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Abstract: The solvatochromism, thermochromism, piezo-
chromism, halochromism, and potential chiro-solvatochromism
of solutions of various pyridinium N-phenoxide betaine
dyes have been used by us and others to study UV/Vis-
spectroscopically the dye/solvent interactions in organic
solvents of different polarity, different temperature,
different external pressure, different electrolyte concen-
tration, and different chirality.

INTRODUCTION

Solvents can have a strong influence on reaction rates, on the
position of chemical equilibria, as well as on the position and
intensity of spectral absorption bands located in various spectro-
scopic regions (UV/Vis, IR, NMR, etc.). Today, this is well-known
to all chemists since the pioneering work of Berthelot and Saint-
Gilles (Paris. 1862) as well as Menschutkin (St. Petersburg 1890)
on solvent effects on reaction rates, and of Claisen (Aachen 1896),
Hantzsch (Wirzburg 1896), Knorr (Jena 1886), and Wislicenus
(Wirzburg 1896) on the solvent dependence of chemical equilibrisa
(e.g. tautomeric equilibria) (ref. 1). For exa@Ple, the S,1 sol-
volysis of 2-chloro-2-methylpropane is ca. 104 times faster in
water than in the less polar solvent benzene. The enol content of
ethyl acetocacetate is 62 mol-% in cyclohexane, but only 6.5 mol-%
in water (ref. 1).

Chemists have usually attempted to understand solvent effects
in terms of the 'polarity of the solvent'. But what does solvent
polarity really mean ? The simplicity of idealized electrostatic
models for the description of solvation of ions or dipolar mole-
cules, considering solvents as a non-structured continuum, has led
to the use of the relative permittivity (€_), the permanent dipole
moment (p), and the refractive index (n) -"or functions thereof -
as macroscopic, physical solvent polarity parameters. But solute/
solvent interactions take place on a molecular-microscopic level,
with individual solvent molecules surrounding the ions or molecules
of the solute. Therefore, the simple electrostatic approach often
failed because intermolecular forces between solute and saolvent
include in addition to the nonspecific coulombic, directional,
inductive, and dispersion interactions also specific interactions
such as hydrogen bonding, electron-pair donor (EPD)/electron-pair
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acceptor (EPA), and solvophobic interactions. Hence, from a more
pragmatic point of view, it seems to be more favorable to define
'solvent polarity' as the overall solvation capability (solvation
power) for (i) reactants and products (-—» chemical equilibria),
(ii) reactants and activated complexes (—» reaction rates), and
(1iii) molecules 1in the electronic ground and excited state (—»
light absorption), which 1in turn depends on the action of all
possible, nonspecific and specific, intermolecular interactions
between solute and solvent molecules - excluding such interactions
leading to definite chemical alterations of the solute molecules
by the solvent as consequence of a normal chemical reaction bet-
ween them (refs. 1, 2).

Obviously, solvent polarity such defined cannot be measured by
means of macroscopic, physical parameters such as permittivity or
dipole moment. Other indices of solute/solvent interactions on a
molecular-microscopic scale are sought. For this reason, empirical
parameters of solvent polarity have been introduced, using a well-
selected, strongly solvent-dependent, particular chemical reaction
(the rate or equilibrium of which are studied) or spectral absorp-
tion as suitable models for all other solvent-dependent processes.
If one carefully selects an appropriate, sufficiently solvent-
dependent reference process {or similarity model; cf. ref. 3),
an empirical measure of solvent polarity can be derived from it,
which is believed to provide a more comprehensive measure of the
overall solvation capability of the solvents than do their indivi-
dual physical data.

K. H. Meyer (Munich 1814) introduced the so-called desmotropic
constant L as empirical measure of the enolization capability of
solvents, wusing the solvent-dependent tautomerization of ethyl
acetoacetate as reference reaction (ref. 4), whereas Winstein and
Grunwald (Los Angeles 1948) developed the Y-values as measures of
the solvent ionizing power, with the S,1 solvolysis reaction of
2-chloro-2-methylpropane as standard reaction (ref. 5). Meanwhile,
a considerable number of empirical solvent parameters have been
introduced, based on various solvent-dependent reactions and
absorptions (refs. 1 - 3, 6 - 9), sometimes combined to multipara-
meter correlation equations with different empirical parameters
for the various solute/solvent interactions (refs. 1, 10, 11).
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SOLVATOCHROMIC BETAINE DYES

The first suggestion that solvatochromic dyes such as the zwitter-

ionic 4-hydroxystyryl-pyridinium dye 1 can serve as empirical
indicators of solvent polarity was made by Brooker et al.
(Rochester 1951; ref. 12), but Kosower (New York 1958) was the

first to set up a real UV/Vis spectroscopic solvent scale, called
Z-scale, based on the intermolecular charge-transfer (CT) absorp-
tion of the 4-methoxycarbonyl-l-ethylpyridinium iodide 2 as

solvent-sensitive reference process (ref.
exceptionally large negative solvatochromism,
(2,4,6-triphenyl-1-pyridinio)-phenolate 3

13). By virtue of its
the 2,6-diphenyl-4-
(and 1its more 1lipo-

philic, even in hydrocarbons soluble penta-tert-butyl-substituted
derivative 4) has been proposed by us as a new spectroscopic indi-
cator of solvent polarity (Marburg 1963; refs. 14 - 16), called
the ET(30)—scale (ref. 17 and Fig. 1).
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Scheme 1. Negatively Solvatochromic Dyes 1 - 11

(1: Brooker;
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The following peculiar properties of 3 are obviously responsible
for the solvent-mediated stabilization of its highly dipolar elec-
tronic ground state, relative to its less dipolar excited state,
the latter resulting from an intramolecular charge transfer by
light absorption within the visible spectral region (cf. Fig. 1):
(i) it exhibits a large permanent dipole moment, suitable for the
registration of dipole/dipole and dipole/induced dipole inter-
actions; (ii) it possesses a large polarizable "-electron system
suitable for the registration of dispersion interactions; and
(iii) with the phenoxide oxygen atom it exhibits a highly basic
electron-pair donor centre, suitable for interactions with weak
Brdonsted acids (H-bonding) and Lewis acids (EPD/EPA-bonding). The
positive charge of the pyridinium moiety is delocalized and steri-
cally shielded. Therefore, the CT absorption of 3 depends strongly
on the electrophilic solvation power of the solvents, i. e. on
their HBD ability and Lewis acidity (= EPA behaviour), rather than
on their nucleophilic solvation capability (= EPD behaviour).

E-(30)-values are simply defined as molar transition energies
(in Kcal/mol) of betaine dye 3, dissolved in the solvent under
study (cf. Figs. 1 and 2). A high E_(30)-value corresponds to high
solvent polarity. ET(3O)-values range from 30.7 for tetramethyl-
silane (the least polar solvent) up to 63.1 kcal/mol for water
the most polar solvent); they are known for more than 300 organic
solvents and numerous binary solvent mixtures (ref. 1). Only for
two groups of solvents are E-(30)-values not directly available:
acidic solvents and perfluorohydrocarbons. In acidic solvents,
dye 3 is protonated and the solvatochromic CT absorption band dis-
appears, and in perfluorohydrocarbons the betaine dyes 3 and 4 are
not soluble. In order to increase the betaine solubility in non-
polar solvents, the lipophilic hepta-tert-butyl-substituted dye 5
and the bis-(l-adamantyl)-tris-tert-butyl-substituted dye 6 as
well as the 'fluorophilic' eicosafluoro-substituted dye 7 and the
penta-trifluoromethyl-substituted dye B have been recently synthe-
sized (ref. 18). Unfortunately, all four betaine dyes 5-8 are not
soluble in perfluorohydrocarbons such as perfluorooctane and per-
fluorodecalin. However, the introduction of electron-withdrawing
groups reduces the basicity of the phenoxide oxygen and permits
the direct determination of E_.-values of 7 in slightly acidic sol-
vents such as hexafluoro-2-propanol. By means of a particular

Negative Solvatochromism

Soivent f change

Temperature Pressure

Thermo - Piezo-
. < —- .
Solvatochromism  cponge change Solvatochromism
Addition Chiral Dye
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Fig. 2. Different responses ('chromisms') of betaine dye 3 to
various environmental changes (i.e. solvent, temperature,
external pressure, addition of salts, chiral solvents).
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dilution technique, EL(30)-values of 3 for 55 substituted phenols
have been directly obtained (ref. 19). 0On the other hand, thg
solubility of betaine dye 3 in water is also very low (< 2-10
mol/1l). Therefore, by introduction of hydrophilic substituents
(e.g. CO Na+, S0,CH,) into 3, its solubility in water has been
slightly 1ncrease&2(ref 20). Quite recently, a reasonable estimate
for the ET(BO) -value of betaine dye 3 as isolated molecule in the
gas phase (= 27.1 kcal/mol) has been made (refs. 14b, 21).

The empirical solvent polarity parameter E-(30) has found mani-
fold applications some of which are compiled 1in Scheme 2. The app-
lication of the E.(30)-values to chemical reactivity (ref. 22)
and analytical chemistry (ref. 23) has been reviewed.

In addition to its negative solvatochromism, pyridinium N-phen-
oxide betaine dyes such as 3 exhibit also the phenomena of thermo-
solvatochromism, piezo-solvatochromism, genuine halochromism, and
possibly chiro-solvatochromism, as schematically shown in Fig. 2.
(ref. 16). That is, the position of the long-wavelength CT absorp-
tion band of dissolved 3 depends on the solution temperature (ref.
24), on external pressure (ref. 25), on the addition of salts (ref.
20b, 26), and, in the case of chiral betaine dyes such as 10 and
11 possibly on the configuration of enantiomerically pure sol-
vents in which they are dissolved (ref. 27).
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Scheme 2. Applications of ET(BO)-values
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Are aqueous oOr nonaqueous electrolyte solutions more polar
than the pure solvents ? The addition of salts to solutions of
betaine dye 3 causes hypsochromic shifts of its solvatochromic
CT absorption band, corresponding to an increase of the ET(3O)—
value. For example, the addition of LiI, Nal, KI, RbI, CsI, Cal,,
SrI,, and Bal, to solutions of 3 in acetonitrile leads to a di%-
ferential hypsochromic band shift with this electrolyte (ionophore)
order, i.e. with increasing charge density (= ion charge/Pauling
cation radius) of the cation (ref. 26a). The hypsochromic shifts
are concentration-dependent, they increase with increasing salt
concentration, Surprisingly, there exists a linear correlation
between the EL(30)-values of the electrolyte solutions studied
and the charge density of the cations of the salts added, as shown
in Fig. 3. Obviously, loose ion-pair formation between the phen-
oxide oxygen atom and the metal cation increases the ionization
energy of the electron-donor moiety of 3, whereas the electron-
acceptor part of 3 (the pyridinium moiety) remains unchanged (no
association with the anion of the salts added). As result, the
intramolecular CT absorption band i1s hypsochromically shifted,
corresponding to an increase in the E (30)-value and, hence, to
an increase of the polarity of the solvent by the addition of
salts.
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The salt-dependent solution spectra of 3 constitute a new type
of genuine halochromism, in contrast to the trivial halochromism
first found by Baeyer and Villiger (Munich 1902). Examples of this
trivial halochromism are acid/base reactions in solution in which
a colourless reactant forms a coloured product during a chemical
reaction, as shown in Scheme 3. The genuine halochromism of 3,
however, is produced without any chemical alteration of the halo-
chromic dye ! We have recently proposed to speak of negative
(positive) genuine halochromism then only when the UV/Vis absorp-
tion band of a dissolved compound is hypsochromically (bathochro-
mically) shifted on addition of an electrolyte, and when this
band shift is not accompanied by a chemical alteration of the
chromophore (refs. 20b, 26a).
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LJrivial” Halochromism
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Scheme 3. Examples for the 'trivial' halochromism of Baeyer.

A particular cation-selective genuine halochromism has been
recently observed in solutions of the new crown-ether substituted
betaine dyes 9. As shown in Fig. 4, addition of sodium iodide to
a solution of 9 (n = 0) in acetonitrile leads to a family of
curves which meet at an isosbestic point. For [9 (n = 0) + Na I ]
in acetonitr{ﬁe, the complex formation constant K_ amounts to ca.
8008 (mol/l) ~. As shown in Fig. 5, addition of 6.01 M potassium
iodide to a 0.001 M solution of 9 (n = 1) in acetonitrile gives
rise to a colour change from violet to dark-red. Again, an en-
forced ion-pair formation between alkali metal cation and the
phenoxide part, supported by the crown-ether ring, is responsible
for this rather large halochromic shift of the intramolecular CT
band of 9. This negative halochromism depends on the radius of the
cation of the added salt as well as on the size of the crown-ether
ring. Therefore, the new betaine dyes 9 represent a new class of
cation-selective chromo-icnophores, possibly useful as cation
indicators (ref. 26b).

A =583 nm {CHLCN)

O O A =529 0m (CH,CN +KI)
0.01M
«@10) AA:= -S:nrn (1

Colour change from
violet to dark-red

(18-Crown-5)-Betaine A chromo-ionophoric dye
in CH4CN (¢ =1073mol/1)

Fig. 4. UV/Vis spectra of dye 9 Fig. 5. The halochromic betaine dye 9
(n = 0), measured in acetonitrile (n=1) as cation (potassium) select-
before (curve 1) and after addi- ive indicator (chromo-ionophore)
tion of increasing amounts of Nal (ref. 26b).

(curves 2 - 9); Isosbestic point
at ca. 534 nm (ref. 26b).
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Finally, the racemic betaine dye 10 and its achiral counter-
part 11 (meso-Form) should be able to form diastereomorphic sol-
vates in pairs of homochiral solvents [e.g. (R)- and (S)-butane-
1,2-diol], giving rise to a phenomenon called chiro-solvatochromism
(ref. 27, 28). The first preliminary results with such chiral
betaine dyes are promising (ref. 27).
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