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Abstract 

A discussion is held to emphazise the importance of performing simulation experiments in order to 
optimise the experimental situation for data treatment of binding curves. The optimatisation is 
done to decrease the influence of covariance contribution to the estimated errors of the fitted 
parameters. This is especially important when the model contains parameters that are linearly 
correlated. 

INTRODUCTION 

Thermodynamic data on macrocyclic compounds play an essential role for our understanding of their properties in solution 
and as ligands. Together with structural and dynamic properties the thermodynamics give us information relevant to the 
systemisation of the properties of the ligands which should then allow the synthesis of tailor-made ligands for specific 
applications. The aim of the thermodynamic study is to obtain precise stability constants and other thermodynamic 
properties such as enthalpies, entropies, and, especially for aqueous solutions, heat capacities for the complex formation. 
Calorimetry is in this respect a useful and accurate method to obtain all these thermodynamic properties. Irrespective of the 
method used for the binding experiment the raw data have to be treated in a regression procedure to obtain the stability 
constant@). As for all physical properties, the values of the parameters obtained from the regression are without any value 
if no statistical uncertainties are reported together with the parameters. The literature contains more or less correct 
methods of estimating the uncertainties of the parameters, but there are statistical methods to estimate these values. It is of 
crucial importance that the experiments are performed to minimise the uncertainties of the parameters obtained from the 
regression. I will in this paper discuss the importance of optimising the experimental set-up for treatment of experimental 
data from binding studies. The examples used often refer to calorimetric titration techniques, but the general tendencies 
and conclusions made in this paper are valid for any experimental method. 

REGRESSION PROCEDURES 
The equilibrium constant@) from binding experiment are obtained from regression of raw data to a function describing the 
model we want to use to rationalise our data. In all regressions the aim is to find the minimum of the x2 -function, which is 
defined as, 

Where yi is the experimental value of point i ,  fi is the fitted value of point i calculated from the function representing our 

model, and at is the variance of point i or the weighting factor of point i .  There are two different forms of regression 
functions: functions that are linear with respect to the fitting parameters, and functions that are non-linear with respect to 
the parameters. The general form of a linear function can be written as, 

f E A , X ,  +A,X,  +...+ A n X n  
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In eq.2 Ak are the fitting parameters, and Xk are the independent variables. The function is linear because the differential 
of the €unction with respect to any fitting parameter is equal to the analogous independent variable. 

6f -- - 'k 

An analogous description of a non-linear function is, 

f = f ( A l , A z ,  ..., A, ; X l , X z ,  ..., X,,) 

The differential of the fuction with respect to any of the parameters result in new functions containing some or all 
parameters from the original function, 

(3) 

(4) 

There is an analytical solution for the linear regression function regarding both the values of the parameters as well as the 
error assignment. For the non-linear regression function the solution is obtained by numerical iterative methods. The 
functions used to obtain equilibrium constants are always non-linear with respect to the the fitting parameters. 
The errors of the parameters are calcualted from the diagonal of the variancetovariance matrix, E, which is defined as the 
inverse of the curvature matrix, C, 

The elements of the curvature matrix is defined as, 

The summation on the right-hand side of eq.7 is correct for the linear regression function, while it is an approximation for 
the non-linear regression function that is valid near the minimum of the x2 -function. From the elements of the variance- 
covariance matrix a correlation matrix, G, is defined, 

The correlation matrix contains important qualitative information about the correlation between the parameters. The value 
of the elements ranges from -1 to 1, where 1g~l=1 describes maximum correlation. The diagonal elements are by definition 
unity, and the off-diagonal elements give us information about covariance contribution to the errors on the parameters. For 
the binding experiment it is therefor important to select concentrations and volumes for minimising the covariance 
contribution. 
At titration experiments the signal detected at each step is proportional to the number of mol of complex(es) formed at the 
titration step. The data can in principle be treated in two ways: either treated as differential data or accumulated data of the 
differential signals. We can in most cases assume that the absolute uncertainty of the detected differential signal is 
independent on the magnitude of the signal. For differential treatment of data this will simplify eq. 1, 

This means that all points are equally weighted. In contrary, if the data are accumulated the variance term in eq. 1 will not 
be the same for all points due to propagation of error. The variance of point i is then, 

Using accumulated as input data in regressions will result in degrading of the information originally obtained from the 
experiment. The data points of most important interest for the resolution of the parameter@) are not as much weighted as if 
the same raw data are treated as diirerential signals. The effects of treating the data in as the differential signals or 
accumulated is valid for any technique used, In the discussion I will only consider differential measurements. 
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ONE PARAMETER F I T  

A one parameter fit of a binding curve is done using a technique where only the equlibrium constant can be calculated 
(spectroscopy, potentiometry, etc.). The model is then based upon the assumption that there is only one complex formed, 

M +  L =  ML 
where 

The total concentration of L is , CL, and the total concentration of M is CM. We can define a new constant, D 

The variable r in eq. 13 is the ratio of total number of mol of L and M (r = nL,tot 1 nM,,,t). At step-wise titration the 
increment of r , Ar, at each step is normally constant throughout the titration serie. This means that the parameters that we 
can change to optimise the experiment are D and Ar. It has been shown by number of authors that D should be in the range 
of 1sDSlOOO (ref. 1-2). In Fig. 1 the relative amount of the titrand, L, that binds to the host molecule. M, at each step is 
plotted against the number of injections for different choices of Ar, and D=land 100. 
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Fig. 1. The relative amount of the ligand added to a solution that is bound to a host molecule at each titration step, 
AnML/An,, for different Ar when (a) D=l and (b) D=100. 

The shape of the binding curve will directly effect the quality of the regression. We know from experience that we will 
obtain good results if the there is an inflection point in the binding curve. With good results means normally that the fitting 
parameter is well defined. The estimated uncertainty of K depends on the choice of Ar for a given value of D. This is 
illustrated in Fig. 2 where x2 is plotted against D for different Ar. The curves was genereated by simulating one serie of a 
binding curve where and D=l for each Ar. All series used the same error assignment on the signal which randomly varied 
within 0.1 %. As can be seen from the plot the minimum is not well defined if we use A ~ 0 . 0 1 .  The x2 -function is very 
flat which means that there is a great risk of obtaining systematic errors on the parameter. Furthermore, the shape of the 
curve effects directly the assigned error on K, since the error on K is calculated from the inverse of the secoqd derivative of 
the $-function with respect to K, 

1 
(8 'x2 /6 ' K) 

0; = 
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The choice of Ar-parameter depends on the magnitude of D, and the range of Ar is smaller the larger D-value. This is 
illustrated on Fig. 3, where the Ar-range is plotted against log D. The plot shows the Ar-values that correspond to 12-25 
titration steps in one series. For systems where the solubilty of one or both of the compounds are limited the quality of the 
regression will not improve significantly even if the technique used is improved with orders of magnitude. It also shows 
that it is not always benifitial to have many data points when fitting data to a function. 
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Fig. 2. The graph illustrates the shape of the ~2-function 
for different Ar when making a regression on one parameter. 
Series of binding curves have been generated with assigned 
errors on each point. All series have the same error assign- 
ment on the data points. The values of Ar are from top to 
bottom 0,2,0.1, 0.05, and 0.01. 
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Fig. 3. The plot illustrates the range of choice for Ar for 
a given D. The ranges are analogous to 12-25 titration 
steps of the ligand to reach 95% saturation of the host 
molecule. 

T W O  PARAMETER FIT 

If the model contains more than one parameter there is a risk that the covariance contribution is significant to the errors of 
the individual parameters. It is in principle impossible to have a situation where the covariance contribution is diminished, 
because the variance-covariance matrix will always be non-orthogonal. However, by optimising the experimental variables 
we can minimise the covariance contribution. From the correlation matrix we obtain qualitative information about the 
correlation between the fitting parameters. Is there limit of the off-diagonal element at which the covariance contribution is 
minimised? There is probably not a general answer to that, because that will depend on the fitting function. Here I will 
only show somc csamplcs on what cffcct the off-diagonal clcmcnt of thc corrclation matrix from a two parameter fit has on 
the error assignment of the parameters. Calorimetric step-wise titration experiments are used to illustrate the effects. 
In a calorimetric experiment the amount of heat measured at each step, qp is directly proportional to the amount of complex 
form at each step, AnML. The proportionality constant is the enthalpy of complex formation, AH", 

qi = AH" AnML 

where 

The equilibrium constant is calculated from the change in AnML, that is curvature of the titration curve. The two 
parameters, AHo and K, are linear correlated, which means that in the function, Q, there is a product of AH" and K, thus 
there will be covariance contribution to the assigned errors. In Fig. 4 and Fig. 5 the graphs show double-plots of the off- 
diagonal element in the correlation matrix, glz, and the error on K obtained from the fit, oK, against Ar. Fig. 4 is based 
upon simulations of calorimetric experiments where K=lOOO, AH" =ISM mol" , CM =O.OIM, vessel volume=lml, and the 
mean standard deviation of one point, q , is 20p.l. The same series of assigned errors for each point were used for all the 
series for the different Ar. As shown the error on K flattens out when [girl is close to 0.8. It should also be noted that even 
if g,, and el, < 0 the result is an increase in oK. The same sort of simulations have been done with the exception that the 
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I 

relative error of the first signal is the same for all the series. The results of the simulations are shown in Fig. 5.  The reason 
for this approach is to show that if we improve our calorimetric technique with orders of magnitude there will not be any 
improvements of the results on the error estimates of K when using Ar in the experiment that is less favourable. The reason 
for this is that the general shape of the X2-function will not change even if we improve the precision on the experiments (cf. 
Fig. 2) and the parameters, K and AH', are linear correlated. 
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Fig. 4. Double plot of the off-diagonal element in the 
correlation matrix, g12, and the estimated error on K, OK, as 
function of added increment of the ligand, Ar. Data has been 
generated assuming K=1000 M-l, AH0=15 kJ mol-I, CM=O. 1 
M, V=l ml. The data points in each series was qi+&i, where qi 
was calculated according to eq. 15 and Ei was randomly varied 
within the range *20p.J. The same assigned error on the data 
point was used for all the series. 
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Fig. 5.  Double plot of the off-diagonal element in the 
correlation matrix, g12, and the estimated error on K, a ~ ,  as 
function of added increment of the ligand, Ar. Data has been 
generated assuming K=1000 M I ,  AH0=15 !d mol-I, CM=O. 1 
M, V=l ml. The data point in each series was qi+Ei, where qi 
was calculated according to eq. 15 and ~i was randomly varied 
within the range k20p.J for A ~ 0 . 5 .  For the other series the 
ranges for the error assignment were match so that the 
relative error were the same for all series. 

Figure 4-5 shows the correlation of the parameters which is partly due to the experimental parameters, but also due to the 
function used in the regression (eq. 15). The function can be expressed in another way to avoid linear correlation and 
minimising the correlation between the parameters. 

where R=AH0/(2K) and S=(AHo)2/(2K). 

If the model contains two complexes so that the total concentration of the host molecule can be expressed according to the 
Adair equation, 

the general features of error analysis are analogous with the case where the second parameter is linear such as the enthalpy. 
However, here the choice of CM and Ar are governed by the magnitudes of both P I  and P2.  It can be of advantage to perform 
the experiments at different CM to have good resolution of the parameters in the regression. The resolutions of the 
parameters are determined by the difference in the relative amount of the species that contains the host molecule after each 
titration step (a0=[h4L], al=[h4LYCM, and aZ=[h4L22ycM). Systems that are limited by solubility the resolution of the 
parameters can be difficult to obtain due to the same effect that occur on a one parameter fit as discussed earlier. It is 
possible that the minimum Xz-function is well defined for the first parameter, while it is less pronounced for the second 
parameter. The situation of large covariance contribution will in that case be severe. There will always be some 
contribution from the covariance in a non-linear regression since the data space is not orthogonal. Applying a model that 
contains more than one complex to calorimetric data will result in addition of enthalpy terms to each complex equilibrium, 
which will result in large covariance contributions on the errors of the fitted parameters. The reason is that there is no 
analytical way to avoid linear combinations of the enthalpies and the analogous equilibrium constants if the model contains 
more than one complex. 
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CONCLUSIONS 

I have in this paper tried to illustrate the importance of performing simulation experiments for systems where we assume 
complex formation before doing the actual measurements where the aim is to obtain stability constant@) of the complex(es) 
formed and other thermodynamic properties such as enthalpies. In the analysis of the data treatment the correlation matrix 
is of high interest to study, because it gives qualitative information about the correlation between the fitting parameters. 
Addition of linear parameters to the model, such as enthalpy, will induce strong correlation unless the function is expressed 
in a new way to avoid linear correlation. At step-wise titration the data should always be treated as differential data so all 
data points are equally weighted. 
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