
Pure &App/.  Chem., Vol. 61, No. 12, pp. 2107-2115, 1989. 
Printed in Great Britain. 
@ 1989 IUPAC 

Foundations of conjugated-circuits models 

D.J. Klein and N. TrinajstiC* 
Department of Marine Sciences, Texas A & M University at Galveston, Galveston, 
Texas 77553-1675, USA and The Rugjer BoSkoviC Institute, P.O.Box 1016, 
41001 Zagreb, Croatia, Yugoslavia" 

"Phy6.iCu.t h bhoutd have 
mathematical b e d y .  'I 

P.A.M. Dirac 

Abstract - A Simpson-Herndon model Hamiltonian defined on a space of ortho- 
gonal Kekul; structures is derived for 1-factorable polyhex species (e.g. 
benzenoid hydrocarbons) from either of two antecedent models. One antecedent 
model is the semiempirical valence-bond model treated in the simple reso- 
nance-theoretic approach of Pauling and Wheland; the other is the Pariser- 
-Parr-Pople model treated within the bond-orbital resonance-theoretic ap- 
proach of ZivkoviE. Finally the conjugated-circuit scheme of Randit is ob- 
tained, though in a modified form. 

INTRODUCTION 

In the mid fifties Simpson (refs.1,2) proposed an elegant form of resonance theory. His argu- 
ment was based upon orthogonal Kekule' structures that are e. For example, for benzene the 
two Kekule' structures, usually depicted as in Figure 1. were conceived as being formed from 
symmetric and antisymmetric combinations of the exact ground state and the exact lowest 
lBZu excited state. Simpson noted that these two combinat!hs would have the same symmetry 
properties as the two structures of Figure 1 and quite plausibly the same pattern for bond- 
-orders and electron density. For other conjugated hydrocarbons the Kekule' structures were 
viewed as "coherent" states obtained by suitable unitary transformation of exact singleteigen- 
states. The unitarity of these transformations guarantees the orthogonality of the resultant 
coherent Kekul; states. Finally Simpson assumed that a simple chemically appealling pattern 
of interaction amongst such exact Kekule' structures would provide quantitative estimates of 
the exact eigenenergies. 

lA 

Fig. 1. The two Kekuli structures for benzene 

Though Simpson occasionally used this scheme on a molecule or two of interest to him, the 
scheme seems to have been largely ignored for some time. One exception to this neglect is 
found in the Quantum Chemistry text (ref. 3) by McGlynn and co-workers, though even in their 
description of the use of this technique they caution the reader that "We cannot teach this 
art here; we can merely give examples . . . ' I  The power and simplicity of the scheme was finally 
largely independently developed by Herndon (ref. 4) in 1973 when he systematically used the 
(appropriately parameterized) scheme to accurately reproduce by hand an otherwise computer- 
-generated (ref. 5) list of 29 resonance energies. A notable simplification in Herndon's work 
was that the ground-state wavefunction could be closely approximated bythe simple equally-weigh- 
ted sum of (orthogonal) Kekule' structures. In fact with this ansatz the resonance energy couldbe 
developed (ref. 6) in terms of graph-theoretic invariants. Indeed RandiC (ref. 7) indepen- 
dently noted that what has only more recently been realized (ref. 8) to amount to the same 
graph-theoretic resonance-energy expression could be obtained from aquantification of Clar's 
qualitative ideas (ref. 9) concerning aromaticity. This expression, and/or various extensions 
(ref. 10) of it, have now found numerous applications (ref. 11). 

There are some points in this previous work that it would be desirable to clarify. Most par- 
ticularly a systematic theoretical computationally amenable derivation of the Simpson-Herndon 
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Hamiltonian would be of utility. The simple pattern proposed for interaction matrix elements 
would be tested, and possibly corrected. Formulas, and ultimately values, for the interaction 
parameters would result. Further the way would be indicated for extensions to more general 
circumstances. 

Here we initiate such a size-consistent theoretical derivation for 1-factorable polyhex spe- 
cies (ref. 12). It starts from approximate resonance-theoretic treatments of either the 
Pauling-Wheland valence-bond model (ref. 13) or the Pariser-Parr-Pople model (ref. 14). Thence 
in the next two sections we briefly review relevant points of these two treatments. To under- 
stand the basic many-body structure of the Hamiltonian and overlap operators it is crucial to 
develop more local("few-bond") operators acting on the space of Kekul6 states. This problem is 
solved in section 4 ,  then utilized in sections 5, and 6. In section 6 a size-consistent 
Simpson-Herndon model is derived by transforming "away" the non-identity overlap matrix. The 
result (up through third-order of off-diagonal "overlap") is found to yield new interactions. 
In section 7 we utilize Herndon's wavefunction ansatz to obtain a conjugated-circuits expres- 
sion, now with parameters expressed in terms of the initial valence-bond or Pariser-Pam-Pople 
models. 

VALENCE-BOND RESONANCE THEORY 

The valence-bond model (ref. 13) of Pauling and Wheland has now been around for more than a 
half of a century. But especially for larger systems it is difficult to solve, and not fully 
understood, so that, e.g., it has only recently been suggested (ref. 15) to be involved in 
high-temperature superconductivity. Elsewhere (ref. 16) arguments have been marshalled to say 
that at least for benzenoids the approximation wherein the model is restricted to the subspace 
of Kekul; structures is quite reasonable. Further discussion concerning the validity of this 
assumption may be found in a forth-coming book (ref. 17). 

Here we presume the restriction of the VB model to the subspace of Kekule' structures, these 
being valence-bond (or Rumer (ref.18)) structures with nearest neighbor spin-pairing exclusive- 
ly. The overlap and Hamiltonian matrix elements are conveniently expressed (ref. 19) in terms 
of superposition diagrams obtained by superimposing the Ti-bonds of pairs of Kekule structures. 
Thence in Fig. 2 are shown the three possible superposition diagrams arising from the Kekul; 
structures in Fig. 1. 

0 
Fig. 2. The three superposition diagrams for benzene 

The overlap between two normalized Kekul6 structures K and K' on an alternant system of 2M 
sites is 

M-i (K,K')-I (K,K') 
<KIK'> = (i/z) (2.1) 

where i(K,K') is the number of small islands (each corresponding to a single common Ti-bond in 
K and K') in the superposition diagram of K and K', and I(K,K') is the number of big islands 
(each corresponding to a cycle of Ti-bonds alternately in K and K') in the superposition dia- 
gram. The interactions may be expressed (ref. 20) in terms of spin operators 2. for site i and 
an exchange parameter J, which is positive (antiferromagnetically signed). Intkraction matrix 
elements between a nearest-neighbor pair of sites i and j then are nonzero only if i and 
j are in the same island of the associated superposition diagram, in which case 

<K/zJQ~.Q. /K'> = -(3/2) J <K/K'> (2.2) J 
For more general circumstances (refs. 19,20) additional phases arise in (2.1) and (2.2). 

The expressions of (2.1) and (2.2) determine the Hamiltonian and overlap matrices H and 2 of 
current interest. These are conveniently expressed if to every Kekul6 structure IK> we identi- 
fy a corresponding orthogonal one IK), so that 

(K~K') = ~(K,K') (2.3) 

Then overlap matrix is represented in an operator-theoretic form 

(2.4) 

and the Hamiltonian matrix is represented as 
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- H = c <K/H]K'> IK)(K'~ (2.5) 
K,K' 

The Hamiltonian matrix elements <KIH/K'> 
and so bear some resemblance to the corresponding overlap matrix. 

The structure of these matrices bears further elucidation. The exponent in (2.1) is 0 or 
greater; being 0 when there are only small islands. Each big island of 2m sites replaces m 
small islands and thence makes a contribution of m-1 to the exponent. Further for benzenoid 
structures (cut from the honeycomb lattice, without cutting "holes") (ref. 12) it is known 
(ref. 21) that all big islands are of size 4n+2, n=1,2,3, ..., so that such a big island in- 
troduces a factor of $ into the overlap where 

are a sum over nearest-neighbor pairs as in (2.2), 

s E 1/4 (2.6) 

may be viewed as a type of local overlap. Then we can write 

(2.7) 

where 1 is the identity operator and 

with iKUK' 1 -  the sum over n-values for all the different big islands (of size 4n+2) in the 
superposition diagram between K and K'. Similar consideration of the Hamiltonian matrix ele- 
ments reveals 

<KIH[K'> = -(3/2) *J*{M+IK UKI+} <KIK'> (2.9) 

where we recall that 2 M is the number of sites and /KUK' I +  denotes the sum over weights for 
each big island in the superposition diagram, this weight being the number of nearestneighbor 
pairs of sites in the big island minus 2n+l for that island (of size 4n+2). 

Fig. 3 .  The naphthalenic b i g  island 

Note for instance for thenaphthalenic island of Fig. 3 ,  this weight is 6 (since the two cen- 
tral sites are nearest neighbors, in benzenoids). Then we write 

- H = -(3/2)-J*M*S + c sN 2") (2.10) 
NS 1 

where 

(2.11) 

The crucial point to be utilized later is that both 
as in (2.7) and (2.10), with the higher orders presumably being of lesser importance. 

and !may be expanded in overlap orders 

BOND-ORBITAL RESONANCE THEORY 

This approach applicable to HG'ckel, Hubbard or PPP models has recently been developed by 
Zivkovie (ref. 22). His approach entails a wavefunction ansatz of the form 

= A {aa  O B I  (3.1) 

where A is the system antisyrmnetrizer and Oo is the factor for electrons of spin 0 = a or 8 .  
Further he points out that each Oo may be approximated in terms of states corresponding 
Kekul6 structures 

to 

(3.2) 
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where t h e  product i s  over  a l l  " s t a r r ed"  s i t e s  i n  t h e  a l t e r n a n t  s t r u c t u r e ,  i(K) denotes  t h e  
u n s t a r r e d  s i t e  Ti-bonded t o  s i t e  i i n  t h e  K e k u l e ' s t r u c t u r e  K,  and t h e  a r e  or thonormal ized  

pans ion  of 0, t h a t  are independent of t h e  cho ice  ,= c1 

Something q u i t e  remarkable then occurs  f o r  t h e  m a t r i x  problem t o  determine 0,. F i r s t ,  
Zivkovif has  shown ( r e f .  22) t h a t  t h e  ove r l ap  m a t r i x  i s  e x a c t l y  as i n  (2.4) and (2 .7) .  That 
i s ,  <K,IK,'> i s  t h e  same a s  < K I K ' >  i n  (2 .1) .  Second, t h e  Hamiltonian m a t r i x  i s  n e a r l y  t h e  
same as i n  (2.5) and (2.10).  That i s ,  f o r  t h e  HG'ckel model <K,IH,IK,'> i s  t h e  same as d ( I H I K ' >  
i n  (2.9) i f  one r e p l a c e s  J by t h e  H k k e l  resonance i n t e g r a l  0. For t h e  Hubbard and PPP models 
a n  e x t r a  (near )  cons t an t  m u l t i p l e  of < K I K ' >  i s  added. Thence f o r  benzenoids t h e  same m a t r i x  
d i a g o n a l i z a t i o n  problem i s  ob ta ined ,  though it r e p r e s e n t s  an  ( appa ren t ly )  q u i t e  d i f f e r e n t  
wavefunction a n s a t z  and approach. It i s  mot iva ted  i n  terms of bond o r b i t a l s  ( t h e ( l l d 2 )  ( x i + x . h  
b u i l t  from or thogonal ized  atomic o r b i t a l s )  i n  t h e  presence  of a mean f i e l d  due t o  t h e  elec-'  
t r o n s  of t h e  s p i n ,  whereas t h e  VB approach i s  mot iva ted  i n  terms of s t r o n g l y  c o r r e l a t e d  s in -  
g l e t  e l e c t r o n  p a i r s  (fundamentally i n  terms of nonorthogonal atomic o r b i t a l s ) .  

An impor tan t  d i f f e r e n c e  between the  VB and bond-orb i ta l  resonance t h e o r i e s  occurs  f o r  nonben- 
zenoid a l t e r n a n t s .  For t h e  s imple  VB resonance t h e o r i e s  t h e  b a s i c  m a t r i x  element formulas of 
s e c t i o n  2 remain unchanged, when b i g  i s l a n d s  of s i z e  4n occur.  However, f o r  t h e  bond-orb i ta l  
resonance theory  such m a t r i x  elements a r e  0 ,  and i n  some o t h e r  c a s e s  an  a d d i t i o n a l  minus s i g n  
can appear i n  the  analogy t o  (2 .2 ) .  These f e a t u r e s  then  account f o r  H icke l ' s  4n t2  r u l e ,  and 
Zivkovif t hen  sugges t s  t h a t  h i s  v e r s i o n  of resonance theory  is s u p e r i o r ,  a t  l e a s t  f o r  
non-benzenoids. Here w e  c o n s t r a i n  our  a t t e n t i o n  t o  benzenoids ,  whence the  bond-orb i ta l  reso- 
nance - theo re t i c  r e s u l t  i s  obta ined  from the  Pauling-Wheland resonance t h e o r e t i c  r e s u l t  simply 
upon r e p l a c i n g  J by 0. 

0 
atomic o r b i t a l s  f o r  s i t e  i. V a r i a t i o n a l  op t imiza t ion  y i e l d s  c o e f f i c i e n  2 s f o r  IK > i n  t h e  ex- 

o r  6. 

K E K U L I ~ S P A C E  ALGEBRA 

I n  performing d e t a i l e d  manipula t ions  w i t h i n  t h e  space  spanned by Kekuld s t r u c t u r e s  t h e  a lge-  
b r a i c  s t r u c t u r e  of t h e  a s s o c i a t e d  ope ra to r  space i s  of c r u c i a l  s i g n i f i c a n c e .  Espec ia l ly  t h e  
" loca l "  ope ra to r s  a f f e c t i n g  only  a l o c a l  subregion ,  i d e n t i f i e d  t o  an embedded subgraph y, are 
of i n t e r e s t .  Here Y i s  presumed t o  be  capab le  of c a r r y i n g  a l o c a l  Kekuld s t r u c t u r e ,  denoted 
K'  o r  K, and t h e  ope ra to r  changing a l o c a l  s t r u c t u r e  K t o  K' i s  denoted 

(4.1) 

That i s ,  i f  t h i s  ope ra to r  i s  app l i ed  t o  a s t r u c t u r e  IK) i t  g ives  a nonzero r e s u l t  only i f  K 
on y i s  a s u b s t r u c t u r e  i n  IK), and i f  so  it  g ives  back t h e  s t r u c t u r e  IK') t h a t  i s  t h e  same as 
IK) except  on y where i t  co inc ides  w i t h  K ' .  For i n s t a n c e ,  w i th  y t h e  l e f t  r i n g  of naphtha lene  

A y ( \ l l  I,) changes the  f i r s t  Kekul6 s t r u c t u r e  of Fig.  4 t o  t h e  second, wh i l e  i f  app l i ed  t o  
t h e  second o r  t h i r d  i t  g ives  0. 

/ \  

a / /  o m  \ / cr 
\ \  

Fig .  4. The t h r e e  Kekule' s t r u c t u r e s  f o r  naphtha lene  

Next w e  seek  t h e  r e s u l t  of m u l t i p l y i n g  two fundamental  ope ra to r s .  I n  p a r t i c u l a r  cons ide r  t he  
product  of A ( K ~ '  1 ~ ~ ) .  Following the  n o t a t i o n  of equa t ion  (4.1) w i t h  sub- 

s c r i p t s  1 and 2 now appended t o  the  Y , K , K ' , K  and K ' ,  one o b t a i n s  t h e  product  of IKl')(K 1 w i t h  
/ K  ' ) (K  I .  Thence we cons ide r  t he  i n n e r  products  (K IK ' 1  w i t h  K S K I  and K ~ '  SKs. Evident ly  
the  r e s u l t  must be nonzero only i f  t he  r e s t r i c t i o n s  of K~ and K 
Moreover t h i s  r e s t r i c t i o n  must be a Kekul6 s t r u c t u r e  on y n y  2 f o r  o therwise  K and K ~ ,  would 
both  have d i f f e r e n t  Ti-bonds i n c i d e n t  from o u t s i d e  of y flyY2 on s i n g l e  s i t e ( s )  of y 1 n y 2 . 1 n  
t h i s  case we say  ~1 and K 2  a r e  compat ib le ,  

(4.2) 

Also w e  i n t roduce  t h e  Kronecker d e l t a  f u n c t i o n  6 ( ~  'L K ' )  t h a t  i s  nonzero only i f  K ' L K  ', i n  
which case  i t  i s  1 .  Now i f  K 'L ?', i t  has been noled tzat  K~ n y 2  i s  a Kekul6 s t rucCure2(on  
y f l y  ) and hence a l s o  must be t h e  remaining po r t ion  (of K ~ )  

(K ' 1 ~ ~ )  and A 
y1 y2 

2 2  1 2  t o  y1 n y2 a r e  he  same. 

1 2' 1 
1 

1 y2 K~ 'L K; - K~ n y2 = K; n y, i s  a Kekul6 s t r u c t u r e  on y 

1 
1 2  

~ ~ / y ~  E K~ - ( K ~  n y 2 )  (4.3) 

and l i kewise  so must be K ~ ' / Y ~ .  Evident ly  f o r  (K K ') t o  b e  nonzero,  ~ ~ / y ~  occurs  i n  K ' 11 2 2 
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and K as w e l l ,  wh i l e  K y occurs  i n  K1 and K l t  a s  w e l l .  Thus w e  have 
2 2 1  

s ( Y l  Y2) Aylgy2(Klr U (KZr /Yl)  I(Kl/y2) U K2) 

t h e  fundamental  r e l a t i o n  enab l ing  t h e  manipula t ion  of t hese  ope ra to r s .  

Next s e v e r a l  Hermitean ope ra to r  sums are in t roduced .  F i r s t  

(4.4) 

(4.5) 

where C is summed over  a l l  c y c l i c  subgraphs of type 5 = 6 , 1 0 ,  14a ,14b  o r  14c a s  shown i n F i g -  
u r e  5, a n d ?  denotes  t h e  Keku le ' subs t ruc tu re  on C t h a t  d i f f e r s  from K i n  having s i n g l e  and 
double bonds in te rchanged .  

Fig.  5 .  The f i r s t  f i v e  types  of ( f e a s i b l e )  cyc le s  occur r ing  i n  polyhex graphs 

Second 
S(m) C(m) 

c(m) K h )  
A(S(m)) = C Ac(m, ( z ( m )  I K(m) 1 (4.6) 

where S(m)  3 S,x ... xcm denotes  a set  of m types ;  C(m) EClx ... XC 
t h e  ith Ci be ing  of type  5;; and K ( m ) E K  x.. .xK 
s t r u c t u r e s ,  t h e  ith K be ing  on c y c l e  hi .  ThiFd 

i n d i c a t e s  m d i s j o i n t  cyc les ,  
i n d i c a t e s  a c o l l e p t i o n  of d i s j o i n t  Kekule' 

i 

(4.7) 

where a, 0, denote  t h e  t h r e e  naph tha len ic  Kekule' s t r u c t u r e s  of F ig .  4. 

Such H e m i t e a n  ope ra to r  sums a r e  themselves c losed  under anticommutative m u l t i p l i c a t i o n .  
i n s t a n c e  

For 

{A(6), A(6)) = 4A(6,6)  + 2 A ( 1 0 )  + 2 A ( 6 ' )  

{A(6) , A(6,6))= 6 A(6,6,6) + A(14b) + 2 A(6,10) + 2 A(6,6')  

a s  fo l lows  from the  d e f i n i t i o n s  (4.5)-(4.7) a long  wi th  t h e  b a s i c  r e l a t i o n  of (4 .4) .  A s  a con- 
sequence t h e s e  ope ra to r  sums form an a l g e b r a  under anticommutation. 

REPRESENTATION OF SYSTEM MATRICES 

The v a r i o u s  m a t r i x  o p e r a t o r s  of s e c t i o n  2 may now be r ep resen ted  i n  terms of t h e  fundamental 
ope ra to r  sums of s e c t i o n  4. The f i r s t  two o rde r s  of t h e  ove r l ap  m a t r i x  are 
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- S(2)  = A(l0)  + A(6,6) (5.1) 

r e c a l l i n g  t h a t  cyc le s  of s i z e  4n+2 c o n t r i b u t e  t o  o rde r  n ,  p a i r s  of cyc le s  of s i z e  4n +2  and 1 4n + 2  c o n t r i b u t e  t o  o rde r  n1+n2,  e t c .  The f i r s t  t h r e e  o rde r s  of t h e  Pauling-melandresonance- 
-t?,eoretic Hamiltonian m a t r i x  are 

- H ( l )  = - (3 /2)*5 .3  A(6) 

- H(2) = - (3 /2)*5 .{6  A(l0) + 6 A ( 6 , 6 ) }  

- H(3) = - (3 /2 ) .5*{9A( l4a )  +9A(14b)  + 7  A ( 1 4 c ) + 9  A ( 6 , 1 0 ) + 9  A(6 ,6 ,6)}  

(5.2) 

where t h e  i n t e g e r  preceding  a A-operator i s  t h e  common / K n  K ’  / +  va lue  f o r  t h e  Kekul; s t ruc -  
t u r e s  y i e l d i n g  t h e  c y c l e s  of t h a t  A-operator. This c o e f f i c i e n t  may be convenient ly  thought  of 
a s  a sum of terms f o r  t he  c y c l e s  c o n t r i b u t i n g  t o  the  A-operator, such a term being  t h e  number 
of p a i r s  of s i t e s  i n  t h e  c y c l e  t h a t  a r e  n e a r e s t  ne ighbors  i n  t h e  pa ren t  graph G minus h a l f  
t h e  s i z e  of t he  c y c l e .  

It i s  a l s o  of u t i l i t y  t o  develop t h e  i n v e r s e  square  r o o t  of t h e  ove r l ap  i n  terms of A-opera- 
t o r s .  Genera l ly  square  r o o t s ,  e sDec ia l ly  f o r  m a t r i c e s ,  a r e  no t  un ique ,  though t h e r e  i s  a 
“ n a t u r a l “  choice  desc r ibed  by Lijwdin ( r e f .  23).  If t h e  nondiagonal p a r t  5-l i s  s u f f i c i e n t l y  
sma l l ,  then  L’dwdin’s expansion f o r  t h i s  i n v e r s e  square  r o o t  

(5.3) 

converges.  Thence, w i th  t h e  use  of (2 .7 ) ,  

/ 2 ) ( j )  one then  has  

(5.5) 

Then upon s u b s t i t u t i o n  of  (5.1) and use  of (4.8) w e  o b t a i n  ( a f t e r  same manipula t ion)  

(5 - 1 ’ 2 ) ( 1 )  = - (1 /2)  A(6) 

(5 -1’2) (2)  = (1 /4)  12(6,6) - (1 /8)  A(10) + (3/8) A(6’ )  

which a r e  r e s u l t s  of u se  i n  t h e  nex t  s e c t i o n .  

(5 .6)  

A SIMPSON-HERNDON MODEL 

A Simpson-Herndon model H may be obta ined  from e i t h e r  t h e  Pauling-Wheland o r  bond-orb i ta l  r e -  
sonance- theore t ic  model. I n  e i t h e r  c a s e  

where the  d e s i r e d  s t r u c t u r e - e x p l i c i t  formulas r e s u l t  upon expres s ion  i n  powers of t h e  over lap  
f a c t o r  s. For t h e  VB c a s e  of Paul ing  and Wheland, one has  

(6.2) 

so t h a t  we i d e n t i f y  

(6.3) 

Then wi th  the  use  of (5.2) and (5.6) a long  wi th  the  m u l t i p l i c a t i o n  r u l e s  of (4.8) w e  f i n d  
( a f t e r  some manipula t ion)  

H ( l ) =  - ( 3 / 2 ) * 5 * 3  A(6) 
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H(2) = -(3/2) *J*3{h(10) - A(6') 
= -(3/2) *J.{3A(14a) + (3/2)A(14b) + 7A(14c) - 3A(10') + 3A(6)} 

i Hence, summation with the weights s , leads to 

H = -(3/2).J*{M.l - + (51/64) A(6) - (3/64) h(6') + (3/16) A(l0) 

-(3/128) h(10') + (3/64) A(14a) + (3/128) A(14b) 
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(6.4) 

Higher-order corrections could in principle be obtained following further the same approach. As 
noted in section 3 the primary difference for the bond-orbital resonance-theoretic case of 
ZivkoviC entails the replacement of J by 8. 

Our results of (6.4) and (6.5) differ notably in several ways from the earlier interaction 
proposed by Simpson (ref. 2) and by Herndon (ref. 4). First, there i s  the term M-l, which how- 
ever may be argued to be subtracted off in computing a resonance energy. Second, there are nov- 
eltermsinvolving A(6') and A ( 1 0 ' ) ,  simply not appearing in the earlier empirical versions. 
Third, the three types of 14-cycle embeddings occur with different weights, also contrary to 
earlier treatments. Evidently these second and third features along with additional operators 
would appear in higher orders. 

A CONJUGATED-CIRCUITS MODEL 

As has been shown (ref. 8) elsewhere earlier empirical Simpson-Herndon model Hamiltonians lead 
to so-called conjugated-circuits models, when the assumption of a particular wavefunction 
ansatz is made. This (ref. 4) ground-state ansatz, which (for the nonorthogonal case) traces 
back to Pauling and Wheland (ref. 12), is 

(7.1) 

This assumption should be comparably reasonable for the present case, since the current model 
appears quantitatively similar to the earlier one. Then if one considers a 6-cycle contribu- 
ting to A(6'), contributing Kekule' structures occur in pairs differing in conjugation only 
around that cycle and each member of  the pair occurs with equal weight, so  that 

(YlA(6') I Y )  = (YIA(6) I Y )  (7.2) 

Similarly one finds 

(YIA(l0') IY )  = 2(YlA(10) 1") (7.3) 

Thus 

(luIHI'y, = M ( Y I Y )  + (YIC(39/64) A (6) + (9/64) A (10) -3J/2 
+ (3/64) A(14a) + (3/128) A(14b) + (7/64) A(14c) 

+ gs41 1 I Y )  (7.4) 

so that now it appears one is taking a matrix element over a Hamiltonian more like that of 
Simpson and Herndon, without A(6') and A(10') operators. Next we introduce conjugated-circuit 
counts 

(7.5) 

where #E(K) is the number of cycles of typeE= 6,10,14a,14b,14c that occur with alternating 
single and double bonds in Kekule' structure K. Evidently 

# ( E l  = ( Y ' 1 A ( E )  I Y )  (7.6) 

N~~ substracting off the Mal-term to generate a resonance energy (RE) we have 

RE = ( ~ l t t l -  (3/2) JM~}~Y)/(Y~Y) 

= -(3/2) J {(39/64) H(6) + (9/64) # ( l o )  + (3/64) #(14a) 

t (3/128) #(14b) + (7/64) h(14c) +g(S4)}/#(0) (7.7) 
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where #(O) is the number of KekulQ structures. 

The resultant expression ( 7 . 7 )  bears a closer resemblance to the usual conjugated-circuits 
expression than does our Hamiltonian of section 5 to the usual (ref. 4)  Simpson-Herndon 
Hamiltonian. Still, the different 14-cycle embeddings have different coefficients. The ratio 
of the coefficient of #( lo )  to that of #(6) takes a value 3/13 ~ 0 . 2 3  that is somewhat smaller 
than the empirically determined value (refs. 7,24)  of 0 . 2 8 .  In fact the agreement for this 
ratio is rather close, since the present values are chosen to reproduce the results of a 
Pauling-Wheland or bond-orbital resonance-theoretic calculation, while the empirical ones 
were extracted from the MC-based values of Dewar and de Llano (ref. 5 ) .  

DISCUSSION 

A point crucial in achieving size-consistincy here is that all the unlinked terms with dis- 
joint cycles have cancelled. For instance, the operator sum A(6,6) for a large (graphitic) 
system admitting M n-bonds should generally involve 'L M2 pairs of disjoint 6-cycles and so 
give rise to expectation values scaling 'L M2,  although size-extensive energies scale 'L M. Also 
for a system with noninteracting subsystems, this operator sum A(6,6) would generally give a 
nonadditive expectation value, unlike the energy. Thus such a cancellation of unlinked terms 
in H should be anticipated, for a "proper" theoretical development. Indeed for a so-called 
"multiplicative" quantity such as the "properness" of the present type of expansion (and 
consequent results) is argued elsewhere (ref. 2 5 ) .  Cur results of sections 6 and 7 evidently 
achieve the desired consistency. 

Therehave been several other researchers who have addressed the problem of the derivation of 
the conjugated-circuits model within a quantum chemical framework. Gomes (ref. 26) starts 
from the VB model of Pauling and Wheland restricted to the spaceofKekuld structures, much as 
we have in section 2. Then he proposes to discard all superposition diagrams in; and 5 with 
more than one big island. This does not give size-extensive corrections. But evidently Gomes 
also intends to discard all terms in 5 with any (even one) big island. Thence he proceeds to 
much the same functional form as suggested by Randid (ref. 7 ) ,  and then he parameterizes this 
form against resonance energies for a free-electron model. Another researcher Grhdler (ref. 
27) starts from a bond-orbital approach apparently akin to that of Zivkovii (ref. 22) and 
finds that computations lead to resonance energies comparing well with the logarithm of the 
count of Kekuld structures and with the average number of conjugated 6-circuits per KekulC 
structure. 

There are advantages in our present approach. It is more nearly analytical and is developed 
in such a way as to reproduce energies of the antecedent model up through a given overlap or- 
der. The approach of applying the inverse square-root overlap matrix is a standard numerical 
procedure in quantum chemistry, but its application in the present type of context to develop 
model Hamiltonians seems to have been less utilized. Clearly it should also be of use in con- 
nection with spaces other than of Kekule' structures. For instance, the whole space of covalent 
valence-bond structures might be so treated to obtain an orthogonalized Pauling-Wheland model 
which then via quasi-degenerate perturbation theory might be block-diagonalized on the sub- 
space of Kekule' structures. Evidently then a refined Simpson-Herndon model should be obtained 
simulating the full covalent-space valence-bond model. We surmise that the leading terms 
should involve the same operators we have already found in section 6, but with different val- 
ues for their coefficients. As noted in section 7 additional features (e.g., terms) have al- 
ready been found notoccurring in the earlier work of Simpson, Herndon and Randid. Any phys- 
ical consequences of these differences remain yet to be clarified. A point of note is that 
because of phases (i.e., signs) on matrix elements for the case of nonalternants it is not s o  
clear how derivations would proceed or whether they would so readily lead to anything like 
the currently used conjugated-circuits models. 

In conclusion, a systematic size-consistent derivational procedure for Simpson-Herndon 
Hamiltonians and conjugated-circuit models has been illustrated. In addition to some novel 
terms arising, extensions to other circumstances, seen possible. Aid in these derivations is 
found in OUT development of the fundamental Kekulg- space algebra, which should also have 
many other applications, as in solving models defined on the space of Kekule' structures. 
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