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Abstract - Recent advances in direct and indirect methods of molecular 
simulation for studying fluid phase equilibria are reviewed. The 
emphasis is on phase equilibria for fluids of nonspherical molecules, 
including ionic fluids, aqueous mixtures, hydrocarbons and chain 
molecules. 

INTRODUCTION 

The use of Molecular Dynamics (MD) or Monte Carlo (MC) simulation methods to calculate 
the so-called "statistical" properties - free energy, chemical potential or entropy - is 
less straightforward than for the "mechanical" properties, such as internal energy or 
pressure. In essence, the difficulty is that conventional methods sample phase space 
where the Boltzmann factor exp(-U/kT) is large (here U is configurational energy), 
whereas for the statistical properties other regions of phase space make major 
contributions (ref. 1). Several ways around this problem exist, including special 
sampling techniques and integration over a range of thermodynamic states. For reviews 
see refs. 2 , 3 , 4 , 5 ,  and references therein. More recently, methods for simulating 
fluid phase equilibria directly have been developed, and are fast and convenient where 
they can be applied. 

Simulations of this sort find several applications: (a) for testing statistical 
mechanical theories, where identical models for the molecules (and any surfaces present) 
are used in both simulation and theory, so that the comparison tests only the statistical 
mechanical approximations in the theory; (b) comparisons with experiment, which give 
information about the suitability of the assumed intermolecular potential; (c) prediction 
of phase equilibria in cases where experimental measurements are difficult or impossible, 
e.g. because of extreme temperatures or pressures. The cost and reliability of such 
simulations are very strongly dependent on the complexity of the molecules involved, in 
contrast to laboratory experiments. For a simple fluid for which the spherical Lennard- 
Jones (LJ) potential is adequate, for example, it has recently been estimated (ref. 5) 
that a typical MC run ( 5 0 0  molecules, 5 million configurations) for a single state point 
costs about $ 4 . 5  (CPU time only) and takes 5 hours on a Decstation 5000. However, the 
costs rise rapidly with molecular complexity, as roughly n3 for small nonpolar molecules, 
where n is the number of potential sites in the molecule. Costs on a current 
supercomputer, such as the Cray YMP, would be substantially (about 20 times) higher, 
while costs for massively parallel machines currently lie between those for the 
workstations and supercomputers. 

The principal limitation of these simulation methods at present is the reliability of the 
intermolecular potentials used. Computers are still too slow for reliable ab initio 
potentials to be used for any but the simplest molecules, and as a result most workers 
use semiempirical potentials, developed by using a combination of knowledge from theory 
(quantum mechanics, electrostatics) and experimental data. An example of such 
semiempirical potentials is the OPLS (optimized potentials for liquid simulations) model 
developed by Jorgensen and coworkers (e.g ref. 6), in which the potential sites are 
taken to be the nuclei or CH, groups and the interactions between these sites are 
described by isotropic potentials that include IJ and Coulomb terms. More sophisticated 
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site-site models (ref. 7 ) ,  involving anisotropic site-site potentials and distributed 
multipoles, provide a more accurate description of the potential, at some additional cost 
in computing requirements. 

In the remainder of this paper a brief survey is given of some developments in this area 
over the last five years. Both direct and indirect (via calculation of the chemical 
potential) methods for calculating phase equilibria are considered, with an emphasis on 
applications to fluids of complex or nonspherical molecules, such as ionic fluids, 
aqueous solutions, and chain molecules. 

DIRECT METHOD:  GIBBS ENSEMBLE M O N T E  CARL0 

The Gibbs ensemble Monte Carlo (GEMC) method, first proposed by Panagiotopoulos in 1987 
(ref, 8 ) ,  involves setting up two coexisting phases that are in equilibrium with each 
other, but not in physical contact. The two phases (I and 11) are contained in two 
simulation boxes of volumes V, and V,, and containing N, and N,, molecules, respectively. 
The system of two boxes is at a uniform temperature T, and the usual periodic boundaries 
are used with each box to minimize surface effects. The simulation involves three kinds 
of trial moves (ref. 8) designed to achieve (a) internal equilibrium in each box through 
the usual Monte Carlo molecular moves, (b) equality of pressures between the two phases 
(mechanical equilibrium) through volume changes to the two phases, and (c) equality of 
chemical potential between phases (chemical equilibrium) through exchange of molecules 
between the two boxes. The derivation of the Gibbs method is given in detail by Smit et 
al. (ref. 9 ) ,  and the implementation of the method, programming considerations and 
applications have been recently reviewed (refs. 5,lO). The most important advantage 
of the method is speed of computation, since the method is direct, and the molecules do 
not have to diffuse across a physical interface in order for the system to reach 
equilibrium. The method is particularly useful for mixture phase equilibria, where the 
indirect methods become very tedious. Its principal limitation arises from the molecule 
transfer step. In common with several of the indirect methods (discussed briefly below), 
the probability of successful insertion of a molecule when placed at random into a dense 
fluid or solid falls off very rapidly above a certain density (densities equal to or 
greater than that of a dense liquid), so that the method in its unmodified form fails for 
very dense systems. This problem becomes more acute when the molecules are highly 
nonspherical, e.g. H-bonded systems or chain molecules. This difficulty can be largely 
overcome by various biased sampling methods for liquids, but so far the method has not 
been successfully applied to solids or liquid crystals. 

Some recent applications of the method to pure fluids and mixtures are summarized in 
Table 1. More complete listings are given elsewhere (refs. 5,lO). Many of the recent 
applications have been to vapor-liquid equilibria in fluids of more complex molecules, 
such as electrolytes, water and aqueous mixtures, chain molecules, and so on. Two 

TABLE 1. 
Applications of the Gibbs Ensemble Monte Carlo Method 

Pure Fluids Mixtures 

Lennard-Jones (LJ) fluid [8,11] 
Square Well (SW) fluid [13] 
Ionic fluidsa [U] 
Square well tangent diatomics [17] 
Polar LJ fluid [19,20,21] 
Gay-Berne fluid [24,25] 
Associating fluid, LJcSW sites [28] 
Water: TIP4P model [29,30,31] 

SPC model [30,33] 
Chloroform, methanol (OPLS model) [30] 
Hydrocarbons [26,27l 
Chain molecules [35,36] 

LJ mixtures: noble gases [12] 

Polydisperse mixtures [16] 
He/N2mixtures [18] 
He/H2 mixtures [22,23] 
Hydrocarbon mixtures [26,27l 
Associating fluid mixtures [28] 
Water/methanol mixtures [32] 
Water/NaCL mixtures [32] 
Water/methanol/NaCl mixtures [32] 
Surfactant solutions [34] 
Protein solutions [34] 

supercritical behavior [14] 

a Restricted primitive model of an ionic fluid, consisting of charged hard spheres of equal 
diameter and unit charge. 



Molecular simulation of fluid phase equilibria 937 

80 

70 

B 

0 

.I 
\ 
a 

60 

50 

examples of applications to pure fluids are shown in Figs. 1 and 2. The results in Fig. 
1 are for the restricted primitive model of a 1:l electrolyte (charged hard spheres of 
equal diameter and unit charge). In such simulations special care is needed in the ion 
transfer step, and in the treatment of the long range forces by the Ewald sum method 
(ref. 15). The estimated critical point of T,*-kT,/c-0.056 and pc*-pcu3-0,04 are slightly 
lower in temperature and density than an estimate by Valleau (ref. 3 7 ) ,  a difference 
which seems to be due to the use of different methods for correcting for long range 
forces in the two calculations. Several earlier estimates of the coexistence curve are 
also shown in Fig. 1; these include early simulation results (-; ref. 38), a lower 
limit of the gas density due to Gillan (-..-; ref. 39), and approximate theories due 
to Stell et al. (-.-. ; ref. 40) and Friedman and Larsen ( a .  ; ref. 41). The Gibbs 
ensemble results are believed to be more accurate than any of the earlier results. The 
critical constants for this ionic system are much smaller than those for non-ionic 
systems, a result of the very strong Coulomb forces. The Gibbs method has recently been 
applied to chain molecules (refs. 35,36), and some of these results are shown in Fig. 2 .  
Conventional (random) sampling methods fail for such molecules, and it is necessary to 
bias the sampling in a way that 'looks' for available space (see section below). 
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Fig. 2. Vapor-liquid coexistence w e  for a fluid of 
chains of 8 U monomers, bond length u, from Gibbs 
ensemble MC with configurational bias sampling. From 
Mooij et al. (ref. 35). 
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Fig. 4. Vapor-liquid equilibria for water/methanol 
mixtures at 1 atm from Gibbs MC (triangles) and from 
experiment (circles and line). From Strauch & Cummings 
(ref. 32). 
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For mixtures the Gibbs method can be carried out in the isothermal-isobaric ensemble, so 
that the pressure can be specified at the start of the run. This is usually an advantage 
since there is then no uncertainty in the pressure, although there will be fluctuations 
in the density. The method has been applied to high pressure fluid phase equilibria, and 
an example is shown in Fig. 3 for hydrogen-helium mixtures (ref. 22). Further 
calculations for this system have been made to 2500 K and 700 kbar (ref. 23). Agreement 
is good, and these studies provide an example of the use of these methods to extrapolate 
existing data into regions that are difficult to reach experimentally. A second 
application to amore complex mixture, water with methanol, is shown in Fig. 4. Here the 
SPC model was used for water, and OPLS for methanol with potential parameters taken from 
the literature and used without adjustment. The compositions of the two phases agree 
with experimental data within a few percent. 

INDIRECT METHODS 

Indirect methods involve calculating the free energy or chemical potentials for a range 
of state conditions, from which the phase transition conditions can be determined. Such 
methods involve more computational effort than the Gibbs method, in general, but are 
useful because: (a) one often wants to know the values of the chemical potentials, e.g. 
in studying surface phase transitions or conformational changes (the Gibbs method does 
not yield the chemical potential unless special steps are taken in coding), and (b) the 
Gibbs method (and some of the indirect methods) fail for high densities because of the 
molecule insertion step. This is particularly the case for liquid crystals and solids. 

Indirect methods include the test particle method, Grand Canonical Monte Carlo (GCMC), 
modified sampling methods, and thermodynamic integration over states. These methods have 
been reviewed elsewhere (refs. 2-5). The test particle and GCMC methods each involve 
attempts to insert a molecule into the fluid, and so suffer from the same difficulty as 
the Gibbs ensemble MC method at high densities. The modified sampling methods attempt 
to overcome this problem by modifying the MC sampling procedure, so that the probability 
of successful insertion attempts is greatly increased. These methods try to find the 
'holes' in the fluid and put the molecule there. 

For the most difficult systems, e.g. liquid crystals and solids, one must use 
thermodynamic integration. This involves carrying out a series of simulations for a 
range of thermodynamic temperatures, densities or intermolecular potentials, and using 
standard thermodynamic or statistical mechanical equations to obtain the chemical 
potential. An example in which several of these techniques must be used to obtain a 
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Fig. 5. Phase diagram for the Gay-Beme fluid with x-3, 
$ 1 5 :  I=isotropic liquid, V=vapor, Nonematic, dissolved in polyethylene: 0, experiment; 
SmB=smectic B, SmB(t)=smectic B tilt phase. From 
de Miguel et al. (ref. 42). 

Fig. 6. Weight fraction Henry constants for alkanes 

A, coniigurational bias M C  From de Pablo et al. 
(ref. 44). 
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phase diagram is shown in Fig. 5 (ref. 4 2 ) .  The intermolecular potential model used, 
the Gay-Berne, provides a simplified description of a prolate shaped molecule in which 
n is the 1ength:breadth ratio (3 in this case) for the molecule. The model includes 
anisotropic dispersion and repulsion forces, and at this elongation leads to a number of 
liquid crystal phases, as well as the usual isotropic liquid and gas phases. In the 
results shown in Fig. 5 the vapor-liquid region was determined by the Gibbs ensemble MC 
method, the isotropic liquid-nematic transitions were determined by thermodynamic 
integration, and the remaining transitions were determined approximately from order 
parameters (orientational correlation parameter P,, tilt angle @ and heat capacity Cv). 

An advance of particular interest has been the extension of some of these methods to 
chain molecules. Two approaches have been put forward. The first, which we call the 
chain increment method, has been proposed by Kumar et al. (ref. 43). It is based on 
a test particle equation that gives an exact expression for the incremental chemical 
potential for adding a monomer unit to a chain molecule. It is found that this increment 
becomes essentially constant for chains longer than about lo-20 mers. By determining this 
limiting value, and obtaining the chemical potential for a relatively short chain, it is 
possible to calculate the chemical potential for long chains. The method has been 
applied recently (ref. 44) to obtain the phase diagram for a polymer melt of chains of 
length up to 100 mers. The merit of the chain increment method is that it can be applied 
to arbitrarily long chains. However, it is limited to homopolymers at present. 

The second method for chain molecules is called the configurational bias MC method. It 
involves the insertion of a short chain into the fluid, followed by the addition of other 
segments to the end of the chain until a chain of the desired length has been grown. The 
method has been developed by two research groups independently (refs. 45,46,47), 
and involves choosing the configuration of the chain by a suitable weighting process, 
using another modified test particle equation. The method has several advantages: the 
full chemical potential is obtained in a single simulation, and it works for 
heteropolymers. Moreover, it can be used in Gibbs simulations to obtain phase equilibria 
directly, An example is shown in Fig. 2. However, this method is limited to rather 
short chains, up to about 20-30 mers. It has been used to study alkanes in polyethylene 
and in supercritical solvents (ref. 45). Some of these results are shown in Fig. 6. 

CONCLUSION 

Fast calculations of fluid phase equilibria have been made possible by the development 
of the Gibbs ensemble MC method, and this is now being extensively applied to a wide 
variety of systems for both bulk fluids and surface phase transitions. It is 
particularly advantageous for mixtures. For simple fluids it can be used to predict 
phase equilibria, and to extrapolate existing data to conditions that are inaccessible 
to laboratory experiments (e.g. Figs. 1,3). For more complex phase behavior, such as 
liquid crystals and polymers, techniques are now becoming available that involve indirect 
methods (Figs. 5,6). Current research is likely to focus on applying and extending these 
methods to difficult systems such as ionic fluids, associating and reacting liquids, 
liquid crystals, polymers and surfactants. A persistent problem in such work remains the 
determination of sufficiently accurate intermolecular potentials for prediction of phase 
equilibria in real systems. The use of reliable ab initio potentials is still some way 
off, because of the unfavorable scaling of CPU time with number of electrons. Advances 
in parallel architectures and algorithms will help here, but significant progress will 
require increases in speed of several orders of magnitude. 
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