⁰⁰ (1969)	8.265 ± 0.180	Relative activity to ²⁴⁴ Cm
MacMurdo ²⁰¹ (1971)	8.538 ± 0.071	Revised uncertainty; Relative activity to ²⁴⁴ Cm
Polyukhov ¹⁹⁵ (1982)	8.445 ± 0.100	Relative activity to ²⁴⁴ Cm
Weighted Average = 8.	$48 \pm 0.06 \times 10^3 a;$	Recommended Value

Reference Author (Year)	As Revised $T\frac{1}{2}/10^3$ a	Comments
Friedman ¹⁹¹ (1954)	3.9 ± 0.6	Not used; Revised value; Relative activity to ²⁴⁴ Cm
Browne ¹⁹⁸ (1955)	2.3 ± 0.46	Not used; α counting
Butler ²⁰² (1956)	6.62 ± 0.32	Not used; Relative activity
Carnall ¹⁹² (1961)	5.48 ± 0.17	Not used; Relative activity to 244 Cm
Metta ²⁰⁰ (1969)	4.711 ± 0.022	Relative activity to ²⁴⁴ Cm
MacMurdo ²⁰¹ (1971)	4.82 ± 0.02	Relative activity to ²⁴⁴ Cm
McCracken ²⁰³ (1971)	4.654 ± 0.04	Specific activity
Polyukhov ²⁰⁴ (1976)	4.852 ± 0.076	Relative activity to ²⁴⁴ Cm
Weighted Average = 4.	$76 \pm 0.04 \times 10^3 a;$	Recommended Value

Table 42. Total half-life of ²⁴⁶Cm

Table 43.	Spontaneous	fission	half-life	of ²⁴⁶ Cm

Reference Author (Year)	As Reported T ½ $/10^7$ a	Comments
Fields ²⁰⁵ (1956)	> 1.24	Not used; Estimated value from the α/f ission ratio
Fried ²⁰⁶ (1956)	2.0 ± 0.8	Not used; Fission counting; Estimated the mass
Metta ²⁰⁰ (1969)	1.80 ± 0.01	α/fission ratio; 2π chamber, semi-conductor
MacMurdo ²⁰¹ (1971)	1.85 ± 0.02	$\alpha/fission$ ratio
Weighted Average = $1.81 \pm 0.02 \times 10^{7}$ a;		Recommended Value

Table 44. Total half-life of ²⁴⁷Cm

Reference Author (Year)	As Reported $T + 10^7$ a	Comments
Diamond ²⁰⁷ (1957)	> 4.	Not used; Daughter growth method
Fields ²⁰⁸ (1963)	1.64 ± 0.24	Daughter growth method
Fields ²⁰⁹ (1971)	1.56 ± 0.05	Relative α activity
Weighted Average = 1	$.56 \pm 0.05 \times 10^7 a;$	Recommended Value

Table 45. Spontaneous fission half-life of ²⁴⁸Cm

Reference Author (Year)	As Reported Tち/10 ⁶ a	Comments
Butler ²⁰² (1956)	4.6 ± 0.5	Not used; Specific fission activity
Metta ²⁰⁰ (1969)	4.22 ± 0.12	α/fission ratio; 2π chamber, semi-conductor
MacMurdo ²⁰¹ (1971)	4.20 ± 0.05	Relative activity to ²⁴⁴ Cm
McCracken ²⁰³ (1971)	4.115 ± 0.034	Specific fission activity; Ion chamber
Weighted Average = 4.1	$.5 \pm 0.03 \times 10^6 a;$	Recommended Value

Reference Author (Year)	As Reported Tな/10 ⁵ a	Comments	
Schuman ²¹⁰ (1968)	4.0 ± 0.3	Not used; α half-life	
Metta ²⁰⁰ (1969)	3.52 ± 0.04	α half-life reported = 3.84 \pm 0.04	
MacMurdo ²⁰¹ (1971)	3.60 ± 0.04	α half-life reported = 3.94 ± 0.04	
McCracken ²⁰³ (1971)	3.40 ± 0.03	α half-life reported = 3.703 ± 0.032	
Weighted Average = 3.4	$48 \pm 0.06 \times 10^5 a;$	Recommended Value	

Table 46. Total half-life of ²⁴⁸Cm

Table 47. Spontaneous fission half-life of ²⁵⁰Cm

Reference Author (Year)	As Reported T≒∕10 ⁴ a	Comments		
Huizenga ¹⁹⁹ (1957)	2.3	Not used; Estimated value		
CRG ²¹¹ (1966)	1.74 ± 0.24	Not used; Preliminary PAR bomb shot results		
Metta ²¹² (1967)	1.13 ± 0.05	Ion chamber; PAR bomb shot results		
Recommended Value = $1.13 \pm 0.05 \times 10^4$ a;		Selected Value		

Table 48. Total half-life of ²⁵⁰Cm

As Reported T½/10 ⁴ a	Comments		
1.13 ± 0.05	Spontaneous fission half-life		
≈ 10.	Estimated partial half-life for β decay Q_{β} = 37 ± 13 keV (see Wapstra ²¹³)		
≈ 20.	Estimated partial half-life for α decay Q_{α} = 5.197 ± 0.021 MeV (see Wapstra ²¹³)		
	$\frac{T \approx / 10^4 \text{ a}}{1.13 \pm 0.05}$ ≈ 10. ≈ 20.		

Recommended Value \approx 9.7 x 10³ a;

Value calculated from partial half-lives

Table 49. Recommended half-lives and uncertainties

Reference Nuclide	Tた(total) (Years)	Tた (spont.fiss.) (Years)	Reference Nuclide	T≒ (total) (Years)	Tた (spont.fiss.) (Years)
²³² U	70. ± 1.	8. \pm 6. x 10 ¹³	²⁴⁴ Pu	$8.00 \pm 0.09 \times 10^7$	$6.6 \pm 0.2 \times 10^{10}$
²³³ U	$1.592 \pm 0.002 \times 10^5$	$> 2.7 \times 10^{17}$	²⁴¹ A m	432.7 ± 0.6	$1.0 \pm 0.4 \times 10^{14}$
234 U	$2.455 \pm 0.006 \times 10^5$	$1.5 \pm 0.2 \times 10^{16}$	^{242m} Am	141. ± 2.	> 3. x 10 ¹²
235 _U	$7.04 \pm 0.01 \times 10^8$	$1.0 \pm 0.3 \times 10^{19}$	²⁴³ A m	$7.37 \pm 0.02 \times 10^3$	$2.0 \pm 0.5 \times 10^{14}$
²³⁶ U	$2.342 \pm 0.004 \times 10^{7}$	$2.5 \pm 0.1 \times 10^{16}$	²⁴² Cm	162.8 ± 0.2 Days	$7.0 \pm 0.2 \times 10^{6}$
²³⁸ U	$4.47 \pm 0.02 \times 10^9$	$8.2 \pm 0.1 \times 10^{15}$	²⁴³ Cm	29.1 ± 0.1	$5.5 \pm 0.9 \times 10^{11}$
236 _{Pu}	2.87 ± 0.01	$2.1 \pm 0.1 \times 10^9$	²⁴⁴ Cm	18.1 ± 0.1	$1.32 \pm 0.02 \times 10^{7}$
²³⁸ Pu	87.7 ± 0.1	$4.75 \ \pm \ 0.09 \ \mathbf{x} \ 10^{10}$	²⁴⁵ Cm	$8.48 \pm 0.06 \ x \ 10^3$	$1.4 \pm 0.2 \times 10^{12}$
²³⁹ Pu	$2.410 \pm 0.003 \times 10^4$	8. \pm 2. x 10 ¹⁵	²⁴⁶ Cm	$4.76 \ \pm \ 0.04 \ x \ 10^3$	$1.81 \pm 0.02 \times 10^{7}$
²⁴⁰ Pu	$6.56 \pm 0.01 \times 10^3$	$1.16 \pm 0.02 \times 10^{11}$	²⁴⁷ Cm	$1.56 \pm 0.05 \times 10^{7}$	
²⁴¹ Pu	14.4 ± 0.1	< 6. x 10 ¹⁶	²⁴⁸ Cm	$3.48 \pm 0.06 \times 10^5$	$4.15 \pm 0.03 \times 10^{6}$
242 _{Pu}	$3.75 \pm 0.02 \times 10^5$	$6.77 \pm 0.07 \times 10^{10}$	²⁵⁰ Cm	\approx 9.7 x 10 ³	$1.13 \pm 0.05 \times 10^4$

REFERENCES

- 1. H.J.Rose, G.A.Jones, Nature 307, 245 (1984).
- 2. S.W.Barwick, P.B.Price, J.D.Stevenson, Phys. Rev. C31, 1984 (1985).
- 3. N.E.Holden, Brookhaven National Lab. Report, BNL-NCS-51320 (1981).
- 4. N.E.Holden, IAEA-TECDOC-335, 396 (1984).
- 5. N.E.Holden, IAEA-TECDOC-335, 400 (1984).
- 6. A.M.Geidel'man, Yu.S.Egorov, A.A.Lipovskii, A.V.Lovtsyus, L.D.Preobrazhenskaya, M.V.Ryzhinskii, A.V.Stepanov, Yu.V.Khol'nov, Izv. Akad. Nauk. SSSR, Ser. Fiz. 43, 928 (1979).
- 7. P.DeBievre, K.F.Lauer, Y.leDuigou, H.Moret, G.Muschenborn, J.Spaepen, A.Spernol, R.Vaninbroukx, V.Verdingh, Proc. Int. Conf. Chem. Nucl. Data Meas. Appl. Canterbury, U.K. Sept.20-22, 1971. Inst. Civil Eng., London p.221 (1972).
- 8. M.Lounsbury, R.Durham, Proc. Int. Conf. Chem. Nucl. Data Meas. Appl. Canterbury, U.K. Sept.20-22, 1971. Inst. Civil Eng., London p.215 (1972).
- 9. A.H.Jaffey, K.F.Flynn, L.E.Glendenin, W.C.Bentley, A.M.Essling, Phys. Rev. C4, 1889 (1971).
- 10. D.Storzer, G.A.Wagner, Earth Planet. Sci. Lett. 5, 463 (1969).
- 11. W.W.Strohm, K.C.Jordan, Trans. Amer. Nucl. Soc. 18, 185 (1974).
- 12. C.W.Reich, R.Vaninbroukx, IAEA-TECDOC-336, 275 (1985).
- 13. W.W.Strohm, Int. J. Appl. Radiat. Isotopes 29, 481 (1978).
- 14. A.H.Jaffey, A.Hirsch, unpublished data, 1951 cited in E.K.Hyde, The Nuclear Properties of the Heavy Elements (Prentice-Hall, Englewood Cliffs, 1964), Vol.III, p.75.
- 15. E.Segre, Phys. Rev. 86, 21 (1952).
- 16. R.A.James, A.E.Florin, H.H.Hopkins, Jr., A.Ghiorso, "The Transuranium Elements", McGraw-Hill, N.Y.(1949), Paper 22.8, Nat'l Nucl. Energy Series, Plutonium Project Record, Div. IV, Vol. 14B, Part II, p. 1604
- 17. P.A.Sellars, C.M.Stevens, M.H.Studier, Phys. Rev. 94, 952 (1954).
- 18. J.M.Chilton, R.A.Gilbert, R.E.Leuze, W.S.Lyon, J. Inorg. Nucl. Chem. 26, 395 (1964). 19. S.K.Aggarwal, S.B.Manohar, S.N.Acharya, S.Prakash, H.C.Jain, Phys. Rev.
- C20, 1533 (1979). 20. B.M.Aleksandrov, L.S.Krivokhatskii, L.Z.Malkin, K.A.Petrzhak, Sov. Atom. Energy
- 20, 352 (1966).
- 21. H.R.von Gunten, A.Gruetter, H.W.Reist, M.Baggenstos, Phys. Rev. C23, 1110 (1981).
- 22. A.H.Jaffey, K.F.Flynn, W.C.Bentley, J.O.Karttunen, Phys. Rev. C9, 1991 (1974).
- 23. R.Vaninbroukx, P.DeBievre, Y.LeDuigou, A.Spernol, W.van der Eijk, V.Verdungh, Phys. Rev. C13, 315 (1976).
- 24. C.K.Aggarwal, S.N.Acharya, H.C.Jain, <u>Radiochem. Radioanal. Letters</u> 42, 45 (1980).
- 25. A.Ghiorso, G.H.Higgins, A.E.Larsh, G.T.Seaborg, S.G.Thompson, Phys. Rev. 87, 163 (1952).
- 26. S.Wang, P.B.Price, S.W.Barwick, K.J.Moody, E.K.Hulet, Phys. Rev. C36, 2717 (1987).
- 27. E.H.Fleming, Jr., A.Ghiorso, B.B.Cunningham, Phys. Rev. 88, 642 (1952).
- P.H.White, G.J.Wall, F.R.Pontet, J. Nucl. Energy A/B19, 33 (1965).
- 29. J.W.Meadows, Argonne National Lab. Report, ANL-7610, 44 (1970).
- 30. A.M.Geidel'man, Yu.S.Egorov, A.V.Lovtsyus, V.I.Orlov, L.D.Preobrazhenskaya, M.V.Ryzhinskii, A.V.Stepanov, A.A.Lipovskii, Yu.V.Khol'nov, B.N.Belyaev, M.K.Adbullakhatov, G.A.Akopov, V.S.Belykh, E.A.Gromova, V.Ya.Mishin, L.F.Solntseva, Izv. Akad. Nauk. SSSR, Ser. Fiz. 44, 927 (1980).
- 31. W.P.Poenitz, J.W.Meadows, Argonne National Lab. Report, ANL/NDM-84 (Nov.1983).
- 32. A.Gruetter, H.R.von Gunten, V.Herrnberger, B.Hahn, U.Mosel, H.W.Reist, G.Stetten, Proc. Conf. Phys. Chem. of Fission, Rochester, 1973, Vol.I, 305 (1974).
- 33. A.O.Nier, Phys. Rev. 55, 150 (1939)
- 34. G.Sayag, Compt. Rend. 232, 2091 (1951).
- 35. G.B.Knight, Oak Ridge Nat. Lab. Report K-663 (Aug. 1950).
- 36. B.Wurger, K.P.Meyer, P.Huber, Helv. Phys. Acta 30, 157 (1957).
- 37. P.O.Banks, L.T.Silver, <u>J. Geophys. Res.</u> 71, 4037 (1966).
- 38. A.J.Deruytter, I.G.Schroeder, J.A.More, Nucl. Sci. Eng. 21, 325 (1965).
- 39. A.H.Jaffey, A.Hirsch, unpublished data, 1949 cited in E.K.Hyde, The Nuclear Properties of the Heavy Elements (Prentice-Hall, Englewood Cliffs, 1964), Vol. III, p.75. 40. H.Conde, M.Holmberg, J. Nucl. Energy 25, 331 (1971).
- 41. S.N.Belenky, M.D.Skorokhvatov, A.V.Etenko, Sov. Atom. Energy 55, 528 (1983).
- 42. A.H.Jaffey, H.Diamond, A.Hirsch, J.Mech, Phys. Rev. 84, 785 (1951).
- 43. K.F.Flynn, A.H.Jaffey, W.C.Bentley, A.M.Essling, J. Inorg. Nucl. Chem. 34, 1121 (1972).
- 44. W.J.Whitehouse, W.Galbraith, Phil. Mag. 41, 429 (1950).
- 45. R.L.Fleischer, P.B.Price, Phys. Rev. B133, 2975 (1964).
- 46. J.H.Roberts, R.Gold, R.J.Armani, Phys. Rev. 174, 1482 (1968).
- 47. A.Spadavecchia, B.Hahn, Helv. Phys. Acta 40, 1063 (1967).
- 48. H.R.von Gunten, Actinides Rev. 1, 275 (1969).

- 49. D.Galliker, E.Hugentobler, B.Hahn, <u>Helv. Phys. Acta</u> <u>43</u>, 593 (1970).
- 50. D.Storzer, Thesis Universitat Heidelberg (1970).
- 51. J.D.Kleeman, J.F.Lovering, Geochim. Cosmochim. Acta 35, 637 (1971).
- 52. W.M.Thury, Acta Phys. Aus. 33, 375 (1971).
- 53. M.P.T.Leme, C.Renner, M.Cattani, Nucl. Inst. Meth. 91, 577 (1971).
- 54. H.A.Khan, S.A.Durrani, Rad. Effects 17, 133 (1973)
- K.N.Ivanov, K.A.Petrzhak, <u>Sov. Atom. Energy</u> <u>36</u>, 514 (1975).
 V.Emma, S.LoNigro, <u>Nucl. Inst. Meth.</u> <u>128</u>, 355 (1975).
- 57. G.A.Wagner, B.S.Reimer, H.Faul, R.van der Linden, R.Gijbels, Geochim. Cosmochim. Acta 39, 1279 (1975).
- 58. K.Thiel, W.Herr, Earth Planet. Sci. Letters 30, 50 (1976).
- 59. M.Kase, J.Kikuchi, T.Doke, Nucl. Inst. Meth. 154, 335 (1978).
- 60. A.G.Popeko, G.M.Ter-Akopian, <u>Nucl. Inst. Meth.</u> <u>178</u>, 163 (1980).
- 61. E.R.V.Spaggiari, An. Acad. Brasil. Cienc., 52, 213 (1980).
- 62. Z.N.R.Baptista, M.S.M.Mantovani, F.B.Ribeiro, An. Acad. Brasil. Cienc., 53, 437 (1981).
- 63. J.C.Hadler, C.M.G.Lattes, A.Marques, M.D.D.Marques, D.A.B.Serra, G.Bigazzi, Nucl. Tracks 5, 46 (1981).
- 64. H.G.de Carvalho, J.B.Martins, E.L.Medeiros, O.A.P.Tavares, Nucl. Inst. Meth. 197, 417 (1982).
- 65. R.Vartanian, <u>Helv. Phys. Acta</u> 57, 416 (1984).
- 66. M.P.Ivanov, G.M.Ter-Akopian, B.V.Fefilov, A.S.Voronin, Nucl. Instr. Meth. A234, 152 (1985).
- 67. Ju.A.Selickij, V.B.Funstein, V.A.Jakovlev, Proc. 38th Annual Conf. Nuclear Spectros. and Structure in Atomic Nuclei, Baku, 12–14 Apr., p.131, Acad. Sci. USSR (1988).
- 68. D.C.Hoffman, G.P.Ford, F.O.Lawrence, J. Inorg. Nucl. Chem. 4, 143 (1957).
- 69. T.Nakanishi, M.Yajima, M.Senaga, M.Takei, A.Ishikawa, K.Sakamoto, M.Sakanoue, Nucl. Inst. Meth. in Phys. Res. 223, 239 (1984).
- 70. A.H.Jaffey, J.Lerner, Argonne Nat. Lab. Report ANL-4411, 9 (1950).
- 71. J.F.Mech, H.Diamond, M.H.Studier, P.R.Fields, A.Hirsch, C.M.Stevens, R.F.Barnes, D.J.Henderson, J.R.Huizenga, Phys. Rev. 103, 340 (1956).
- 72. D.C.Hoffman, G.P.Ford, F.O.Lawrence, J. Inorg. Nucl. Chem. 5, 6 (1957).
- 73. V.G.Polyukhov, G.A.Timofeev, P.A.Privalova, V.Ya.Gabeskiriya,
- A.P.Chetverikov, Atom. Energia 40, 61 (1976).
- 74. H.Diamond, W.C.Bentley, A.H.Jaffey, K.F.Flynn, Phys. Rev. C15, 1034 (1977).
- 75. V.D.Sevostijanov, V.P.Yartina, Nucl. Constants 5 (44), 21 (1981).
- 76. S.K.Aggarwal, A.V.Jadhav, S.A.Chitambar, K.Raghuraman, S.N.Acharya, A.R.Parab, C.K.Sivaramakrishnan, H.C.Jain, Radiochem. Radioanal. Letters 46, 69 (1981).
- 77. A.H.Jaffey, A.Hirsch, Argonne Nat. Lab. Report ANL-4286 (1949).
- 78. V.A.Druin, V.P.Perelygin, G.I.Khlebnikov, Sov. Phys. JETP 13, 913 (1961).
- 79. J.D.Hastings, W.W.Strohm, J. Inorg. Nucl. Chem. 34, 25 (1972).
- 80. R.R.Gay, R.Sher, <u>Bull. Amer. Phys. Soc.</u> 20, 160 (1975).
- 81. A.A.Druzhinin, V.N.Polynov, A.M.Korochkin, E.A.Nokitin, L.I.Lagutina, Sov. J. Atom. Energy 59, 628 (1985)
- 82. B.M.Aleksandrov, V.T.Antsiferov, L.S.Bulyanitsa, Izv. Akad. Nauk. SSSR Ser. Fiz. 39, 482 (1975).
- 83. K.M.Glover, R.A.P.Wiltshire, F.J.G.Rogers, M.King, U.K. Progr. Rep., NEANDC(E)-162-8, 55 (1975).
- 84. A.H.Jaffey, H.Diamond, W.C.Bentley, K.F.Flynn, D.J.Rokop, A.M.Essling, J.Williams, Phys. Rev. C16, 354 (1977).
- 85. L.L.Lucas, J.R.Noyce, B.M.Coursey, Int. J. Appl. Radiat. Isotopes 29, 501 (1978).
- 86. S.R.Gunn, Int. J. Appl. Radiat. Isotopes 29, 497 (1978).
- 87. S.F.Marsh, R.M.Abernathay, R.J.Beckman, R.K.Ziegler, J.E.Rein,
- Int. J. Appl. Radiat. Isotopes 29, 509 (1978).
- 88. P.W.Seabaugh, K.C.Jordan, Int. J. Appl. Radiat. Isotopes 29, 489 (1978).
- 89. A.Prindle, J.Evans, R.Dupzyk, R.Nagle, R.Newbury, Int. J. Appl. Radiat. Isotopes 29, 517 (1978). 90. R.Vaninbroukx, B.Denecke, M.Gallet, G.Grosse, F.Hendrickx, W.Zehner,
- Euratom Progr. Rep. NEANDC(E)-202-3, 26 (1978).
- 91. D.Brown, K.M.Glover, M.King, G.Phillips, F.J.G.Rogers, R.A.P.Wiltshire, J. Radioanal. Chem. 64, 181 (1981).
- 92. E.M.Kindermann, Hanford Lab. Report HW-27660 (1953).
- 93. F.R.Barclay, W.Galbraith, K.M.Glover, G.R.Hall, W.J.Whitehouse, Proc. Phys. Soc. (London) A67, 646 (1954).
- 94. O.Chamberlain, G.W.Farwell, E.Segre, Phys. Rev. <u>94</u>, 156 (1954).
- 95. V.L.Mikheev, N.K.Skobelev, V.A.Druin, G.N.Flerov, Sov. Phys. JETP 10, 612 (1959).
- 96. D.E.Watt, F.J.Bannister, J.B.Laidler, F.Brown, Phys. Rev. 126, 264 (1962).
- 97. L.Z.Malkin, I.D.Alkhazov, A.S.Krivokhatsky, K.A.Petrzhak, Atom. Energia 15, 158 (1963).
- 98. P.H.White, priv. comm. cited in J. Nucl. Energy 21, 749 (1967).
- 99. P.Fieldhouse, D.S.Mather, E.R.Culliford, J. Nucl. Energy 21, 749 (1967).
- 100. C.Budtz-Jorgensen, H.H.Knitter, M.Mailly, R.Vogt, Euratom Progr. Rep. NEANDC(E)-212-3, 5 (1980).
- 101. A.A.Androsenko, P.A.Androsenko, Yu.V.Ivanov, A.E.Konyaev, V.F.Kositsyn, E.M.Tsenter, V.T.Shchebolev, Sov. J. Atom. Energy 57, 788 (1984).
- 102. M.G.Inghram, D.C.Hess, P.R.Fields, G.L.Pyle, Phys. Rev. 83, 1250 (1951).
- 103. J.P.Butler, T.A.Eastwood, T.L.Collins, M.E.Jones, F.M.Rourke, R.P.Schuman, Phys. Rev. 103, 634 (1956).

- 104. Ya.P.Dokuchaev, Atom. Energia 6, 74 (1959).
- 105. F.L.Oetting, Proc. Conf. Thermodynamics Nucl. Materials, Vienna, Austria, Sept. 1967 p. 55 (1968).
- 106. A.H.Jaffey, H.Diamond, W.C.Bentley, D.G.Graczyk, K.F.Flynn, Phys. Rev. C18, 969 (1978).
- 107. C.R.Rudy, K.C.Jordan, R.Taugawa, Int. J. Appl. Radiat. Isotopes 35, 177 (1984).
- L.L.Lucas, J.R.Noyce, Int. J. Appl. Radiat. Isotopes <u>35</u>, 173 (1984).
 F.J.Steinkruger, G.M.Matlack, R.J.Beckman, <u>Int. J. Appl. Radiat. Isotopes</u> <u>35</u>, 171 (1984).
- 110. R.J.Beckman, S.F.Marsh, R.M.Abernathey, J.E.Rein, Int. J. Appl. Radiat. Isotopes 35, 163 (1984).
- 111. C.B.Bigham, G.C.Hanna, P.R.Tunnicliffe, P.J.Campion, M.Lounsbury, D.R.McKenzie, Proc. 2nd Int. Conf. Peaceful Uses Atomic Energy, Geneva, 1958, Vol. 16, 125 (1959)
- 112. F.Brown, G.G.George, D.E.Green, D.E.Watt, J. Inorg. Nucl. Chem. 1, 192 (1960).
- 113. H.L.Smith, J. Inorg. Nucl. Chem. 17, 178 (1961).
- 114. G.Bertolini, F.Mannone, A.Ostidich, G.Restelli, Nucl. Phys. 83, 413 (1966).
- 115. I.Ahmad, A.M.Friedman, J.P.Unik, Nucl. Phys. A119, 27 (1968).
- 116. R.Gunnink, J.E.Evans, A.L.Prindle, Lawrence Livermore Lab. Report UCRL-52139 (1976).
- 117. R.Vaninbroukx, Proc. Int. Conf. Neutron Phys. Nucl. Data for Reactors
- and other Applied Purposes, Harwell, 1978, p. 235 (1978). 118. C.Whitehead, U.K. Progr. Rep. NEANDC(E)-182-8, 41 (1977)
- 119. E.L.Garner, L.A.Machlan, Trans. Amer. Nucl. Soc. 33, suppl. 1, 3 (1979).
- 120. R.Vaninbroukx, Int. Conf. Neut. Phys. Nucl. Data for Reactors and Other Appl.
- Purposes, Harwell, U.K. OCED Nucl. Energy Agency, Paris, France 1978 p. 235.
- 121. S.K.Aggarwal, H.C.Jain, Phys. Rev. C21, 2033 (1980).
- 122. S.F.Marsh, R.M.Abernathey, R.J.Beckman, J.E.Rein, Int. J. Appl. Radiat. Isotopes 31, 629 (1980).
- 123. S.K.Aggarwal, S.N.Acharya, A.R.Parab, H.C.Jain, Radiochem. Acta 29, 65 (1981).
- 124. S.K.Aggarwal, S.N.Acharya, A.R.Parab, H.C.Jain, Phys. Rev. C23, 1748 (1981).
- 125. S.K.Aggarwal, S.A.Chitambar, A.R.Parab, H.C.Jain, Radiochem. Radioanal. Letters 54, 83 (1982).
- 126. P.J.DeBievre, M.Gallet, R.Werz, Int. J. Mass Spectrom. Ion Phys. 51, 111 (1983).
- 127. T.Hiyama, Y.Wada, K.Onishi, INIS 16, #012673 (1984).
- 128. S.K.Aggarwal, A.R.Parab, S.A.Chitambar, H.C.Jain, Phys. Rev. C31, 1885 (1985).
- 129. G.A.Timofeev, V.V.Kalygin, P.A.Privalova, Atom. Energiya 60, 287 (1986).
- 130. J.P.Butler, M.Lounsbury, J.S.Merritt, Can. J. Chem. 34, 253 (1956).
- 131. J.W.Meadows, Argonne Nat. Lab. Report ANL/NDM-38 (1977).
- 132. N.A.Khan, H.A.Khan, K.Gul, M.Anwar, G.Hussain, R.A.Akber, A.Waheed, M.S.Shaikh, Nucl. Instr. Meth. 173, 163 (1980).
- 133. C.E.Bemis, Jr., J.Halperin, R.Eby, J. Inorg. Nucl. Chem. 31, 599 (1969).
- 134. R.W.Durham, F.Molson, Can. J. Phys. 48, 716 (1970).
- 135. D.W.Osborne, H.E.Flotow, Phys. Rev. C14, 1174 (1976).
- 136. L.S.Bulyanitsa, A.M.Geidel'man, Yu.S.Egorov, L.M.Krizhanskii, A.A.Lipovskii, L.D.Preobrazhenskaya, A.V.Lovtsyus, Yu.V.Khol'nov, Izv. Akad. Nauk. SSSR, Ser. Fiz. 40, 2075 (1976).
- 137. S.K.Aggarwal, S.N.Acharya, A.R.Parab, H.C.Jain, Phys. Rev. C20, 1135 (1979).
- 138. P.R.Fields, J.E.Gindler, A.L.Harkness, M.H.Studier, J.R.Huizenga,
- A.M.Friedman, Phys. Rev. 100, 172 (1955).
- 139. P.R.Fields, A.M.Friedman, J.Milsted, J.Lerner, C.N.Stevens, D.Metta, W.K.Sabine, Nature 212, 131 (1966).
- 140. B.M.Gokhberg, S.M.Dubrovina, V.A.Shigih, Sov. J. Nucl. Phys. 25, 11 (1977).
- 141. M.S.Moore, C.Budtz-Jorgensen, H.H.Knitter, C.E.Olsen, J.A.Wartena, H.Weigmann, Proc. Int. Conf. Nucl. Data for Sci. Technol., Sept. 6-10, 1982 at Antwerp, Belgium, p.74 (1983).
- 142. H.Diamond and R.F.Barnes, Phys. Rev. 101, 1064 (1956).
- 143. V.A.Druin, V.L.Mikheev, N.K.Skobelev, Sov. Phys. JETP 13, 216 (1961).
- 144. R.Gold, R.J.Armani, J.H.Roberts, Phys. Rev. C1, 738 (1970).
- 145. M.Paul, I.Ahmad, W.Kutschera, Phys. Rev. C34, 1980 (1986).
- 146. K.J.Moody, E.K.Hulet, S.Wang, P.B.Price, S.W.Barwick, Phys. Rev. C36, 2710 (1987).
- 147. G.R.Hall, T.L.Markin, J. Inorg. Nucl. Chem. 4, 137 (1957).
- 148. J.C.Wallman, P.Graf, L.Goda, J. Inorg. Nucl. Chem. 7, 199 (1958).
- 149. F.L.Oetting, S.R.Gunn, J. Inorg. Nucl. Chem. 29, 2659 (1967).
- 150. R.E.Stone, E.K.Hulet, J. Inorg. Nucl. Chem. 30, 2003 (1968).
- 151. L.C.Brown, R.C.Propst, J. Inorg. Nucl. Chem. 30, 2591 (1968).
- 152. J.Jove, R.Robert, Radiochem. Radioanal. Letters 10, 139 (1972).
- 153. V.G.Polyukhov, G.A.Timofeev, P.A.Privalova, P.F.Baklanova, Sov. Atom. Energy 36, 402 (1974).
- 154. H.Ramthun, W.Muller, Int. J. Appl. Radiat. Isotopes 26, 589 (1975).
- 155. J.T.Caldwell, S.C.Fultz, C.D.Bowman, R.W.Hoff, Phys. Rev. 155, 1309 (1967)
- 156. A.G.Zelenkov, V.A.Pchelin, Yu.F.Rodionov, L.V.Chistyakov, V.S.Shiryeav, V.M.Shubko, Sov. Atom. Energy 60, 492 (1986).
- 157. K.Street, A.Ghiorso, G.T.Seaborg, Phys. Rev. 79, 530 (1950).
- 158. R.W.Hoff, H.Jaffe, T.O.Passel, F.S.Stephens, E.K.Hulet, S.G.Thompson, Phys. Rev. 100, 1403 (1955).
- 159. R.F.Barnes, D.J.Henderson, A.L.Harkness, H.Diamond, J. Inorg. Nucl. Chem. 9, 105 (1959).
- 160. A.G.Zelenkov, V.A.Pchelin, Yu.F.Rodionov, L.V.Chistyakov, V.M.Shubko,
- Sov. Atom. Energy 47, 1024 (1980).
- 161. H.Diamond, P.R.Fields, J.Mech, M.G.Inghram, D.C.Hess, Phys. Rev. <u>92</u>, 1490 (1953).

- 162. A.B.Beadle, D.F.Dance, K.M.Glover, J.Milsted, J. Inorg. Nucl. Chem. 12, 359 (1960).
- 163. V.G.Polyukhov, G.A.Timofeev, P.A.Privalova, V.Ya.Gabeskiriya, A.P.Chetverikov, Sov. Atom. Energy 37, 1103 (1974).
- 164. S.K.Aggarwal, A.R.Parab, H.C.Jain, Phys. Rev. C22, 767 (1980).
- 165. B.M.Aleksandrov, L.S.Krivokhatskii, L.Z.Malkin, K.A.Petrzhak, Sov. Atom. Energy 20, 352 (1966)
- 166. B.A.Grozdev, B.B.Zakhvataev, V.I.Kuznetsov, V.P.Perelygin, S.V.Pirozhkov, E.G.Chudinov, I.K.Shvetsov, Sov. Radiochem. 8, 459 (1966).
- 167. G.C.Hanna, B.G.Harvey, N.Moss, P.R.Tunnicliffe, Phys. Rev. 81, 466 (1951).
- 168. R.J.Armani, R.Gold, Proc. Symp. on Standardization of Radionuclides, IAEA-Vienna, Austria, p.621 (1967).
- 169. H.Q.Zhang, J.C.Xu, T.Q.Wan, Chin. J. Nucl. Phys. 1, 21 (1979).
- 170. K.Raghuraman, N.K.Chaudhuri, A.V.Jadhav, C.K.Sivaramakrishnan, R.H.Iyer, Radiochem. Radioanal. Letters 55, 1 (1982).
- 171. H.Umezawa, Fifth Research Coordination Meeting on Measurement and Evaluation of Transuranium Isotope Nuclear Data. Geel, Belgium. IAEA Rep. No. INDC(NDS)-138 p.32 (1982).
- 172. G.C.Hanna, B.G.Harvey, N.Moss, Phys. Rev. 78, 617 (1950).
- 173. K.M.Glover, J.Milsted, Nature 173, 1238 (1954).
- 174. W.P.Hutchinson, A.G.White, Nature 173, 1238 (1954).
- 175. K.F.Flynn, L.E.Glendenin, E.P.Steinberg, Nucl. Sci. Eng. 22, 416 (1965).
- W.J.Kerrigan, C.J.Banick, J. Inorg. Nucl. Chem. <u>37</u>, 641 (1975).
 H.Diamond, W.C.Bentley, A.H.Jaffey, K.F.Flynn, <u>Phys. Rev.</u> <u>C15</u>, 1034 (1977).
- 178. A.V.Jadhav, K.A.Mathew, K.Raghuraman, C.K.Silvaramakrishnan, Proc. Nucl. <u>Chem. and Radiochem. Symp.,</u> Waltair, India. Feb. 25-28, 1980 p.184 (1980).
- 179. S.Usuda, H.Umezawa, J. Inorg. Nucl. Chem. 43, 3081 (1981).
- 180. S.K.Aggarwal, A.V.Jadhav, S.A.Chitambar, A.R.Parab, P.M.Shah, A.I.Almaula, K.Raghuraman, C.K.Silvaramakrishnan, H.C.Jain, Radiochem. Radioanal. Letters 54, 99 (1982).
- 181. R.A.P.Wiltshire, Nucl. Inst. Meth. in Phys. Res. 223, 535 (1984).
- 182. V.N.Polynov, A.A.Druzhinin, A.M.Korochkin, E.A.Nikitin, V.A.Bochkarev, V.N.Vyachin, V.G.Lapin, M.Yu.Maksimov, Atom. Energiya 62, 277 (1987).
- 183. F.Asaro, Berkeley Lab Report, UCRL-2180 (1953)
- 184. G.Choppin, S.Thompson, J. Inorg. Nucl. Chem. 7, 197 (1958).
- 185. G.A.Timofeev, V.V.Kalygin, P.A.Privalova, Atom. Energiya 60, 286 (1986).
- 186. L.Z.Malkin, I.D.Alkhazov, A.S.Krivokhatskii, K.A.Petrzhak, L.M.Belov, Sov. Atom. Energy 15, 955 (1963).
- 187. D.Metta, H.Diamond, R.F.Barnes, J.Milsted, J.Gray, Jr., D.J.Henderson, C.M.Stevens, J. Inorg. Nucl. Chem. 27, 33 (1965).
- 188. D.M.Barton, P.G.Koontz, J. Inorg. Nucl. Chem. 32, 769 (1970).
- 189. J.D.Hastings, W.W.Strohm, J. Inorg. Nucl. Chem. 34, 3597 (1972).
- 190. C.M.Stevens, M.H.Studier, P.R.Fields, J.F.Mech, P.A.Sellers, A.M.Friedman, H.Diamond, J.R.Huizenga, Phys. Rev. 94, 974 (1954).
- 191. A.M.Friedman, A.L.Harkness, P.R.Fields, M.H.Studier, J.R.Huizenga, Phys. Rev. 95, 1501 (1954).
- 192. W.T.Carnall, S.Fried, A.L.Harkness, J. Inorg. Nucl. Chem. 17, 12 (1961).
- 193. W.C.Bentley, J. Inorg. Nucl. Chem. 30, 2007 (1968).
- 194. W.J.Kerrigan, R.S.Dorsett, J. Inorg. Nucl. Chem. 34, 3603 (1972).
- 195. V.G.Polyukhov, G.A.Timofeev, V.V.Kalygin, P.A.Privalova, Sov. Radiochem. 24, 408 (1982).
- 196. A.A.Druzhinin, V.N.Polynov, S.P.Vesnovskii, A.M.Korochkin, A.A.Lbov, E.A.Nikitin, Dokl. Akad. Nauk. SSSR 280, 1351 (1985).
- 197. E.K.Hulet, S.Thompson, A.Ghiorso, Phys. Rev. 95, 1703 (1954).
- 198. C.I.Browne, D.C.Hoffman, W.T.Crane, J.P.Balagna, G.H.Higgins, J.W.Barnes, R.W.Hoff, H.L.Smith, J.P.Mize, M.E.Bunker, J. Inorg. Nucl. Chem. 1, 254 (1955).
- 199. J.R.Huizenga, H.Diamond, Phys. Rev. 107, 1087 (1957).
- 200. D.H.Metta, H.Diamond, F.R.Kelly, J. Inorg. Nucl. Chem. 31, 1245 (1969).
- 201. K.W.MacMurdo, R.M.Harbour, R.W.Benjamin, J. Inorg. Nucl. Chem. 33, 1241 (1971).
- 202. J.P.Butler, T.A.Eastwood, H.G.Jackson, R.P.Schuman, Phys. Rev. 103, 965 (1956).
- 203. J.E.McCracken, J.R.Stokely, R.D.Baybarz, C.E.Bemis, Jr., R.Eby, J. Inorg. Nucl. Chem. 33, 3251 (1971).
- 204. V.G.Polyukhov, G.A.Timofeev, P.A.Privalova, V.Ya.Gabeskiriya, A.P.Chetverikov, Sov. Radiochem. 19, 414 (1977).
- 205. P.R.Fields, M.H.Studier, H.Diamond, J.F.Mech, M.G.Inghram, G.L.Pyle, C.M.Stevens, S.M.Fried, W.M.Manning, A.Ghiorso, S.G.Thompson, G.H.Higgins, G.T.Seaborg, Phys. Rev. 102, 180 (1956).
- 206. S.M.Fried, G.L.Pyle, C.M.Stevens, J.R.Huizenga, J. Inorg. Nucl. Chem. 2, 415 (1956).
- 207. H.Diamond, A.M.Friedman, J.E.Gindler, P.R.Fields, Phys. Rev. 105, 679 (1957).
- 208. P.R.Fields, A.M.Friedman, J.Lerner, D.Metta, R.Sjoblom, Phys. Rev. 131, 1249 (1963).
- 209. P.R.Fields, I.Ahmad, A.M.Friedman, J.Lerner, D.N.Metta, Nucl. Phys. A160, 460 (1971).
- 210. R.P.Schuman, USAEC Rep. No. IN-1218 p.139 (1968).
- 211. Combined Radiochemistry Group, Phys. Rev. 148, 1192 (1966).
- 212. D.N.Metta, P.E.Moreland, J. Inorg. Nucl. Chem. 29, 2822 (1967).
- 213. A.H.Wapstra, G.Audi, Nucl. Phys. A432, 55 (1985)