

Critical Evaluation of Stability Constants of Phosphonic Acids

<u>K. Popov</u>, H. Rönkkömäki, L.H.J. Lajunen, A. Popov, and A. Vendilo

> Poster presented at the IUPAC Congress/General Assembly July 2001

Framework

Stability constants for aqueous equilibria are of extreme importance for a broad variety of technologies, agriculture, and medicine. Unfortunately, the data published usually reveal a drastic diversity, which sometimes exceeds several orders of magnitude. In this project, ten organophosphonates (Table 1) have been selected for evaluation and critically reviewed.

Initial Observation: <u>All</u> the data published on IDPH, NTPH, and EDTPH for the protonation equilibrium H+L=HL ($\log K_1$) seemed to be unreliable and could not be endorsed. The corresponding K_{ML} values based on the erroneous $\log K_1$ also could not be accepted.

The cause seems to be that the removal of the last proton in this case, takes place at a very high pH, *e.g.*, 12-14, and determination by glass electrode is not adequate, while an alternative use of NMR in one run of experiments also appeared to be unreliable. This finding was reported in our critical review [1].

Table 1. Organophosphonates considered in this project

Ligand common name	IUPAC recommended name	Ligand structure	Short Name
Methylphosphonic acid	Methylphosphonic acid		MPA, H ₂ mpa
1-Hydroxyethane-1,1-	(1-Hydroxyethane-1,1-	H_3C_{\sim} PO_3H_2	HEDPA,
bis(phosphonic acid)	diyl)bis(phosphonic acid)	$HO^{-C}PO_3H_2$	H ₄ hedpa
Dichlormethylenebis(phosphonic	(Dichloromethylene)bis(phosphonic	ClPO ₃ H ₂	CMDPA,
acid)	acid)	Cl ^C PO ₃ H ₂	H ₄ cmdpa
Aminomethanephosphonic acid	(Aminomethyl)phosphonic acid	H-N PO-H-	AMPH,
			H ₂ amph
N-(Phosphonomethyl)glycine	[(phosphonomethyl)amino]ethanoic	СО ₂ н	PMG,
	acid	HN	H ₃ pmg
		$\sim PO_3H_2$	
Imino-N,N-	(iminodimethylene)bis(phosphonic	$/-PO_3H_2$	IDPH,
bis(methylenephosphonic acid)	acid)	HN	H₄idph
		$\sim PO_3H_2$	
N-Methylamino-N,N-	[(methylimino)dimethylene]bis(pho	PO_3H_2	MIDPH,
bis(methylenephosphonic acid)	sphonic acid)	$H_{2}C \longrightarrow N$	H ₄ midph
		$\sim PO_3H_2$	
Nitrilotris(methylenephosphonic	[Nitrilotris(methylene)]tris(phospho	^{PO} ₃ H ₂	NTPH,
acid)	nic acid)	N	H ₆ ntph
		H ₂ O ₃ P PO ₃ H ₂	
1,2-Diaminoethane-N,N,N',N'-	[Ethylenebis(nitrilodimethylene)]tet	H_2O_3P PO_3H_2	EDTPH,
tetrakis(methylenephosphonic	rakis(phosphonic acid)		H ₈ edtph
acid)			
1,4,7-Triazaheptane-N,N,N',N",	{[(phosphonomethyl)imino]bis(ethy		DTPPH,
N ⁻ -pentakis(methylenephosphonic	[lenenitrilodimethylene)]	$ H_2O_3P$ $ PO_2H_2$	H ₁₀ dtpph
acid)	tetrakis(phosphonic acid)	PO ₃ H ₂	

Determination of a high protonation constant

Determination of a high protonation constant (p*K*~13-15) at the commonly used ionic strength *I*=0.1 mol·dm⁻³ is a challenge for researchers. When the natural p*K* value of a ligand at *I*= 0.1 mol·dm⁻³ is higher than 12.5-12.8, its correct measurement by a single NMR titration procedure for *I*=0.1 mol·dm⁻³ becomes physically impossible.

To overcome this problem, the following stepwise approach is proposed in the present study.

Overcoming the measurement problem

As the first step, a set of NMR data for high ionic strength, e.g., $l=1.0 \text{ mol} \cdot \text{dm}^{-3}$, must be obtained at different pH values. This operation has two advantages: (*i*) the pK limit shifts from 12.5 to 13.5 - 13.7; and (*ii*) because K⁺ (Na⁺) ions form complexes with organophosphonates, the natural pK becomes lower. These factors could make the "plateau" for chemical shift δ_{I} observable at pH<13. Generally, at a high [K⁺]:[L] ratio, δ_1 is a linear function of ionic strength.

Fig. 1. pH dependence of the ³¹P NMR chemical shift δ of EDTPH for *I*=1.0 (1) and 0.1 (2) mol·dm⁻³ (KOH/KNO₃) at 25 °C The second step includes a set of δ_{L} points at different ionic strengths, *e.g.* 1- 3 mol·dm⁻³, within the pH range, where δ_{L} is independent of pH.

An extrapolation of the resulting straight line to $I=0.1 \text{ mol} \cdot \text{dm}^{-3}$ gives a missing value of δ_{L}^* (*indicates the hypothetical numerical value of δ_{L} , which is independent of pH and corresponds to $I=0.1 \text{ mol} \cdot \text{dm}^{-3}$).

Fig. 2. Plot of ³¹P NMR chemical shift of EDTPH versus ionic strength $I \mod dm^{-3}$ (KOH/KNO₃) at 25 °C and pH 13.6 - 13.8

The third and the last step includes the measurement of d versus pH at *I*=0.1 mol·dm⁻³ below the half-neutralization point and a subsequent treatment of the titration curve using experimental δ_{HL} and δ_{L}^{*} values.

The corresponding data for EDTPH are presented in Figures 1 - 3.

Fig. 3. Normalized NMR titration curves of EDTPH for $I=0.15 \text{ mol} \cdot \text{dm}^{-3}$ (NaOH/NaCl) at 37 °C (1); and I=0.1mol·dm⁻³ (KOH/KNO₃) at 25 °C (2)

- It should also be stressed that <u>all</u> experimental data obtained <u>are</u> <u>not based</u> on pH measurements. The concentration of ligand C_{L} should meet the requirement $C_{L} << [OH⁻]$, and the initial [OH⁻] is therefore taken as an equilibrium value of one. Then the pH is calculated using an appropriate pK_{w} value.
- Our data are presented in Table 2, along with those obtained with a glass electrode and via a single run NMR titration, which could not provide the ionic strength constancy. The results reveal a general, sometimes very large, underestimation of the $\log K_1$ values for organophosphonates ranging from 0.1 up to 2.7 log units.

Table 2. Equilibrium Constants K_1 of IDPH, NTPH, and EDTPH

Ligand	Method	I, mol dm ⁻³	T, °C	$\log K_1$	$\Delta \log K_1$	Reference
IDPH	NMR ³¹ P	0.1 M KNO ₃	25	11.2		this work
	glass electrode	0.2 M KCl	25	10.97	0.23	2
	glass electrode	0.1 M KNO ₃	25	10.79	0.41	3
	glass electrode	0.2 M KCl	25	10.60	0.6	4
NTPH	NMR ³¹ P	0.1 M KNO ₃	25	12.9		this work
	glass electrode	0.1 M KNO ₃	25	12.8	0.1	7
	glass electrode	0.2 M KCl	25	12.30	0.6	2
	glass electrode	0.1 M KNO ₃	25	12.5	0.4	5
	glass electrode	0.1 M KNO ₃	25	12.1	0.8	6
	NMR ³¹ P	0.1 M KNO ₃	25	12.7	0.2	7
	glass electrode	0.2 M KCl	25	12.27	0.63	8
EDTPH	NMR ³¹ P	0.1 M KNO ₃	25	13.3		this work
	glass electrode	0.1 M KNO ₃	25	12.9	0.4	9
	glass electrode	0.1 M KNO ₃	25	13.07	0.23	10
	glass electrode	$\rightarrow 0.1 \text{ M KNO}_3$	25	13.1	0.2	11
	glass electrode	0.1 M KNO ₃	25	10.60	2.7	12
	NMR ³¹ P	0.15 M NaCl	37	12.6		this work
	glass electrode	0.15 M NaCl	37	10.67	1.93	13

References

- 1. K. Popov, H. Rönkkömäki, and L.H.J. Lajunen. Critical Evaluation of Stability Constants of Phosphonic Acids, *Pure Appl. Chem.* submitted.
- 2. P. Buglyo, T.Kiss, M. Dyba, M. Jezowska-Bojczuk, H. Kozlowski, and S. Bouhsina, *Polyhedron* (1997) <u>16</u>, 3447.
- 3. R.J. Motekaitis and A.E. Martell, J.Coord. Chem. (1985) 14, 139.
- 4. E. Matczak-Jon, B. Kurzak, and A. Kamecka, *J. Chem. Soc. Dalton Trans.* (1999) 3627.
- 5. V. Deluchat, J.-C. Bollinger, B. Serpaud, and C. Caulett, *Talanta* (1997) <u>44</u>, 897.
- 6. L.V. Nikitina, A.I. Grigior'ev, and N.M. Dyatlova, Zhurn. Obsch. Khim. (1974) 44, 1669.
- 7. K. Sawada, T.Kanda, Y.Naganuma, and T.Suzuki. *J. Chem. Soc. Dalton. Trans.* (1993) 2557.
- 8. D. Sanna, I. Bodi, S. Bouhsina, and G. Micera, *J. Chem. Soc. Dalton Trans.* (1999) 3275.
- 9. K. Sawada, M. Kuribayashi, T. Suzuki, and H. Miyamoto, *J. Solut. Chem*. (1991) <u>20</u>, 829.
- 10. K. Sawada, T. Miyagawa, T. Sakaguchi, and K. Doi, *J. Chem. Soc. Dalton. Trans.* (1993) 3777.
- 11. R.J. Motekaitis, I. Murase, and A.E. Martell, Inorg. Nucl. Chem. Lett. (1971) 7, 1103.
- 12. E.N. Rizkalla and M.T.M. Zaki. Talanta (1979) 26, 507.
- 13. J.M. Wagener and N.V. Jarvis, S. Afr. J. Chem. (1995) <u>48</u>, 85.