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Abstract: The spatial relaxation of the velocity distribution function and of 
relevant macroscopic quantities of the electrons is investigated in weakly ionized 
plasmas. In particular, the relaxation of plasma electrons in a uniform electric 
field, the response of the electrons on spatial disturbances of the electric field and 
the electron kinetics in the case of space charge field confinement are analysed. 
The kinetic studies are based on the numerical solution of the inhomogeneous 
Boltzmann equation of the electrons including the action of a nonuniform electric 
field and of elastic and inelastic collisions of the electrons with gas atoms. A 
distinctly nonlocal behaviohr of the electrons and unexpectedly large relaxation 
lengths become evident at medium electric fields. 

INTRODUCTION 

In conventional discharge plasmas various discharge regions are known, in which a particular spatial 
structure of the plasma occurs and distinctly nonlocal properties of the electrons are of particular 
importance for the understanding of the plasma behaviour. In this context it should be mentioned, for 
example, the discharge regions in front of electrodes, the plasma regions in the surrounding of enforced 
plasma constrictions or of inserted grids, in moving and standing striations, and the plasma regions 
close to isolating walls which confine the plasma. Concerning the kinetics in electrode regions, which 
are generally characterized by large electric fields with rapid change in space, several investigations 
(1,2) have already been performed in the past. With respect to the other mentioned discharge regions 
some tasks (3), with more or less success, have been undertaken to reveal and to understand the 
electron kinetics and the global plasma behaviour in spatially structured plasmas. It is the objective 
of this paper to contribute by theoretical studies on the electron kinetics in nonuniform plasma regions 
to a better understanding of the spatial behaviour of the electron component. One important aspect 
of the electron kinetics in nonuniform plasma regions concerns the spatial relaxation properties of the 
electrons. To model such plasmas with respect to the electron kinetics often rough simplifications, 
as the local field approximation, have been adopted. In order to illustrate the pronounced nonlocal 
behaviour of the electron component detailed results on their kinetics will be reported for (i)  the 
relaxation of plasma electrons injected into uniform electric fields, (ii) the response of plasma electrons 
on spatial disturbances in the electric field, and (iii) the electron kinetics in case of space charge field 
confinement in a dc plasma column of a glow discharge. 

BASIC ASPECTS OF THE KINETIC TREATMENT 

The basic equation to study the electron kinetics in nonuniform plasma regions is the inhomogeneous 
Boltzmann equation of the electrons 

e o -  
m v ' * V , - f - - E * V g f =  C e r ( f ) + C C p ( f )  

k 

including the action of elastic (C") and conservative inelastic (Cp) electron atom collisions and the 
impact of a nonuniform electric field 8. If the field can be chosen to be parallel to a fixed space 
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direction, which is appropriate to the first two problems (i) and (ii), the velocity distribution becomes 
symmetrical around the field direction I? = E(z)& and can be given an expansion in Legendre 
polynomials. When truncating this expansion, then in the well known two term approximation 

the equation system 

a a 
--fo a2 - eoE(Z)WfO + H(U)f i  = 0 

for the isotropic and anisotropic part fo(U, z )  and fi(V, z )  of the velocity distribution function with the 
coefficients c(u) = -6(m/M)U2NQd(U) ,  Fk(U) = 3UNQ$(U) and H(u) = NQd(U)+Zk N Q p ( U )  
can finally be derived from the inhomogeneous kinetic equation (4). Here are Qd and Qt total cross 
sections for momentum transfer in elastic collisions and for various inelastic collision processes, rn 
and M the mass of electrons and atoms and N the density of atoms. This system of two partial 
differential equations with additional terms of shifted energy variable due to the energy loss Up in 
inelastic collisions determines the evolution of both parts of the velocity distribution with the kinetic 
energy U of the electrons and the space coordinate z.  A transformation from the kinetic energy to 
the total energy and the elimination of the anisotropic distribution leads finally to a parabolic partial 
differential equation with additional terms of shifted energy variable. This equation describes the 
evolution of the isotropic distribution and has to be solved as an initial boundary value problem on 
a nonrectangular solution region whose boundaries are partly determined by the special course of the 
electric field considered. The problem has to be completed by appropriate boundary conditions. An 
efficient solution approach could be developed to solve numerically this initial boundary value problem 
with high accuracy for various plasmas and courses of the electric field. An impression of the physics 
involved in the kinetic treatment can be obtained when considering the macroscopic balance equations 
of the electrons which are consistent to the kinetic equation. These are, in particular, the energy and 
the momentum balance 

d .  2 d  
dz k 3m dz -&) = ( U f ) ( z )  - (U"') - c(up), --(V)(z) = (If)(,) - (I"')(*) - c(Ip)(z). 

k 

All macroscopic quantities occurring in these balances are obtained by appropriately energy space 
averaging over the isotropic and anisotropic distribution, respectively. Due to the energy balance the 
difference between the energy gain from the electric field (Uf) and the energy losses (U"') and ( U p )  
in elastic and inelastic collisions is compensated for at each space position z by the spatial divergence 
of the energy current density j,. The momentum balance possesses a similar structure. According 
to this balance the local difference between momentum input (If) from the field and momentum 
losses (I"') and ( I F )  by elastic and inelastic collisions is compensated for by the divergence of the 
mean energy density (U) of the electrons being additionally multiplied by the factor 2/(3m). Thus 
in almost homogeneous states an almost complete compensation of the input from the electric field 
and the loss by all collision processes should occur at each position z in both balances. Therefore 
such a situation is well characterized by a small divergence term compared to the gain and loss terms 
in each of the balances. A large simplification of the kinetic treatment of inhomogeneous plasma 
regions is reached when the spatial evolution of the electron kinetic quantities only consists of a 
sequence of almost homogeneous states. These states can be determined by solving the much simpler 
homogeneous kinetic equation for the sequence of the electric field strength values which are assumed 
by the field course considered. Such a treatment is often called as "local field approximation". In this 
case a very rapid spatial establishment of the electrons into homogeneous states should occur and the 
corresponding relaxation length of the electrons should be very short. 
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RELAXATION IN UNIFORM ELECTRIC FIELDS 

Main aspects of the spatial relaxation of electrons in nonisothermal collision dominated plasmas can 
already be revealed when studying the spatial evolution of electrons which are stationarily injected 
into a plasma at a certain position and which are acted upon by a uniform electric field (5). Sufficiently 
far from the injection region finally a homogeneous state should be established in field acceleration 
direction of the electrons. For such a study electrons are injected at the position z = 0 in acceleration 
direction z > 0 with a Gaussian form of their anisotropic distribution which lastly describes the 
energy distribution of the electron particle current density. Figure 1 illustrates for a helium plasma 
at the two normalized field strengths E / p  = -4 and -10 V/(torr cm) (p - gas pressure) the spatial 
evolution of the isotropic distribution normalized on the electron density n(00) in the established 
homogeneous state. With increasing normalized spatial coordinate z p  a pronounced and very different 
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Fig. 1: Isotropic distribution as a function of the kinetic energy U and the spatial coordinate z p .  

evolution of the isotropic distribution can be observed at the two field strengths. At the larger field 
strength magnitude a distinctly periodical structure of the isotropic distribution occurs and even 
after a normalized relaxation distance of 15 torr cm no establishment into the homogeneous state is 
reached. In particular a systematic shift of the distribution towards higher kinetic energies and a 
periodic occurrence of low energy electrons can be seen with increasing space coordinate. Figure 2 
shows for the larger field strength magnitude the corresponding spatial evolution of all contributions to 
the energy balance of the electrons normalized on the space independent energy gain from the electric 
field. This figure clearly indicates that even after a distance of 30 torr cm still a remarkable difference 
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Fig. 2: Normalized energy balance terms for 
E / p  =-lo V/(torr cm). 

between the energy gain from the electric field and the energy loss in all collision processes remains 
and the divergence of the energy current density of the electrons still significantly contributes to the 
inhomogeneous energy balance. Thus already these few results lead to the conclusion that, depending 
on the special plasma conditions considered, quite different and unexpectedly large relaxation lengths 
of various electron kinetic quantities occur in collision dominated plasmas even under the action of 
uniform electric fields. If the local field approximation would be applicable to these spatial relaxation 
processes a very rapid spatial establishment into the corresponding homogeneous state should occur 
immediately behind the injection position z = 0. 
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RESPONSE ON SPATIAL FIELD DISTURBANCES 

A spatially limited disturbance of the axial electric field strength can be caused, for example, in an 
axially homogeneous column of a dc glow discharge by special discharge arrangements. Sufficiently far 
from this field disturbance region axially homogeneous states towards both electrode regions should 
be established in the plasma column. The response of the electrons on such field disturbances has 
been studied in nonisothermal plasmas (4). By using a similar kinetic treatment as outlined above 
this spatial relaxation problem can be investigated. Contrary to the relaxation problem of injected 
electrons acted upon by a uniform electric field now sufficiently far away from the field disturbance 
region the homogeneous electron velocity distribution in the undisturbed electric field represents one 
boundary condition of the kinetic problem and the electric field becomes space dependent in the field 
disturbance region. Figure. 3 illustrates two field disturbances (case A and B), which have been 

Fig. 4: Isotropic distribution as a function of the kinetic energy and the spatial coordinate. 

assumed to occur both in the space region between 5 and 10 torr cm. In case A a larger and in case B 
a smaller magnitude of the electric field acts on the electrons in the field disturbance region compared 
to the undisturbed field regions. The electron acceleration by the electric field always occurs in the 
positive z direction. Figure 4 shows for both cases the spatial evolution of the isotropic distribution in 
a helium plasma starting from homogeneous states in the velocity distribution at the position z = 0. 
The field disturbance region is marked by black lines on the distribution surface. In both cases a 
strong response of the isotropic distribution on the field impulse can be observed with a particularly 
large extension of this response in electron acceleration direction. The isotropic distribution develops 
in case A in an aperiodic and in case B in a periodic way towards its homogeneous state at large zp. 
In order to illustrate the strong violation of the local field approximation under the action of such 
a field disturbance Fig. 5 compares at several selected kinetic energies the spatial evolution of the 
isotropic distributions as obtained by the strict solution of the inhomogeneous kinetic equation and by 
the local field approximation. Discrepancies up to some orders of magnitude are found especially in 
the field disturbance region (marked by vertical lines) and in a large region towards higher z p  values. 
These results underline once more that large relaxation lengths of the electrons are responsible for the 
large spatial delay of the isotropic distribution response on the impulse-like field disturbance. 
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Fig. 5:  Isotropic distribution functions as obtained by the solution of the inhomogeneous Boltzmann 
equation (-) in comparison with those from the local field approximation (- - -). 
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ELECTRON KINETICS IN CASE OF SPACE CHARGE FIELD CONFINEMENT 

A very different situation with respect to the spatial behaviour of the electron component arises if 
the inhomogeneity of the plasma is caused by the plasma confinement. A typical example for this 
problem is given by the radial structure of the positive column in a dc glow discharge with isolating 
walls. This problem has already been attacked with more or less success several times in the past. 
From the electron kinetic point of view this problem is more complex ( 6 )  than the first two kinetic 
problems considered above. The electric field in the column plasma is a supyposition of the constant 
axial electric field and of the radially varying radial space charge field, i.e. E = Er(r)Zr + E,e‘,. Thus 
the direction of the total electric field is different from the radial direction in which the inhomogeneity 
of the plasma column occurs. Then the expansion of the velocity distribution in Legendre polynomials 
has to be replaced by an expansion in spherical harmonics. The latter reads in two term approximation 

and includes, in addition to the axial component fi(U, r ) ,  a radial Component f?(U, r )  of the anisotropic 
distribution. This radial anisotropic distribution makes possible the calculation of the radial particle 
and energy current density of the electrons and allows thus to reveal significant aspects of the electron 
confinement by the radial space charge field. In order to describe the electron loss to the tube wall, 
the electron production in the column plasma by ionization in electron collisions with ground state 
and excited atoms has additionally to be considered in the kinetic equation. When introducing the 
above expansion into the kinetic equation and when replacing the kinetic energy U by the total energy 
finally an elliptic partial differential equation with additional terms of shifted energy variable due to 
the inelastic collision processes is obtained for the isotropic distribution which has to be completed by 
appropriate boundary conditions. The accurate numerical solution of this elliptic problem for specific 
plasma conditions has been found to be a laborious task. Using measured values of the axial field 
strength and of the radial potential distribution for the neon dc plasma column as input parameters 
of the kinetic problem, the radial variation of the velocity distribution and of the various macroscopic 
quantities of the electrons in the column plasma has been calculated by solving the elliptic problem ( 6 ) .  
To give an example, the cylindrical column plasma of a neon discharge with a tube radius of 1.7 cm, a 
gas pressure of 100 Pa and a discharge current of 10 mA has been chosen. Figure 6 shows the calculated 
radial variation of the isotropic distribution which has been normalized on the electron density n(r)  
at each radial position. A pronounced radial variation of the normalized isotropic distribution can 

. Fig. 6: The normalized isotropic distribution 
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be observed from this figure which is mainly caused by the interplay of the action of the radial space 
charge field and the collisional dissipation of the electrons in the column plasma. According to the 
conventional (“local”) approach the normalized isotropic distribution is approximately determined 
by the homogeneous kinetic equation with the sole inclusion of the axial field impact and is treated 
thus as independent of the radial coordinate. Contrary to this approximation the consequent kinetic 
treatment leads to a pronounced radial variation of the normalized isotropic distribution due to the 
confinement by the radial space charge field. On the basis of the strict kinetic treatment of the 
electron confinement in addition to the isotropic distribution the determination of the axial and 
radial components of the anisotropic distribution became possible. Figure 7 compares for two radial 
positions the energy dependence of all three distribution components. In particular the relatively small 
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Fig. 7,: The isotropic and the radial and axial anisotropic distribution fr(U, r ) ,  fT(U, r ) ,  and ,fo(U, r) .  
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Fig. 8: The various contributions to the energy 
balance of the electrons. 
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magnitude of the radial anisotropic distribution and its two branches with different sign reflects the 
remarkable space charge field confinement of the electrons in radial direction. The change of the sign 
in the radial anisotropic distribution with increasing kinetic energy enforces a strong compensation 
in the radial particle current density j ,  of the electrons when evaluating this quantity from the radial 
anisotropy. The distinctly nonlocal behaviour of the electron component in the column plasma can 
be illustrated from the energetic point of view too. Figure 8 shows the radial dependence of all 
contributions to the energy balance of the electrons. The short-long dashed line gives the energy gain 
-eoEzjZ by the axial field and the long dashed line the total energy loss L(r)  by all collision processes. 
In the central region of the column plasma the collisional energy loss is about two times the energy 
gain from the axial field. However outside the central region increasingly the reverse situation occurs. 
The large difference between the energy gain from the axial field and the energy loss by collisions at 
each radial position is compensated for by a large divergence of the radial energy current density j, 
of the electrons which is presented by the full line. The very small contribution -eoE,(r)j, of the 
radial space charge field to the energy balance is given by the short dashed line and represents a small 
cooling of the electrons in the space charge field. 

CONCLUSIONS 
A strict kinetic treatment of the electrons in spatially nonuniform regions of weakly ionized, colli- 
sion dominated plasmas at medium electric field strength makes evident that a distinctly nonlocal 
behaviour of the electron component occurs in various plasma conditions. This nonlocal behaviour 
is reflected, for example, by large spatial relaxation lengths for the establishment into homogeneous 
states, by a pronounced spatial delay of the electron response on spatially varying electric fields and 
by a large transport of electron energy from the outer to the inner plasma region in the case of space 
charge field confinement. Rough approximations as the ‘local field approximation” are quite unable 
to describe the real situation and should be critically considered when used in plasma modelling. 
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