Synthesis and catalytic activity of carbonyl palladium clusters

Ilya I. Moiseev
N. S.Kurnakov Institute of General and Inorganic Chemistry USSR Academy of Sciences, Moscow 117907, USSR

Abstract

Palladium carbonyl acetate (PCA), a tetranuclear cluster with a planar nearly rectangular metal skeleton, and related clusters were synthesized. Clusters with planar square or tetrahedral Pd metal cores were prepared by reacting PCA with $\mathrm{Na}\left[\mathrm{CpMo}(\mathrm{CO})_{3}\right.$] or 1,10 -phenanthroline (Phen) , respectively. Palladium carbonyl hydrides of type $[P d P h e n(C O) H(O A C)]_{n}$, where $n=2$ or 4 , were synthesized and shown to be catalysts for hydrogenation and olygomerization of alkenes and alkynes. Anionic octanuclear cluster $\mathrm{Na}_{2}\left\{\mathrm{Pd}_{4}\left[\mathrm{CPMO}(\mathrm{CO})_{3}\right]\right\}_{4}$ containing Pd-Mo bonds provides dehydration of alcohols evidently via a carbene mechanism. Products of decarbonylation of Pd phenantroline carbonyl clusters were shown to be active catalysts for oxidative acetoxylation and alcoxylation of unsaturated hydrocarbons.

INTRODUCTION

Palladium (II) complexes have been known for a long time to be the catalysts for many oxidative reactions (ref.1-3). Up to 1975, when our study was launched some of these reactions have been suggested to be really catalyzed by polynuclear compounds of palladium in oxidative states lower than (+2). In search for such catalytically active compounds or their models we have turned to the methods of metal-carbonyl chemistry as a useful tool for the synthesis of polynuclear compounds. The methods of the synthesis of carbonyl Pd complexes with phosphine ligands are well known now (ref.4-11). However, phosphine, arsine and related ligands are readily oxidized. Bearing in mind the search of materials for oxidative catalysis, we have chosen α, α^{\prime}-bipyridine (Bipy), 1,10-phenantroline (Phen), and related hardoxidizable compounds as stabilizing ligands. Necessary Co ligands were assumed to be removed in either event at the final steps of the synthesis. Our study have resulted in a series of polynuclear Pd compounds including so-called giant Pa clusters (ref.12). In the course of this study we have obtained a number of low-molecular carbonyl palladium clusters. Their chemistry is the subject of the paper.

PALLADIUM CARBONYL ACETATE CHEMISTRY

When solutions of palladium (II) carboxylate Pd (OCOR) ($\mathrm{R}=\mathrm{Me}$, Et or Ph) are contacted with CO, reduction of Pd (II) to Pd metal usually occurs. In glacial acetic acia containing alkali metal acetates, reduction of $\mathrm{Pd}(\mathrm{OAC})_{2}$ with CO results in formation of palladium metal, acetic anhydride, and $\mathrm{CO}_{2}^{2}(r e f .13)$:

$$
\begin{equation*}
\mathrm{Pd}(\mathrm{OAC})_{2}+\mathrm{CO} \rightarrow \mathrm{Pd}+(\mathrm{AC})_{2} \mathrm{O}+\mathrm{CO}_{2} \tag{1}
\end{equation*}
$$

In carboxylic acids or (carboxylic acid+benzene) mixtures as solvents, in the abscence of alkali metal acetates, we obtained relatively stable complexes of stoichiometry RCOO. Pd.CO. nRCOOH where $n=0.5$ or 0 . Thus, carbonylation (1 atm of CO) of $\mathrm{Pd}(\mathrm{OAC})$) in glacial acetic acid at $50^{\circ} \mathrm{C}$ gave AcO.Pd.CO•O. 5AcOH (1). Crystals of ${ }^{2} 170$ se 0.5 mol of acetic acid per 1 g.-atom of palladium when kept for about 10 days in vacuo over KOH at $20^{\circ} \mathrm{C}$ forming palladium carbonyl acetate (PCA) Ac0.Pd.CO (2). IR spectra of the complexes show two strong absorption bands in C-0 stretching region at 1934
and $1975 \mathrm{~cm}^{-1}$ for 1 and 1940 and $1975 \mathrm{~cm}^{-1}$ for 2 in addition to frequencies corresponding to the bidentate coordinated acetate ligands (ref.13). According to X-ray analysis data, crystals of 1 consist of tetranuclear clusters $\mathrm{Pd}_{4}(\mathrm{CO})_{4}(\mathrm{OAC})_{4}$ and hydrogen-bonded dimeric molecules of AcOH (Fig.1).

The Pd_{4} framework of the cluster is nearly rectangular, with almost right angles (83.4° and 96.60). Acetate-bridged。 Pd-Pd distances (2.909 A) are longer, and the gobridged ones (2.663 A) are shorter than the shortest

Fig. 1. Structure of $\mathrm{Pd}_{4}(\mathrm{CO})_{4}(\mathrm{OAC})_{4}$. Pd-Pd distance (2.751 A) in Pd metal (ref.13). Reaction of palladiun (II) propionate with CO gave a PCA analogue, paliadium carbonyl propionate $\mathrm{Pd}_{4}(\mathrm{CO})_{4}$ (OCOEt) . Similarly, palladium carbonyl benzoate $\mathrm{Pd}_{4}(\mathrm{CO})_{4}(0 C O P h)_{4}$ was prépaređ by reacting palladium (II) benzoate with CO in (benzoic acid + + benzene) solution . The similarities in CO and COO regions of IR spectra, the chemical compositions and chemical behavior of these complexes and corresponding properties of PCA suggest that all of them contain tetranuclear Pd cluster the same as PCA. Therefore, PCA synthesis depicted by eq. 2

$$
\begin{equation*}
4 \mathrm{Pd}(\mathrm{OAC})_{2}+8 \mathrm{CO}_{2} \mathrm{~Pa}_{4}(\mathrm{CO})_{4}(\mathrm{OAC})_{4}+2(\mathrm{AC})_{2} \mathrm{O}+4 \mathrm{CO}_{2} \tag{2}
\end{equation*}
$$

offers a general way to palladium (I) carbonyl carboxylates.
Kinetic study showed that the rates of PCA accumulation at $40^{\circ} \mathrm{C}$ obey a total second-order equation (ref.14):

$$
\mathrm{w}=\mathrm{k}_{\mathrm{PCA}}[\mathrm{Pd}(I I)][\mathrm{CO}]
$$

In AcOH solutions, in the absence of alkali metal acetate, at $25-40^{\circ} \mathrm{C}$ palladium (II) acetate is a trimer $\mathrm{Pd}_{3}(\mathrm{OAC})_{6}$ and dissociates slowly. The observed first-order dependence on both $\mathrm{Pd}(\mathrm{II})$ and CO concentrations suggests that CO is coordinated with trinuclear palladium (II) acetate at the first stage of the reaction. Reduction of Pd (OAc), with CO was studied also in anhydrous us benzene to elucidate possible ways ${ }^{2}$ of further reactions of trinuclear carbonyl palladium (II) intermediate complex. Addition of benzene to AcOH solutions was found to give no retardation the PCA formation from $\operatorname{Pd}(O A C)_{2}$ and CO. Volumetric experiments at $60^{\circ} \mathrm{C}$ showed that benzene solutions of $\mathrm{Pd}(\mathrm{OAC})_{2}$ absorb nearly 2 moles of CO per 1 g .-atom of Pd. CO_{2} appears in gaseous ${ }^{2}$ phase along with CO absorption though no precipitation of Pd metal occured. After treatment with CO, a light brown residue was isolated, IR spectrum of which showed a band at $1810 \mathrm{~cm}^{-1}$ ascribed to acyl group bonded to palladium (II) atom. Further evedence for intermediate formation of acyl-palladium (II) complex was provided by trapping of this complex with $\mathrm{H}_{2} \mathrm{O}$, ethenol, dihydrogen, and sodium acetate to give acetic acid, ethyl acetate, acetaldehyde, and acetic anhydride, respectively. The stoichiometric and kinetic data led to conclusion that the reaction of trinuclear carbonyl palladium (II) complex includes CO insertion into Pd-OAc bond followed by CO_{2} elimination resulting in formation of acylic palladium (II) complex $\mathrm{Pd}_{3}(\mu=\mathrm{OAC})_{4}(\mathrm{OAC}) \mathrm{COCH}_{3}$.

The coordinated OAc groups in PCA are rather readily replaced by other carboxylic anions by reactions of the corresponding acid with PCA. Thus, PCA was recrystallized from trifluoroacetic acid to give a crystalline complex $\mathrm{Pd}(\mathrm{CO})_{4}\left(\mathrm{OCOCF}_{3}\right)_{4}$ - Complexes $\left.\mathrm{Pa}_{4}(\mathrm{CO})_{4}(0 \mathrm{COCOl})^{\prime}\right)$ and $\mathrm{Pd}_{4}(\mathrm{CO})\left(\mathrm{OCOCH}(\mathrm{Cl}) 4 \mathrm{were}^{4}\right.$ obtained by recrystallization of PCA from benzene solutions containing $\mathrm{CCl}_{3} \mathrm{COOH}$ and $\mathrm{CH}_{2} \mathrm{ClCOOH}$, respectively, see eq. 3 .

$\mathrm{R}=\mathrm{CF}_{3}, \mathrm{CCl}_{3}, \mathrm{CH}_{2} \mathrm{Cl}$.
The similarities in IR spectra, chemical behaviowr, and stoichiometry of these compounds with the related data of PCA suggest that all the complexes are analogous to PCA.
The anionic octanuclear cluster $\mathrm{Na}_{2}\left\{\mathrm{Pd}_{4}\left[\mathrm{CpMO}(\mathrm{CO})_{3}\right]_{4}\right\} \cdot 2$ THF (3) was obtained by reaction of PCA with $\mathrm{Na}\left[\mathrm{CpMo}\left(\mathrm{COF}_{3}\right]{ }^{4}\right.$ in THF TH^{4} (ref.15). X-ray diffraction data showed that the structurgl unit of the complex 2 contains the centrosymmetric anion $\left\{\mathrm{Pd}_{4}\left[\mathrm{CpMO}(\mathrm{CO})_{3}\right]_{4}\right\}^{2=}$ (Fig.2), two sodium cations, and two THF molecules. The cluster 3 has a square planar configuration with

Pd-Pd distances 2.675-2.691 (2)
A. Each of the Mo atoms is connected with two Pd atoms [Pd-Mo 2.723-2.741(2) A], al1 the metal atoms lying in the same plane.
Neutral molecular clusters
$\left[\mathrm{Pt}_{2} \mathrm{M}_{2} \mathrm{~W}_{4}(\mu-\mathrm{CR})\left(\mu_{3}-\mathrm{CR}\right)_{3}(\mu-\mathrm{CO})\right.$

- $\left.(\mathrm{CO})_{7}(\eta-\mathrm{Cp})_{4}\right] \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$, where
$M=P t, N i ; R=C_{6} H_{4} \mathrm{Me}-4$, with metal core similar to that of 3 were synthesized recently (ref.16).
The three carbonyl ligands attached to each Mo atoms approach $P d$, one of them in a triply bridging mode, $\mu^{3}-\mathrm{CO}$, Pd-C 2.22-2.45(2) \AA, and two others are doubly bridging ligands, $\mu-\mathrm{CO}$, Pd-C 2.34$2.36 \AA$ A. IR spectrum of 3 displays bands at $2000,{ }^{2} 1945$, 1900, 1870 , and $1830 \mathrm{~cm}^{-}$ corresponding to coordinated Co ligands. The environment of each Mo and Pd atom is similar to that in the known cluster $\mathrm{Pd}_{2} \mathrm{MO}_{2}(\mathrm{Cp})_{2}(\mu-\mathrm{CO})_{4}\left(\mu \mathrm{~B}_{-\mathrm{CO}}\right)_{2}\left(\mathrm{PEt}_{3}\right)_{2}$ (ref.8). Formation of cluster 3 from PCA is accompanied by displacement of OAc ligands by CpMo (CO) anions and by elimination of some carbonyl ligands. Moreover, the reaction is not restricted to ligand substitution processes. Assuming that Mo atoms retain their zero oxidation state as in initial $\mathrm{Na}\left[\mathrm{CpMo}(\mathrm{CO})_{3}\right]$, the observed reaction may be formally described as reduction of $\operatorname{Pd}(+1)^{3}$ to $\operatorname{Pd}(+1 / 2)$, according to eq. 4.

$$
\begin{align*}
\mathrm{Pd}_{4}(\mathrm{CO})_{4}(\mathrm{OAC})_{4}+6 \mathrm{Na}\left[\mathrm{CpMo}(\mathrm{CO})_{3}\right] \rightarrow & \mathrm{Na}_{2}\left[\mathrm{Pd}_{4} \mathrm{MO}_{4} \mathrm{Cp}_{4}(\mu-\mathrm{CO})_{8}\left(\mu^{3}-\mathrm{CO}\right)_{4}\right]+ \\
& +\left[\mathrm{CpMo}(\mathrm{CO})_{3}\right]_{2}+4 \mathrm{NaOAC}+4 \mathrm{CO} \tag{4}
\end{align*}
$$

Reaction of PCA with diphenyldiazomethene in benzene solutions resulted in the substitution of $C O$ groups with carbene ligands (ref.17) as described by eq. 5 .

$$
\mathrm{Pd}_{4}(\mathrm{CO})_{4}(\mathrm{OAC})_{4}+4 \mathrm{Ph}_{2} \mathrm{CN}_{2} \rightarrow \mathrm{Pd}_{4}\left(\mathrm{CPh}_{2}\right)_{4}(\mathrm{OAC})_{4}+4 \mathrm{CO}+4 \mathrm{~N}_{2}
$$

Hydrogenation of diphenylcarbene palladium acetate 4 proceeds through the cleavage of Pd-C bonds yielding diphenylmethane and Pd metal as described by eq. 6 .

$$
\begin{equation*}
\mathrm{Pd}_{4}\left(\mathrm{CPh}_{2}\right)_{4}(\mathrm{OAC})_{4}+6 \mathrm{H}_{2}-4 \mathrm{Ph}_{2} \mathrm{CH}_{2}+4 \mathrm{ACOH}+4 \mathrm{Pd} \tag{6}
\end{equation*}
$$

In contrast to hydrogenation of 4 , reaction of PCA with H_{2} gives no CO hydrogenation products under similar conditions:

$$
\begin{equation*}
\mathrm{Pd}_{4}(\mathrm{CO})_{4}(\mathrm{OAC})_{4}+2 \mathrm{H}_{2}-4 \mathrm{Pd}+4 \mathrm{CO}+4 \mathrm{ACOH} \tag{7}
\end{equation*}
$$

By analogy with CO, free carbene species or carbene donors were expected to reduce Pd (II) complexes resulting in Pd carbene complexes similar to PCA. However, our attempt to perform such a reaction with $\mathrm{Pd}(O A C)_{2}$ and $\mathrm{Ph}_{2} \mathrm{CN}_{2}$ in
benzene solution showed that diphenyldiazomethane decomposed yielding N_{2} and benzophenone azine as the main products. The reaction also gives rise to an orange palladium complex isolated from reaction mixture. 1 H NMR and IR spectra, elemental analysis data, and molecular weight measurements permit to regard this complex as a tetranuclear one containing four bridging acetate groups and two tentatively triply palladated benzophenone azine molecules as ligands (ref.18). Upon heating in AcOH as a proton-donor solvent, this compound transformed into the complex $\mathrm{Pd}_{3}(\mathrm{OAc})_{4}\left(\mathrm{Ph}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right)_{2}\right.$ $\mathrm{C}_{2} \mathrm{~N}_{2}$) (5). According to X-ray data, the molecule of complex 5 contains a bent chain of three Pd atoms bridged with four acetate ligand̄. The terminal Pd atoms of the chain are bonded to the double ortho-palladated benzophenone azine molecules forming two palladocycles. The Pd-N bonds, 1.98-1.99(1) A in length, are situated at the $P d_{3}$ plane while the Pd-C bonds of 1.96-1.97 \AA are perpendicular to the plane (Fig. 3). Geometry of $\operatorname{Pd}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right)(\mathrm{CPh}) \mathrm{N}-\mathrm{N}$ fragment is ${ }^{6}$ Imilar to that of mononuclear complex

Fig. 3. Structure of $\mathrm{Pd}_{3}(\mu-\mathrm{OAC})_{4}$ -$\mu^{4}-\mathrm{C}_{6} \mathrm{H}_{4}(\mathrm{Ph}) \mathrm{C}=\mathrm{N}-\mathrm{N}=\mathrm{C}(\mathrm{Ph}) \mathrm{C}_{6} \mathrm{H}_{4}$. $\mathrm{ClBrPd}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right)(\mathrm{CME}) \mathrm{N}-$ $-\mathrm{NHPh}\left(r e f^{4}\right.$ 19). Reactions between PCA and bidentate N ligands such as Phen, Bipy and their analogs led to a number of complexes depending on temperature and $\mathrm{Pd}: l i g a n d$ ratio. Addition of Phen to PCA in $A C O H$ solutions initiates at $25-90^{\circ} \mathrm{C}$ reversible CO evolution. Volumetric data for this reaction at $25^{\circ} \mathrm{C}$ and Phen:Pd $\approx 2: 1$ are in good agreement with eq. 8-9 supposing PCA to be split into binuclear species PhenPd (CO) ${ }_{2}(\mathrm{OAC})_{2}$ in AcOH solutfons containing Phen. Under this assumption, the eq. 10 with equilibrium con-
experimental data were found to be described by $\operatorname{stant} K=(1.2 \pm 0.1) \cdot 10^{-4} \mathrm{~mol} / 1$ at $25^{\circ} \mathrm{C}$ (ref.20):

$$
\begin{align*}
& \mathrm{Pd}_{4}(\mathrm{CO})_{4}(\mathrm{OAC})_{4}+2 \text { Phen }-2 \mathrm{PhenPd}_{2}(\mathrm{CO})_{2}(\mathrm{OAC})_{2} \tag{8}\\
& 2 \mathrm{PhenPd}_{2}(\mathrm{CO})_{2}(\mathrm{OAC})_{2}-\mathrm{Pd}_{4} \mathrm{Phen}_{2}(\mathrm{CO})_{2}(\mathrm{OAC})_{4}+2 \mathrm{CO} \tag{9}\\
& \mathrm{~K}=\left[\mathrm{Pd}_{4} \mathrm{Phen}_{2}(\mathrm{CO})_{2}(\mathrm{OAC})_{4}\right][\mathrm{CO}]^{2} /\left[\mathrm{PhenPd}_{2}(\mathrm{CO})_{2}(\mathrm{OAC})_{2}\right] \tag{10}
\end{align*}
$$

Further co loss observed at higher temperatures is asumed to be decarboxylation of complex $\mathrm{Pd}_{4} \mathrm{Phen}_{2}(\mathrm{CO})_{2}(\mathrm{OAC})_{4}$. Volumetric data at $90^{\circ} \mathrm{C}$ correspond to reversible loss of 14 mole of CO per ${ }^{4} 4 \mathrm{Pd}$ atoms, in accord with eq. 6 .

$$
\begin{equation*}
\mathrm{Pd}_{4} \mathrm{Phen}_{2}(\mathrm{CO})_{2}(\mathrm{OAC})_{4} \rightarrow \mathrm{Pd}_{4} \mathrm{Phen}_{2}(\mathrm{CO})(\mathrm{OAC})_{4}+\mathrm{CO} \tag{11}
\end{equation*}
$$

The last $C 0$ molecule can be removed only irreversibly by heating solutions of $\mathrm{Pd}_{4} \mathrm{Phen}_{2}(\mathrm{CO})(\mathrm{OAC})_{4}$ in AcOH in O_{2} atmosphere at $90^{\circ} \mathrm{C}$ as depicted by eq. 7

$$
\begin{align*}
\mathrm{Pd}_{4} \mathrm{Phen}_{2}(\mathrm{OO})(\mathrm{OAC})_{4}+\mathrm{O}_{2} \longrightarrow & \mathrm{Pd}_{4} \mathrm{Phen}_{2}(O A C)_{X}+\mathrm{Pd}(O A C)_{2}+ \\
& +\operatorname{PdPhen}(O A C)_{2}+\mathrm{CO}_{2} \tag{12}
\end{align*}
$$

Disproportionation and partial oxidation of $P d$ atoms contained in the starting Pd Phen $(C O)(O A c)_{4}$ complex give rise to Pd (II) complexes Pd (OAC) 2 and PhenPd (OAc) ${ }^{2}$, and to compound of the composition Phen Pd (OAC), $x=1-3$, the last being stable under conditions of oxidative decarbofylation.
By reacting PCA with Phen at a ratio Phen: $P \mathrm{Cd}=1: 1$ in AcOH solutions in Ar atmosphere, complex $\mathrm{Pd}_{4}(\mathrm{CO})_{2} \mathrm{Phen}_{4}(\mathrm{OAC})_{4}$ was prepared in accord with eq. 13 (ref. 21).

$$
\mathrm{Pd}_{4}(\mathrm{CO})_{4}(\mathrm{OAC})_{4}+4 \mathrm{Phen}_{4} \mathrm{Pd}_{4}(\mathrm{CO})_{2} \mathrm{Phen}_{4}(\mathrm{OAC})_{4}+2 \mathrm{CO}
$$

$$
\underline{6}
$$

IR spectrum of 6 shows a strong band at $1800 \mathrm{~cm}^{-1}$ corresponding to the bridging $C O$ group stretching mode. X-ray analysis data showed that 6 contained a nearly tetrahedral cluster of palladium atoms (Fig. 4).

Fig. 4. Structure of $\left[\mathrm{Pd}_{4}(\mathrm{CO})_{2} \mathrm{Phen}_{4}\right](\mathrm{OAc})_{4}$

Two edges of the tetrahedron with co bridges are slightly longer (2.809(6) A) than the non-bridged ones (2.718(6) A). Both distances are noticeably longer than the shortest Pd-Pd distance in Pd metal. As comparison with PCA geometry (Fig.1) shows, formation of complex 6 from PCA is accompanied by shortening of AcO-bridged bonds and lengthening of CO-bridged ones. All OAC ligands of PCA molecule are displaced to the outer sphere when tetramation $\mathrm{Pd}_{4}(\mathrm{CO}){ }_{2}$ Phen 4^{4+} is formed. On the basis of these data, the first step of the reaction of PCA with Phen was proposed (ref.21) to be substitution of OAc ligands by Phen molecules to split PCA cluster into two complex di-cations PhenPd(CO) 2 PdPhen ${ }^{2+}$, as depicted by eq. 14.

$$
\begin{equation*}
\mathrm{Pd}_{4}(\mathrm{CO})_{4}(\mathrm{OAC})_{4}+4 \mathrm{Phen} \longrightarrow 2 \mathrm{PhenPd}(\mathrm{CO})_{2} \mathrm{PdPhen}^{2+}+4 \mathrm{OAc}^{-} \tag{14}
\end{equation*}
$$

The next CO ligand was supposed to be eliminated from the cationic intermediate to form complex di-cation 7:

$$
\begin{gather*}
\operatorname{PhenPd}(C O)_{2} \mathrm{PdPhen}^{2+} \rightarrow \underset{I}{\operatorname{PhenPd}(C O) P d P h e n}{ }^{2+}+\mathrm{CO} \tag{15}\\
I
\end{gather*}
$$

Tetrahedral cluster 6 is conceivably formed by dimerization of coordinatively unsaturated species 7 . The shortest distance between the axes of PhenPd (CO)PdPhen grouns in cluster 6 (see Fig. 4) was found to be equal to ca. $1.8 \AA$ (ref.21). At this distance, overlapping between the two PhenPd(CO)PdPhen group orbitals might be effective enough to contribute into the core stabilization of cluster 6 . By treating with Co solutions of $\mathrm{Pd}(\mathrm{OAC})_{2}$ and Phen (PdaPhen $=1: 1$) in AcOH at $20^{\circ} \mathrm{C}$ complex $\mathrm{Pd}_{4}(\mathrm{CO}) 4^{\mathrm{Phen}} 4^{\circ}$ (OAC) ${ }_{4}$ (8) characterized by elemental analysis data, molecular wéight and IR spectrum was obtained, as shown by eq. 16.

$$
\begin{equation*}
4 \mathrm{Pd}(\mathrm{OAC})_{2}+4 \mathrm{Phen}+4 \mathrm{CO} \longrightarrow \mathrm{Pd}_{4}(\mathrm{CO})_{4} \mathrm{Phen}_{4}(\mathrm{OAC})_{4}+4 \mathrm{CO}_{2} \tag{16}
\end{equation*}
$$

In a tetrahedron, six edges are available which could be occupied by co ligands. In fact, along with the complex 8 some higher carbonyl complexes are seemingly formed as by-products of carbonylation of Pd(OAc), under the conditions of reaction 10. Another side reaction might be a reductive carbonylation resulting in carbonyl hydrides. Thus, a complex of a tentative composition [PdPhen(CO)H(OAC)] n was obtained by carbonylation of complex 8 in AcOH solution at $50^{\circ} \mathrm{C}$. IR and ${ }^{1} \mathrm{H}$ NMR spectra show a band at $1700 \mathrm{~cm}-1$ (bridging 00 group) and a singlet at -15.3 ppm (H atom in a bridging position), respectively. Molecular weight of the compound in ethanol solution was found to correspond to $n=4$ (M.W.found 1420, M.W. calc. for $[\mathrm{PdPhen}(\mathrm{CO}) \mathrm{H}(\mathrm{OAC})]_{4}$ is equal to 1498). This value seems to be a lower limit of the molecular weight since conductivity of the complex in ethanol and
other polar solvents corresponds to one of a weak electrolyte. Nevertheless, the data suggest the complex may be formulated as $\mathrm{Pd}_{4} \mathrm{Phen}_{4}(\mathrm{CO})_{4} \mathrm{H}_{4}(\mathrm{OAC})_{4}$ (9), its formation being depicted as follows:

$$
\begin{align*}
\mathrm{Pd}_{4} \mathrm{Phen}_{4}(\mathrm{CO})_{4}(\mathrm{OAc})_{4}+2 \mathrm{CO}+4 \mathrm{AcOH} \rightarrow & \mathrm{Pd}_{4} \mathrm{Phen}_{4}(\mathrm{CO})_{4} \mathrm{H}_{4}(\mathrm{OAC})_{4}+ \\
& +2 \mathrm{CO}_{2}+\mathrm{Ac}_{2} \mathrm{O} \tag{17}
\end{align*}
$$

The amounts of CO consumed and CO_{2} formed are in accord with eq. 11 . Another way to complex 2 could be hydrogenation of complex 8 . At the exposition of solutions of 8 in AcOH under H_{2} at $20-50^{\circ} \mathrm{C}$, 2 moles of H_{2} per mole of complex 8 were absorbed. IR and ${ }^{1} \mathrm{H}$ NMR spectra of the complex obtained reveal a band at $1790 \mathrm{~cm}^{-1}$ and singlet at -15.3 ppm , respectively, coinciding with those for complex 9 (ref. 22). The elemental analysis data could be brought into accord with the formula[PdPhen(CO)H(OAC)]n coinciding with that of complex 2. However, the molecular weight data correspond to $n=2$ in the above formula (M.W.found 800, M.W.calc. for [Pd Phen(CO)H(OAc)] 2 is equal to 749). Therefore, this complex may be formulated as $\mathrm{Pd}_{2} \mathrm{Phen}_{2}(\mathrm{CO})_{2} \mathrm{H}_{2}$.
(OAC) $)_{2}(10)$.

Complexes related to 9 and 10 were prepared by hydrogenation of ACOH solutions containing Pd(OAc) and Phen (Phen:Pd ratio 1:1) and following carbonylation of the solution (ref.22). The product of hydrogenation was found to be a polynuclear hydride complex of composition $\left[\mathrm{Pd}_{4} \mathrm{PhenH}_{4}(\mathrm{OAc})_{2}\right]_{n}$ (11) where $n 100$ (ref.23). A carbonyl hydride substance, pdssibly a mixture of complexes, of average composition $\mathrm{Pd}_{4} \mathrm{Phen}_{3}(\mathrm{CO})_{4} \mathrm{H}(\mathrm{OAC}) 3$ (12) was obtained by carbonylation of complex 11. 1H NMR and ${ }^{3}$ IR spectra $0 f$ complex 12 are similar to those for complexes 2 and 10 .

CATALYTIC REACTIONS

PCA has been shown to be an intermediate compound in the reductive carbonylation of $\mathrm{Pd}(\mathrm{OAC})$ in ACOH solutions containing NaOAc, as a result $A C_{0} O$ and Pd metal were formed (see eq.1). This reaction being combined with reoxidation step

$$
\begin{equation*}
\mathrm{Pd}+\mathrm{OX}+2 \mathrm{AcOH} \rightarrow \mathrm{Pd}(\mathrm{OAC})_{2}+\operatorname{Red} \tag{18}
\end{equation*}
$$

($O x$ is an oxidant, Red is a reduced form of the $O x$) could be used to produce carboxylic acid anhydride under mild conditions as depicted by eq. 19.

$$
\begin{equation*}
\mathrm{ACOH}+\mathrm{CO}+\mathrm{OX} \rightarrow(\mathrm{AC})_{2} \mathrm{O}+\mathrm{CO}_{2}+\mathrm{Red} \tag{19}
\end{equation*}
$$

Dehydration of AcOH is usually performed at high temperatures (500-600 ${ }^{\circ} \mathrm{C}$) because of thermodynamic restrictions:

$$
\begin{equation*}
2 \mathrm{ACOH} \rightarrow(\mathrm{Ac})_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{O}, \quad \Delta \mathrm{G}_{298}^{\circ}=+12 \mathrm{kcal} / \mathrm{mole} \tag{20}
\end{equation*}
$$

Reaction (12) inherently includes oxidation of carbon monoxide (eq. 14):

$$
\begin{equation*}
\mathrm{CO}+\mathrm{Ox} \rightarrow \mathrm{CO}_{2}+\operatorname{Red} \tag{21}
\end{equation*}
$$

as a complementary exoenergetic reaction. In the case of $0 x=82$ and Red $=$ $\mathrm{H}_{2} \mathrm{O}$, the thermodynamics of reaction 21 is characterized by $\Delta G \quad 298=-61$ kcal/mole. So overall process 19 , as a sum of reactions 20 and 298 21, is oharacterized by $\Delta G_{298}^{\circ}=-49 \mathrm{kcal} / \mathrm{mole}$ permitting the reaction at room temperature. However, ${ }^{298}$ in the case of $0 x=0$, water should be removed from reaction mixture effectively because CO oxidation

$$
\mathrm{CO}+1 / 2 \mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}
$$

dominates in AcOH-water solution.
PCA was found to be inert towards alkenes and was decomposed in $\mathrm{H}_{\text {a }}$ atmosphere. Acetylene is polymerized in AcOH solutions of PCA and converts into vinylacetate with a small yield. No oxidation of alkenes or arenes was observed in the presence of PCA in AcOH or alcohol solutions. However, addition of Phen to PCA solution resulta in formation of an active catalyst arising from PCA decarbonylation by the action of Phen and 0_{2} (see eq. 9,11, 12). Thus, propylene and 2-methylpropene were oxidized at $20^{\circ} \mathrm{C}$ and 1 atm in methanol solutions which initially contained Phen and PCA at a ratio Phen: $\mathrm{Pd}=1: 1$. Selective formation of allylmethyl and methallylmethyl ethers was observed under these conditions (ref.24).

The catalyst of this reaction seems to be a complex of type $\mathrm{Pd}_{4} \mathrm{Phen}_{2}$ (OAC) ${ }_{x}$ (see eq.12). In contrast with this complex, palladium (II) compounds are known to provide catalytic oxidation of alkenes and alcohols into acetals and ketals (ref.2). The same complex was found to be a catalyst for oxidative acetoxylation of alkylarenes (ref.25) and alkenes (ref.26). It is noteworthy that alkylarenes undergo oxidative substitution into aromatic ring in the presence of Pd (II) compounds instead of side-chain substitution. In the presence of Pd (II) complexes alkenes are mainly converted into vinyl esters (ref.1,2), carbonyl compounds being the main products in the reaction mixtures containing more than 1% of water. In contrary to that, no water influence was observed in the presence of $\mathrm{Pd}_{4} \mathrm{Phen}_{2}(\mathrm{OAC})_{x}$.
Contrary to expectations, complexes 2 and 10 do not catalyze isomerisation of $1-a l k e n e s$ in spite of the presence of coordinated hydrogen. Both IR band at $1790 \mathrm{~cm}^{-1}$ and singlet at -15.3 ppm in $1_{\mathrm{H}} \mathrm{N} M R$ spectrum disappeared after addition of unsaturated compounds to the solutions of the complexes in AcOH or alcohols. Saturation of the solution with ethylene gives rise to ethyl acetate, propionic aldehyde, and diethyl ketone in amounts commensurable with those of the complex used. The reaction may be pictured as the insertion of alkene molecule into $\mathrm{Pd}-\mathrm{H}$ bond followed by carbonylation of the Pd alkyl bond formed. The $\mathrm{Pd}-\mathrm{COC}_{2} \mathrm{H}_{5}$ fragment arised seemingly undergoes insertion of the second $\mathrm{C}_{2} \mathrm{H}_{4}$ molecule and/or hydrogenolysis by the coordinated hydrogen to give rise to diethyl ketone and propionic aldehyde, correspondingly. Ethyl acetate is assumed to be formed as a result of AcOH attack on Pd-Et bond formed initially. The final Pd compounds, which might contain $\mathrm{C}_{2} \mathrm{H}_{4}$ and Phen molecules as stabilizing ligands, were found to be active in olifomerization of ethylene into butenes and hexenes. The complexes provide also catalytic hydrogenation of alkenes and alkynes under H_{2} atmosphere at $25-50^{\circ} \mathrm{C}$. The reaction is neither fast nor selective. Thus, ${ }^{2}$ hydrogenation of phenylacetylene at $50^{\circ} \mathrm{C}$ and 1 atm of H_{2} in the presence of 2 or 10 as the starting compounds for catalyst formation was found to give styrene in 35-50\% yield and ethylbenzene, 10-20\%, after 24 h . No hydroformylation nor alkoxycarbonylation occured in the presence of Pd phenanthroline carbonyl hydrides.
Pd,Mo-cluster 3 was found to be a catalyst for alcohol oxidation. Thus, methanol is converted into methyl formate, oxidation of ethanole gives rise to diethyl acetal, and that of benzyl alcohol results in benzaldehyde formation at $60-80^{\circ} \mathrm{C}$ and 1 atm of 0 . The starting complex was destroyed under reaction conditions and the observed catalytical activity was due to the products of oxidation of the starting cluster 3. Dehydration of alcohols in the presence of $\mathrm{Pd}, \mathrm{MO}-\mathrm{cluster}$ was found to proceed at $60-80^{\circ} \mathrm{C}$ under Ar atmosphere or in vacuo (ref.27). No ethers were found in the reaction mixture. In the case of methanol and ethanol the main product of dehydration is white wax-like substance, trans-Stilbene was obtained by dehydration of benzyl alcohol. Dehydration of alcohols under essentially non-acidic conditions is rather unexpected. No less unusual feature of the reaction is the dehydration of methanol and benzyl alcohol under mild conditions, despite of the abscence of H-atom at β-position to hydroxyl groups in their molecules. All the facts mentioned suggest to involve carbene species in the reaction. The first step of the reaction appears to be oxidative addition of alcohol molecule to Mo-Pd bond. The complex containing both Mo-coordinated hydroxyl anion and Pd σ-bonded alkyl group is formed at this step. Proton transfer from the alkyl group to the coordinated hydroxyl results in formation of complex containing coordinated water molecule and carbene ligand, which gives rise to organic products. In the course of the reaction the starting complex may be partially decarbonylated, so it is unclear whether the reaction is catalyzed by cluster 3 or by products of its transformations. It is doubtless that the presence of Pd-Mo bond in the catalyst molecule is necessary. Neither PCA nor $\mathrm{Na}\left[\mathrm{CpMo}(\mathrm{CO})_{3}\right]$ are active in the reaction under consideration.
It is obviously that hydrogenolysis of the intermediates containing coordinated alkyl group or carbene ligand would lead to corresponding alkane. Our attempts to carry out hydrogenation of benzyl alcohol in the presence of Pd, Mo-cluster failed, however, because of instability of the complex under H_{2}. Nevertheless, toluene in amount commensurable with that of cluster 2 WEs found by H_{2} treatment of the solution of 2 in benzyl alcohol after preliminary exposition under Ar for $30-40$ days at $80^{\circ} \mathrm{C}$.

Acknowledgements
The author is deeply indebted to Professor M.N.Vargaf. tik, Drs T.A.Stromnove, I.P.Stolarov, I.N. Busygina, E.V.Evdokimova for enthusiastic collaboration. I am especially indebted to Professor M.A.PoraiKoshits, Professor Yu.T.Struchkov, Drs L.G.Kuz'mina, A.S.Antsyshkina,
T. S. Khodashova, and S.B.Katzer for carrying out X-ray diffraction studies and for many helpful discussions.

REFERENCES

1. P.M. Maitlis, The Organic Chemistry of Palladium, Vol.2, Academic Press, New York and London (1971).
2. I. I. Moiseev, -Complexes in the Liquid-Phase Oxidetion of Olefins, Neuka, Moscow (1970).
3. Catalysis in Cy Chemistry, W.Keim Ed., A.P.Dordrecht, Boston, Lancaster (1983).
4. M.N.Vargaftik, T.A.Stromnova and I.I.Moiseev, Zh, Neorg.Khim. 25, 236244 (1980).
5. A. L. Balch, in Homogeneous Catalysis with Metal Phosphine Complexes, I. H. Pignolet Ed., p. 167, Plenum Press, New York (1983).
6. N.K.Yeremenko, E.G.Mednikov, S.S.Kurasov, Uso.Khim. 54, 671-693 (1985).
7. E.G.Mednikov, N.K.Yeremenko, Yu. I.Slovokhotov and Yu. T. Struchkov, Zh.Vses.Khim. O-va 32, 101-102 (1987).
8. R.Bender, P.Braunstein, J. M. Jud and Y.Dusaysay, Inorg.Chem. 22, 33943407 (1983).
9. P.Braunstein, J. M. Jud, Y.Dusaysay and J.Fischer, Organometallics 2, 180-183 (1983).
10. P.Braunstein, J. - M. Jud and J.Fischer, J.Chem.Soc., Chem.Commun. 5-6 (1983).
11. P.Braunstein, C.de Meric de Bellefon and M.Ries, Inorg.Chem. 27, 13381346 (1988).
12. N.N.Vargaftik, V.P.Zagorodnikov, I, P.Stolarov, I.I.Moiseev, V.A. Likholobov, D. I. Kotchubey, A.I. Chuvilin, V.I. Zaikovsky, K. I, Zamaraev and G.I.Timofeeva, J.Chem.Soc., Chem. Commun. 937-939 (1985).
13. I.I.Moiseev, T.A.Stromnova, M.N.Vargaftik, G.Ya.Mazo, L.G.Kuz'mina and Yu. T. Struchkov, J.Chem. Soc., Chem. Commun. 27-28 (1978).
14. T.A.Stromnove, M.N.Vargaftik and I.I.Moiseev, J.Organomet. Chem. 252, 113-120 (1983).
15. T.A. Stromnove, I.N.Busygina, S.B.Katzer, A.S.Antsyshkina, M.A. PoraiKoshits and I.I.Moiseev, J.Chem.Soc., Chem, Commun. 114-115 (1988).
16. G.P.Elliott, J.A.K.Howard, T.Mise, C.M.Nann and F.G.A.Stone, J. Chem. Soc. Delton Trens. 2189-2200 (1987).
17. I.N. Busygina, T.A.Stromnova, S.G.Sakharov, D.V.Zagorevsky and I.I.Moiseev, in IV-th All-Union Conference on Carbene Chem., p.97, Nauka, Moscow (1987)
18. I.N.Busygina, T.A.Stromnova, S.B.Katzer, A.S.Antsyshkina, M.A. PoraiKoshits and I.I.Moiseev, in IV-th All-Union Conference on Organometal. Chem., p. 341, Nauka, Kazan (1988).
19. J.Dehend, J. Pischer, M.Pfeffer, A.Mitscher and M. Zinsius, Inorg.Chem. 15, 2675-2681 (1976).
20. M. K. Starchevsky, M.N.Vargaftik and I.I.Moiseev, Kinet.Katal. 20, 11631169 (1979).
21. M.N.Vargaftik, T.A.Stromnova, T.S.Khodashova, M.A. Porai-Koshits and I. I.Moiseev, Koord. Khim. 7, 132-140 (1981).
22. I.PiStolarov, T.A.Stromnova, V.P. Zagorodnikov, M. N. Vargaftik, S.V. Zinchenko, V.A.Khutoryansky, F.K.Schmidt and I.I.Moiseev, Izv.Akad. Nauk SSSR, Ser.Khim. 942-945 (1986).
23. W. N. Vargaftik, V.P. Zagorodnikov, I.P. Stolarov, D. I.Kotchubey, V.M. Nekipelov, V.M.Mastikhin, V.D.Chinakov, K.I. Zamaraev and I. I.Moiseev, Izv.Akad.Nauk SSSR, Ser.Khim. 2381-2384 (1985).
24. T.A. Stromnove and M.N.Vargaftik, Izv,Akad, Nauk SSSR, Serknim. 236-238 (1980).
25. M. K. Starchevsky, M, N.Vargaftik and I.I.Moiseev, Kinet.Katal. 22, 622626 (1981).
26. I.P.Stolariv, M.N.Vargaftik, O.M.Nefedov and I.I.Moiseev, Kinet.Katal. 23, 376-381 (1982).
27. T.A.Stromnova, I.N.Busygina, S.B.Katzer, A.S.Antsyghkina, M. A. PoraiKoshits and I.I.Moiseev, IzvoAkad.Nauk SSSR, Ser.Khim. 1435 (1987).
