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ABSTRACT - Rearrangement sequences of electron-transfer reactions of small- 
ring compounds such as methylenecyclopropanes, methylenespiropentanes, spi- 
ropentanes and bicyclo[2.2.0]hexanes are  characterist ic of photogenerated 
c a t i o n  radicals .  Unlike t h e  the rma l  unimolecular  r e a r r a n g e m e n t s  of t h e  
corresponding neutral molecules, key intermediates such as trimethyleneme- 
thane ,  a l lyl ical ly  s t ab i l i zed  1,4-, cyclopropylbiscarbinyl ,  and cyclohexa-  
1,4-diyl cation radical intermediates were chemically captured. The polari- 
t y  of t h e  r e a c t i o n  so lven t ,  e l ec t ron -dona t ing  n a t u r e  of t h e  s u b s t r a t e s  and 
t h e  d e g r e e  of donor a c c e p t o r  i n t e rac t ion  w e r e  found t o  be  impor t an t  in 
these cation radical rearrangements. For instance, solvent polarity changed 
the rearrangement pathway of the cation radical spiropentane-methylenecyc- 
l obu tane  r ea r r angemen t .  Signif icant  subs t i t uen t  e f f e c t s  on e l ec t ron - t r an -  
s f e r  pho to reac t ions  of 1,4-diarylbicyclo[2.2.0]hexanes and var ious 2,5- 
diaryl-1,5-hexadienes provided an unprecedented Cope rearrangement which 
involves the bicyclo[2.2.0]hexane system. 

INTRODUCTION 

Because ene rgy  ba r r i e r s  of i n t e rna l  r o t a t i o n  and c losu re  of short- l ived biradicals  a r e  low, 
iden t i f i ca t ion  of t r u e  biradical  i n t e r m e d i a t e s  in t h e r m a l  unimolecular  r e a r r a n g e m e n t s  of 
neu t r a l  mo lecu le s  is  o f t e n  diff icul t .  In f a c t ,  t h e r e  a r e  many the rma l  unimolecular  r e a r -  
rangements known as hypothetical biradical pathways in which biradical intermediates elud- 
ed direct chemical capture (ref. 1). The degenerate methylenecyclopropane and methylenespi- 
ropentane-biscyclopropylidene rearrangements via trimethylenemethane biradicals, the dege- 
nerate methylenecyclobutane and spiropentane-methylenecyclobutane rearrangements via allyl- 
ical ly  s t ab i l i zed  1,4- and cyclopropylbiscarbinyl  biradicals ,  and t h e  Cope  r e a r r a n g e m e n t  
via cyclohexa-1,4-diyl are  among the famous and intriguing cases in point. W e  have investi- 
gated electron-transfer photoreactions of these systems from the viewpoint of cation radi- 
c a l  chemis t ry .  One  unique f e a t u r e  of c a t i o n  r ad ica l  c h e m i s t r y  is  t h a t  key c a t i o n  r ad ica l  
i n t e r m e d i a t e s  fo rmed  from pho togene ra t ed  ion r ad ica l  pa i r s  c a n  be  d i r e c t l y  c a p t u r e d  by 
convent ional  r e a g e n t s  such a s  molecular  oxygen. The c red ib i l i t y  of individual i n t e rmed i -  
a tes  in these cation radical rearrangements was then evaluated by combination of such chem- 
ical capture with stereochemical analyses of the products and the rearrangement pathways. 
In the case of the cation radical degenerate methylenecyclopropane rearrangement, the CIDNP 
technique provided s t rong  ev idence  for  t h e  s t e reochemica l  i den t i f i ca t ion  of an  in t e rmed i -  
a t e .  W e  a l so  inves t iga t ed  t h e s e  r e a r r a n g e m e n t s  in t e r m s  of solvent  and subs t i t uen t  e f -  
fects, which a r e  impor t an t  not only for  t h e  in i t i a l  e l ec t ron - t r ans fe r  process  but a lso fo r  
s t ab i l i za t ion  of t h e  i n t e r m e d i a t e  ion r ad ica l  species .  By changing solvent  po la r i ty ,  di-  
vergent rearrangement pathways were found in the cation radical spiropentane-methylenecyc- 
lobutane r e a r r a n g e m e n t .  Subs t i t uen t  e f f e c t s  on t h e  r ing c l e a v a g e  of 1 ,4-diarylbicyclo-  
[2.2.0]hexanes uncovered an unprecedented Cope rearrangement which involves the bicyclo- 
[2.2.0]hexane system. Plausible  mechan i sms  of t h e s e  c a t i o n  r ad ica l  r e a r r a n g e m e n t s  a r e  
discussed, focussing on the nature and the role of cation radical intermediates. 

1. TRIMETHYLENEMETHANE CATION RADICAL INTERMEDIATES 
GENERATED FROM METHYLENECYCLOPROPANE A N D  
METHYLENESPIROPENTANE CATION RADICALS 

(A) Electron-transfer photoreactions of 2,2-diaryl-l-methylenecyclopropanes 
The t h e r m a l  s t r u c t u r a l  i somer i za t ions  of me thy lenecyc lopropanes  w e r e  f i r s t  observed by 
Ullman in t h e  t h e r m a l  r e a c t i o n s  of Feis t ' s  e s t e r s  ( r e f .  2). Since then ,  many examples  of 
the methylenecyclopropane rearrangement have been found. Although many stereochemical and 
kinetic experiments have been carried out to demonstrate a postulated trimethylenemethane 
biradical  i n t e r m e d i a t e ,  r e c e n t  e l egan t  s tud ie s  of Berson e s t ab l i shed  t h e  subs t an t i a l i t y  of 
both s inglet  and t r i p l e t  t r i m e t h y l e n e m e t h a n e  b i r ad ica l s  ( r e f .  3 ) .  W e  w e r e  i n t e r e s t e d  in  t h e  
s t r u c t u r e  and r e a c t i v i t y  of t h e  c a t i o n  r ad ica l  va r i an t  and inves t iga t ed  e l e c t r o n - t r a n s f e r  
photoreactions of 2,2-diaryl-l-methylenecyclopropanes (1) which thermally undergo the dege- 
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n e r a t e  methylenecyclopropane r e a r r a n g e r e n t  ( r e f .  4),but do  not undergo it pho tochemica  ly 
( r e f .  5). Under t h e  p-chloranil  (CA,  EITZ=+O.Ol V vs. SCE)-  or  anthraquinone (AQ, EiTi=- 
0.94 V)-sensitized conditions in acetonitrile, d2-la-d under o the degenerate methylenecyc- 
lopropane rearrangement. The phenanthraquinone (PQ, Ei1$-0.66 V)-sensitized reactions of  
d 2 - l c  (E7T2=+1.65 V )  and d 2 - l d  (E?T2=+1.35 V )  involved t e d e g e n e r a t e  r ea r r angemen t ,  but 
less  e l ec t ron -dona t ing  d 2 - l a  (EY,T2=+1.88 V )  and d 2 - l b  (E7T2=+1.83 V )  did not  undergo the 
degenerate rearrangement, indicating that  the degenerate rearrangement occurs via an elec- 
tron-transfer process. The intermediacy of a trimethylenemethane cation radical was sub- 
s t a n t i a t e d  by oxygenat ion r eac t ions  t o  give dioxolanes ( r e f .  6) .  Under t h e  sens i t i zed  con-  
ditions which involve the degenerate rearrangement, la-d were oxygenated. The formation of 
CA-adducts  in a c e t o n i t r i l e  under  Ar a l so  suppor t s  t h e  in t e rmed iacy  of 2" ( r e f .  7). Simi-  
lar oxygenations of 1 took place when the electron donor-acceptor complexes of 1 and te t ra-  
cyanoe thy lene  w e r e  i r r a d i a t e d  in polar  so lven t s  under  O2 ( r e f .  8). One intr iguing f e a t u r e  
of t h i s  e l ec t ron - t r ans fe r  r e a c t i o n  is  t h a t  1 did not  r e a r r a n g e  t o  t h e  the rmodynamica l ly  
more stable 3. The latter remained unchanged under various sensitized conditions, indicat- 
ing that cation radicals 1" and 3" are  different species in terms of their reactivities. 

Scheme I 

# 

Direct evidence for the structures of 2' and 3" was obtained from CIDNP experiments of I d  
and 3d (ref. 7). The observed polarization patterns from the photoreaction of Id  and CA in 
ace tone -d6  sugges t ed  t h a t  2" is  a b i sec t ed  spec ie s  in which t h e  spin densi ty  pr imari ly  
local ized in t h e  ally1 moiety,  while t h e  c h a r g e  is pr imari ly  local ized in t h e  d i a ry lme thy l -  
ene group. On the other hand, similar photoreaction of 3d suggested that  3.' is in essence 
a d i a ry lme thy lene  c a t i o n  radical .  Thus,  t h e  d i f f e ren t  pho to reac t iv i t i e s  of 1 and 3 can  be  
ascr ibed t o  t h e i r  d i f f e r e n t  s t ruc tu res .  In c a t i o n  r ad ica l  3'+, t h e  spin and t h e  c h a r g e  
which are localized only in the m y s t e m  do not interact with the cyclopropane Walsh orbit- 
a ls  and the reby  3" r e s i s t s  t h e  ring cleavage.  The b i sec t ed  t r i m e t h y l e n e m e t h a n e  c a t i o n  
radical  2" c a n  be  g e n e r a t e d  from 1" in a l eas t  motion pathway by r o t a t i o n  of t h e  less  
bulky me thy lene  group. l'*+ is ' then r eo rgan ized  again by t h e  ro t a t ion  of t h e  me thy lene  
group and not of t h e  bulkier  diphenylmethylene group. In  support  of t h e  success ive  r o t a -  
t ions of t h e  less bulky group in t h e  r eo rgan iza t ion  of methylenecyclopropane is t h e  i r r e -  
vers ible  r e a r r a n g e m e n t  of 4 t o  5. The  9, lO-dicyanoanthracene (DCA)-sens i t i zed  i r r ad ia t ion  
of 4 in chloroform under Ar gave  5, while s imilar  i r r ad ia t ion  of 5 did not give 4. How- 
ever, evidence that the DCA-sensitized irradiations of 4 and 5 in oxygen-saturated acetoni- 
t r i l e  gave  dioxolanes ind ica t e s  t h a t  6" is  fo rmed  from both 4" and 5" by r o t a t i o n s  of 
t h e  less bulky d ime thy lme thy lene  and me thy lene  groups,  respect ively.  I f  t h e  success ive  
ro t a t ion  of t h e  less bulky me thy lene  group of 6" occur s  much f a s t e r  t han  t h a t  of t h e  di- 
methylmethylene group, 6' can predominantly give 5''. 

4'+ 

The difference in reactivity between the two types of methylenecyclopropane cation radicals 



Electron-transfer photoreactions of small-ring compounds 225 

was theo re t i ca l ly  r a t iona l i zed  by r e c e n t  t h e o r e t i c a l  ca l cu la t ions  of Borden. The r ing 
cleavage of the a-type cation radical corresponding to 1" would occur without energy bar- 
r i e r ,  while t h e  ring c l eavage  of t h e  n-type c a t i o n  r ad ica l  corresponding t o  3" r equ i r e s  
higher activation energy (ref. 9). 

(6 )  Electron-transfer photoreactions of 2,2-diaryl-I-methylenespiropentanes 

Because me thy lenesp i ropen tane  (7) and biscyclopropyl idene ( 8 )  possess t h e  me thy lenecyc lo -  
propane moiety, the ring cleavage a t  the C2-C3 bond of 7 and C C2  bond of 8 can generate 
biradical  (9), through which t h e  d e g e n e r a t e  r e a r r a n g e m e n t  of #-and t h e  r eve r s ib l e  methyl-  
enespiropentane-biscyclopropylidene rearrangement between 7 and 8 are  expected to  occur. 

Scheme Ill 

7 9 8 

However,  upon pyrolysis a t  320°C 7 r e a r r a n g e s  t o  1,2- and 1,3-bismethylenecyclobutanes, 
r e spec t ive ly ,  through t h e  t e t r a m e t h y l e n e e t h a n e  and allylic-vinylic biradical  i n t e rmed ia t e s ,  
while a t  210°C 8 irreversiblly rearranges to  7. The reason why 7 did not rearrange to  8 is 
ascr ibed t o  ser ious instabi l i ty  of 8 under t h e  pyrolysis condi t ions ( r e f .  10). In o rde r  t o  
sea rch  for  t h e  r eve r s ib l e  methylenespiropentane-biscyclopropylidene r e a r r a n g e m e n t ,  e l e c -  
tron-transfer photoreactions of 2,2-diaryl-l-methylenespiropentanes (10) were investigated. 

Scheme IV $r 

10+Ar 12'+ 11'+ 

11 t I 1 1  

1 l'.+ 1 1  

Table 1. Photostationary ratios (11/10) observed in the DCA- and 
TRCA-sensitized photoreactions of 10 in acetonitrile a t  10"Ca 

~~ ~ 

10a lob 1OC 1 Od 1oe 

DcA 6.9 3.4 2 .3  1.9 1 .5  
TRCA 4.0 3.2 1.8 1.7 1.4 

aReduction potentials of DCA and TRCA are -0.98 and -0.70 V vs. 
SCE, respectively. Oxidation potentials of 10a-e are  1.71, 1.55, 
1.32, 1.31 and 1.23 V vs. SCE, respectively and those of lla, 
l l c  and l l e  are  1.71, 1.32 and 1.23 V vs. SCE, respectively. 

The 9,lO-dicyanoanthracene (DCA)-sensitized electron-transfer reaction of 10a in acetonit- 
rile a t  10°C gave a 6.9:l photostationary mixture of l l a  and 10a Similar photoreaction of 
l l a  r e su l t ed  in the  fo rma t ion  of a 6.5:l pho tos t a t iona ry  mixture .  The 2,9,10-tr icyanoanth-  
racene (TRCA)-sensitized reactions of 10a and l l a  also gave nearly the same photostationary 
mixture of 10a and l l a  As expected from the thermal rearrangement of 8 to 7, l l a  rear- 
ranged to 10a upon heating a t  80°C. The explanation for the predominant formation of l l a  
is that  the methylene group of 12a'+ rotates faster than the cyclopropyl group when 10a and 
l l a  a r e  reorganized.  This explanat ion,  however ,  is  not su f f i c i en t  t o  accoun t  for  subs t i t u -  
ent effects  on the photostationary ratios shown in Table 1. The yield of 10 increases with 
an inc rease  in e l ec t ron -dona t ing  n a t u r e  of diary1 subs t i t uen t s ,  though t h e  fo rma t ion  of 1 1  
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is  s t i l l  f avored  even  for  dianisyl de r iva t ive  10d which has  t h e  lowest  oxidat ion po ten t i a l .  
Because  t h e  DCA-fluorescence quenching r a t e  c o n s t a n t s  and t h e  oxidat ion po ten t i a l s  of 10 
and 1 1  a r e  nea r ly  t h e  same ,  t h e  ini t ia l  e l ec t ron - t r ans fe r  process  t o  form 10" o r  11'' is 
assumed t o  be  un impor t an t  in de t e rmin ing  t h e  pho tos t a t iona ry  rat io .  W e  assume t h a t  t h e  
n a t u r e  of c a t i o n  r ad ica l  1 1  would be r a t h e r  impor t an t .  Biscyclopropyl idene has  a low 
ionization potential (IP 8.93 eV)  (ref. l l ) ,  which is much lower than that of methylenecyc- 
lopropane (9.60 eV) ( r e f .  12) but  comparab le  wi th  t h a t  of phenylcycl2propane (8.71 eV) 
( r e f .  1 3 ) .  T h u s ,  t w o  t y p e s  of c a t i o n  r a d i c a l s ,  i .e. ,  t h e  o - t y p e  11' a n d  T - t y p e  ll'.' 
would be generated from 11. Because the electron-donating nature of the diary1 substitu- 
ents is of primary importance for the generation of ll.', a more electron-donating substi- 
t u e n t  such a s  t h e  anisyl group will i nc rease  t h e  con t r ibu t ion  of 11.' which, l ike l*+, will 
readi ly  undergo t h e  ring cleavage.  By c o n t r a s t ,  a s  t h e  oxidat ion po ten t i a l  i nc reases ,  t h e  
con t r ibu t ions  of 11.' d e c r e a s e s  and t h a t  of t h e  more  s t a b l e  ll'.' r e l a t ive ly  increases .  The 
predominant formation of 1 1  is consistent with the predoninant contribution of 1 l'.' which, 
like 3", will be reluctant to undergo the ring cleavage. 

2. DIVERGENT REARRANGEMENT PATHWAYS IN THE CATION RADICAL 
SPIROPENTANE-METHYLENECYCLOBUTANE REARRANGEMENT 

Doering had proposed that the thermal unimolecular rearrangement of spiropentane to methyl- 
enecyc lobu tane  occur s  via  t w o  successive bond cleavages.  F i r s t ,  t h e  C l - C 2  bond c l eavage  
gives t h e  cyclopropyl-1,l-biscarbinyl biradical  which is  successively c o n v e r t e d  t o  t h e  
al lyl ical ly  s t ab i l i zed  1,4-biradical.  The l a t t e r  biradical  is  known as  an i n t e r m e d i a t e  in 
the thermal degenerate methylenecyclobutane rearrangement (ref. 14). However, the possibi- 
lity of a symmetry-allowed concerted rearrangement was proposed in the rearrangements of 1- 
carbomethoxy-2,4-dimethylspiropentanes (ref. 15). W e  investigated electron-transfer photo- 
reactions of 1,l-diarylspiropentanes and found that two independent pathways compete in the 
c a t i o n  r ad ica l  spiropentane-methylenecyclobutane r e a r r a n g e m e n t  ( r e f .  16),  i.e., t h e  r e a r r -  
angemen t  t o  1-(diary1methylene)cyclobutane occur s  predominant ly  in a c o n c e r t e d  manner ,  
whereas the rearrangement to  the thermodynamically less stable 2,2-diaryl-l-methylenecyclo- 
bu tane  occur s  in a s t epwise  manner ,  involving cyclopropyl-1,l-biscarbinyl and al lyl ic  1,4- 
cation radical intermediates (ref. 17). 

Scheme V 

14 13 

(A: sensitizer) 

16 17.+ 18+ 19 

(y% 
20 

The phosphorescence of anthraquinone (AQ, Ered=-0.94 V vs SCE) was efficiently quenched by 
13a (EoX2 1 7 2  V), 13b (Eox -1.67 V), 13c (&f2=1.42 V) and 13d (E772=1.17 V) in acetonit- 
rile. upo;'irradiation of !&-with 13d in ace onitrile, 14d and 15d were isolated in 33 and 
26% yields,  r e spec t ive ly ,  a f t e r  79% conversion of 13d. The fo rma t ion  of 14d and 15d was 
a l so  observed in less  polar  solvents  such a s  d i ch lo romethane ,  chlo oform and benzene,  
though t h e  i Ids dec reased .  When 2,4,7-trinitrofluorenone (TNF,  ELed- 0.42 V)  o r  p-chlor- 
anil (CA, E1yez+O.Ol V) was used as an electron-acceptor sensitizer, {&and 15d were simi- 
larly formed!2However, under the CA-sensitized conditions large amounts of 16d were isolat- 
ed  as a secondary CA-adduct in acetonitrile and dichloromethane. Experimental results for 
13d ob ta ined  under var ious sens i t i zed  condi t ions a r e  shown in Table  2 t o g e t h e r  with those  
f o r  t h e  less  e l ec t ron -dona t ing  13a, 13b and 13c. An intr iguing f e a t u r e  of e l e c t r o n - t r a n s f e r  
pho to reac t ions  of 13 is  t h a t  t h e  14/15 r a t i o  depends s ignif icant ly  on solvent  polar i ty  and 
the  sens i t i ze r .  The  14/15 r a t i o  inc reases  with an  inc rease  in solvent  polar i ty .  The  CA- 
sensitized photoreactions in acetonitrile gave exclusively the thermodynamically more sta- 
ble 14, while the AQ- and TNF-sensitized photoreactions gave 14 together with comparable 
amoun t s  of 15. Similar  solvent  e f f e c t s  w e r e  a l so  observed in t h e  9, lO-dicyanoanthracene 
(DCA)-sensitized photoreactions of 13 as shown in Table 2. 
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sens.  

Table 2. Yields of 14 and 15 in the AQ-, TNF-, CA- and DCA-sensitized photoreactions 

y i e l d s  and conversions (%) 
a c e t o n i t r i l e  dichloranethane benzene 

13a 13b 13c 13d 13a 13b 13c 13d 13a 1- 13d 

AQ 14 
15 

conv. 

?NF 14 
15 

conv. 

12 13 19 33 0 b 13 17 0 0 0 1 2  
19 29 29 26 9 18 31 41 0 2 4 4 4  
45 59 61 79 16 28 59 68 0 4 13 86 

8 14 18 31 0 7 9 1 3  0 0 6 8  
13 12 20 20 12 14 23 34 4 10 23 32 
23 30 51 61 21 29 41 67 8 17 41 51 

CA 
15 
16' 

conv. 

DCA 14 
15 

conv. 

Scheme VI 

~ ~~ 

1 4 7 1 8 8 3  4 6 1 8  6 0 5 0 0  
4 4 b 2 19 13 10 b 22 31 32 40 

34 49 72 45 63 47 44 12 b 5 0 0  
100 100 100 100 96 100 99 94 86 100 100 97 

21 40 33 45 19 23 25 4 b 6 1 0  0 
9 14 4 8 16 34 28 21 5 12 52 39 

60 77 56 89 45 68 60 72 13 19 95 54 

14 

SSIP or FI 1 4 +  

Because 14  and 1 5  f a i l ed  t o  in t e rconve r t  under  t h e s e  sens i t i zed  condi t ions,  t h e  observed 
solvent  e f f e c t s  on t h e  product  r a t i o  14/15 c a n  not be explained by a s ingle  mechanism 
through a common intermediate such as 17'+ or 1 8 + ,  but rather suggest that  two independent 
processes a re  operative for the formation of 14 and 15. Assuming that  the separation of 
pho togene ra t ed  ion r ad ica l  pa i r s  is  f a c i l i t a t e d  by an  inc rease  in solvent  polar i ty ,  t h e  
f a c t  t h a t  t h e  14/15 r a t i o  inc reases  wi th  an i n c r e a s e  in solvent  po la r i ty  would sugges t  
t h a t  14 and 1 5  a r e  g e n e r a t e d  b e f o r e  and a f t e r  t h e  sepa ra t ion  of t h e  ion r ad ica l  pairs ,  
respect ively.  On t h e  basis  of t h i s  assumption,  a plausible mechanism is shown in Scheme  
VI. Solvents  of higher  d i e l e c t r i c  c o n s t a n t  f a c i l i t a t e  t h e  sepa ra t ion  of t h e  c o n t a c t  ion 
r ad ica l  pairs  [13'+A.-] t o  solvent  s e p a r a t e d  ion r ad ica l  pairs  (SSIP) o r  f r e e  ion r ad ica l s  
(FI), in which the C1-C2 bond of 13 is weakened, but not cleaved completely. The direct  C4 
t o  C2 bond migration then occurs so as to  give 14'  which is thermodynamically more stable 
than  15'+. Because ion r ad ica l  pa i r s  [13'+CA'-] a r e  more  polar  t han  [13'+TNF*-] and 
[13'+AQ'-] in which t h e  spin and c h a r g e  loca l i ze  ove r  two  or t h r e e  benzene  rings,  t h e  
separation of [13+A.-] would be most facilitated for the combination of 1 3 +  with CA'- in 
which the spin and charge localize only in one benzene ring. The exclusive formation of 14 
in acetonitrile under the CA-sensitized conditions can be accounted for by this mechanism. 
By c o n t r a s t ,  [13'+A.-] subsequent ly  co l l apse  t o  [17.+Am-] and [18'+A'-]  within ion r ad ica l  
pairs ,  keeping a t i g h t  ion pair  i n t e r a c t i o n  which is i m p o r t a n t  fo r  s t ab i l i za t ion  of ion 
r ad ica l  pa i r s  in t h e  less polar  solvents .  Because  t h e  bulkier  d i a ry lme thy lene  group of 
18" is  or thogonal  t o  t h e  C 2 - C 3  bond, t h e  fo rma t ion  of t h e  thermodynamical ly  less s t a b l e  
15.' r equ i r e s  only t h e  r o t a t i o n  of t h e  C4 methy lene  group, but  not of t h e  d i a ry lme thy lene  
group. Evidence that oxygenation products such a s  19 and 20 a re  formed only under condi- 
t ions where  15 is  fo rmed  in m o d e r a t e  yields support  18" a s  t h e  d i r e c t  p recu r so r  of 15". 
This sequential process resembles the cation radical degenerate methylenecyclopropane rear- 
rangement of d2-1. The yield of 15 thus incereases as solvent polarity decreases. I f  these 
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mechanisms are  operative, the rearrangement to  1-(diarylmethy1ene)cyclobutanes would occur 
with high stereoselectivity, whereas stereorandomization would be expected for the formati- 
on of 2,2-diaryl-l-methylenecyclobutanes. In  o rde r  t o  d e t e r m i n e  t h e  s t e r e o c h e m i s t r y  of 
r ea r r angemen t s ,  e l ec t ron - t r ans fe r  pho to reac t ions  of trans-, anti,cis- and syn,cis-1, l -diphe-  
nyl-4,5-dimethylspiropentanes (21) were investigated. Three isomers were prepared by the 
p rocedure  r e p o r t e d  ( r e f .  18). The r eac t ion  of t h e  2,2-diphenylcyclopropyl c a r b e n e  wi th  
t rans-2-butene gave  t rans-21,  while t h e  r e a c t i o n  wi th  cis-2-butene gave  a 8 : l  mix tu re  of 
an t i , c i s -21  and syn,cis-21. Anti ,c is-21 and syn,cis-21 were  s e p a r a t e d  and t h e  minor syn,-  
cis-21 was independently prepared from cis-2,3-dimethyl-l-diphenylmethylenecyclopropane. 

trans-21*+ trans-22+ anti,cis-21*+ syn,cis-21*+ 

Ar I Ar I 
. pr 1, &r +;; *r 

'2"- - - - - 
s Ar r 

 trans-^+ trans-28+ trans- and cis- cis-28+ c i s - 2 ~ ~  
23 

(Ar: C6H5) 
c14 

26 
c1 4 

4 
5 

25 
ArAAr 

24 

Table 3. CA- and DCA-sensitized photoreactions of trans-, anti,cis- and syn,cis-21 

i r r a d .  y i e l d s  (%) 
time 22 23 

21 sens.  solvent  (min)a t r a n s  c i s  t r a n s  c i s  24 25 26 conv. 

t r a n s  DCA CH3CN 180 37 0 2 b 27 - -  - -  86 
CH2c12 100 43 0 8 3 20 - -  - -  82 
CgHg 100 19 0 5 3 15 - -  - -  55 

CA CH3CN 30 30 0 0 0 17 10 - -  100 
'gH6 30 0 0 8 2 7 1 7 - -  100 

a n t i , c i s  DCA CH3CN 260 0 4 0 0 62 - -  - -  94 
C H p 2  100 0 b b b 98 - -  - -  100 

s y n , c i s  CA CH3CN 15 0 66 0 0 0 - -  - -  100 

CgHg 200 0 0 b b 77 - -  - -  77 

'gH6 15 0 0 1 1  4 o - -  8 90 

aphotolyzed by using a 2kW xenon lamp; bless than 1% 

As shown in Table 3, trans-22 and cis-22 were stereospecifically formed from trans-21 and 
syn,cis-21, r e spec t ive ly ,  a s  a major  product  in ace ton i t r i l e ,  while t h e  fo rma t ion  of 2 3  
from t r ans -21  and syn,cis-21 is  nonstereospecif ic .  Interest ingly,  ant i ,c is-21 gave  ne i the r  
t rans-22 nor cis-22, bu t  exclusively gave  24, which was  also fo rmed  from trans-21. The  
stereospecific formations of trans-22 and cis-22 can be well accounted for by the concerted 
[o2a+a2s] pathway with r e t e n t i o n  a t  C 2  and r e t e n t i o n  a t  C4  ( r e f .  1 5 )  in trans-21" and 
syn,cis-21'+.  The  r e t e n t i o n  pathway a t  C 2  and C 5  i n  t rans-21*+ can  also a f f o r d  t rans-22,  
but t h i s  process  does  not  o p e r a t e  because  of s ign i f i can t  s t e r i c  repulsion. In f a c t ,  ant i , -  
cis-21" does  not  give cis-22, but  i n s t ead  t h e  success ive  C C3 and C4-C5 bond c l eavages  
(ref. 19) led to  24. The formation of a mixture of t rans-2j-and cis-23 which is favored in 
less  polar  so lven t s  c a n  be  explained by a sequen t i a l  mechanism through 27" and 28". 
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These  r e su l t s  provide an example  of c h a r a c t e r i s t i c  r e a r r a n g e m e n t s  of c a t i o n  r ad ica l s  in 
which the rearrangement sequence is changed by the degree of the donor-acceptor interaction 
in the photogenerated ion radical pairs. 

3 .  CHAIR AND BOAT CYCLOHEXA-1,4-DIYL CATION RADICAL 
INTERMEDIATES IN THE CATION RADICAL COPE REARRANGEMENT 

Thermochemical-kinetic arguments have denied a mechanistic connection between the 1,5-hexa- 
diene and bicyclo[2.2.0]hexane sys t ems  in t h e  Cope  r e a r r a n g e m e n t  (ref. 20). The  ene rgy  of 
t h e  cyclohexa-1,4-diyl g e n e r a t e d  f rom bicyclo[2.2.0]hexane (ref .  21) is about  5 kcal /mol  
higher than that of the six-membered cyclic transition state.  Thus, the cyclohexa-1,4-diyl 
does not serve a s  an intermediate in the thermal unimolecular Cope rearrangement, though 
t h e  process  is  s t i l l  t heo re t i ca l ly  a rgued  ( r e f .  22). In  c o n t r a s t ,  we previously demon- 
strated the chair cyclohexa-l,4-diyl cation radical intermediate in the cation radical Cope 
r e a r r a n g e m e n t  of 3,6-diaryl-2,6-octadienes ( r e f .  23). W e  f u r t h e r  i nves t iga t ed  t h e  c a t i o n  
radical Cope rearrangements in terms of substituent effects  and found that  the rearrange- 
ments of the tolyl derivatives a re  accompanied by the formation of the bicyclo[2.2.0]hexa- 
nes. W e  synthesized stereochemically pure 3,6-bis(4-methylphenyl)-2,6-octadienes (EE-, ZZ- 
and EZ-29), 2,5-bis(4-methylphenyl)-3,4-dimethyl-1,5-hexadienes (dl-  and meso-30) and 
trans-l,4-bis(4-methylphenyl)-2,3-dimethylbicyclo[2.2.0]hexane (tBH-31).  Upon i r r ad ia t ion  
of DCA with ZZ-29 under Ar in dichloromethane, a photostationary mixture of ZZ-29 (golo), dl- 
30 (40%) and tBH-31 (50%) was formed. Separate irradiation of DCA with EE-29 or dl-30 gave 
near ly  t h e  s a m e  pho tos t a t iona ry  mixture .  T h e  pho to reac t ion  of tBH-31 slowly a f fo rded  a 
similar mixture. On the other hand, EZ-29 gave a photostationary mixture of EZ-29 (65O/0), 
meso-30 (19%) and cBH-31 (16%). Meso-30 and cBH-31 similarly gave nearly the same photo- 
s t a t i o n a r y  mix tu re  in exce l l en t  yields.  Molecular  oxygen t rapping of t h e  i n t e r m e d i a t e s  
gave  t h e  s a m e  s t e r e o c h e m i c a l  r e s u l t s  a s  t hose  r e p o r t e d  previously ( r e f .  23). One c h a r a c -  
t e r i s t i c  f e a t u r e  in t h e s e  e l ec t ron - t r ans fe r  pho to reac t ions  is  t h a t  t h e  bicyclo[2.2.0]hexane 
system is in equilibrium with the Cope system, which is unprecedented in the Cope rearran- 
gement. By combining these results the mechanism shown in Scheme VIII can be proposed to 
account for the stereospecific rearrangements of EE-29, ZZ-29, dl-30 and tBH-31. 

Scheme Vlll 
Ar 

Ar 
~ ~ - 2 9 '  

eeC-32" 

- "&fr % ' -  

tB-33' 
11 

Ar 

sac-32" 

The ini t ia l  cyc l i za t ions  of ZZ-29" and EE-29" a f f o r d ,  r e spec t ive ly ,  aaC-32" and e e C -  
32", while  d l -30 '  could cyc l i ze  t o  e i the r .  However ,  eeC-32" is probablly less  s t a b l e  
than aaC-32" because  of s t e r i c  repulsion be tween  t h e  me thy l  and t h e  tolyl  group. Thus,  
dl-30" predominant ly  cyc l i zes  t o  aaC-32", and eeC-32" i r revers ibl ly  r e a r r a n g e s  t o  a a C -  
32" through tB-33'' o r  undergoes t h e  ring c l e a v a g e  t o  give dl-30.'. These  p rocesses  and 
the ring cleavage of aaC-32'' result in the reversible Cope between ZZ-29 and dl-30 and the 
irreversible Cope from EE-29 to  ZZ-29 and dl-30. On the other hand, because tB-33.' does 
not i nco rpora t e  f lagpole  hydrogens,  t h e  ene rgy  d i f f e r e n c e  be tween  aaC-32" and tB-33" 
would b e  much sma l l e r  t han  t h a t  be tween  cha i r  and boa t  cyclohexanes.  Thus,  tB-33.' c a n  
survive as a long-lived intermediate comparable to aac-32". I f  the r$te of the C C bond 
cleavage of tBH-31.' is comparable with that of reclosure of tB-33' t o  tBH-31''; h-33" 
is no longer a masked intermediate in the Cope rearrangement pathway. tBH-31.' enters and 
leaves a Cope rearrangement channel through tB-33.+. Similar arguments taking account of  
aeC-32" and cB-33" can rationalize the formation of a photostationary mixture of EZ-29, 
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meso-30 and cBH-31 a s  shown in Scheme IX. Our experiments verified the  intermediacy of not 
only t h e  c h a i r  ( r e f .  24) bu t  a l so  of t h e  boa t  cyclohexa-1,4-diyl c a t i o n  r ad ica l  i n t e rmed i -  
a t e s  in the  Cope rearrangement pathway. 

Scheme IX 
A r  

A r  
EZ-29' 

A r  t 

r 
a e C - ~ +  

A r  
meso-3O+ 

A r Y J A r  - 
cB-33' 

&*" +i$, A r  

cBH -3 1" 
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