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Abstract: Legendre transforms are used to introduce intensive variables as natural 
variables in the fundamental equations of thermodynamics. Natural variables are 
important because when a thermodynamic potential can be determined as a function of 
its natural variables, all the other thermodynamic properties of the system can be 
obtained by taking partial derivatives. It is usually more convenient to use 
thermodynamic potentials that have intensive natural variables because they are often 
more easily controlled than the conjugate extensive variables. This is illustrated for 
chemical reaction systems in which it is of interest to specify the chemical potential of 
a species (for example, the pH in a biochemical system). Since the electric potentials 
of phases in a multi-phase system are not natural variables of the Gibbs energy, it is 
useful to define a transformed Gibbs energy, for which electric potentials of phases 
are natural variables. The use of a Legendre transform brings in a new set of 
thermodynamic properties, new Maxwell equations, Gibbs-Duhem equations, and 
Gibbs-Helmholtz equations. 

INTRODUCTION 

This paper is about the most fundamental concepts of thermodynamics for systems involving work in 
addition to PV work. The fundamental equation for the internal energy involves the extensive natural 
variables S and V (ref. 1): 

(1) 
Natural variables are important because if a thermodynamic potential can be determined experimentally as a 
function of its natural variables, all of the other thermodynamic properties for the system can be calculated 
by taking partial derivatives. In equation 1 there are two pairs of conjugate variables (T,S) and (P,V). 
The thermodynamic potentials enthalpy H, Helmholtz energy A,  and Gibbs energy G are introduced by 
use of the Legendre transforms 

H = U + P V  (2) 
A = U - T S  (3) 
G = U + P V  - TS (4) 

A Legendre transform is a change in natural variables that is accomplished by defining a new 
thermodynamic potential by subtracting from the internal energy (or other thermodynamic potential) one or 
more products of conjugate variables. The result of a Legendre transform is the introduction of one or 
more intensive natural variables into the fundamental equation, instead of their conjugate extensive 
variables. A Legendre transform seems like such a simple thing, but it has a very big effect on the 
convenience in making thermodynamic calculations. The four thermodynamic potentials in equations 1-4 
are useful because they can be used to express criteria for spontaneous change and equilibrium for various 
choices of natural variables: (dU)s,vs 0, (dH)s,p 5 0, (dA)~ ,v  5 0, and (dG)r,p 5 0, as indicated by the 
subscripts, which indicate the natural variables that are held constant. The thermodynamic potentials U, 
H, A,  and G for a system can only decrease when their natural variables are held constant, and their 
differentials for differential changes at equilibrium are equal to zero. 

The use of Legendre transforms is not restricted to thermodynamics. A Legendre transform has made a 
major contribution in mechanics. The Lagrangian function L is a function of coordinates and velocities, 
but it is often more convenient to define the Hamiltonian function H with a Legendre transform because the 
Hamiltonian is a function of coordinates and momenta. Quantum mechanics is based on the Hamiltonian 
rather than the Lagrangian function. 

A closed system involving P V  work involves two conjugate pairs of extensive and intensive variables, and 
this leads to four thermodynamic potentials. This can be generalized because the number of 
thermodynamic potentials for a given system is equal to 2k, where k is the number of independent 
conjugate pairs. As indicated by equation 1, the basic theory of thermodynamics is based on calculus, and 
so thermodynamics involves an interconnected set of equations: fundamental equations, integrated 
fundamental equations (Euler equations), partial derivatives of thermodynamic potentials, Maxwell 

dU = TdS - PdV 
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equations, Gibbs-Helmholtz equations, and Gibbs-Duhem equations that come from the operations of 
calculus. Gibbs-Duhem equations can be regarded as complete Legendre transforms, in that all products 
of conjugate variables are subtracted from the internal energy. It is important to notice that intensive 
variables become natural variables only when they are introduced by means of Legendre transforms of the 
internal energy. 

When non-PV work is involved in a thermodynamic system, 2 k  can be much larger than 4 and the larger 
number of thermodynamic potentials increases nomenclature problems because each new thermodynamic 
potential that is defined by a Legendre transform needs a symbol and a name. Callen discussed this 
problem in his book Thermodynamics and An Introduction to Thermostatistics (ref. 2) and recommended a 
nomenclature that can represent all thermodynamic potentials that can be defined. He suggested the use of 
square brackets to indicate the intensive variables that have been introduced through Legendre transforms 
of the internal energy. For example, Callen symbols for the thermodynamic potentials introduced by 
Legendre transforms 2-4 are H = U[P], A = U [ U ,  and G = U[T,P]. Callen's symbols are not used in this 
article, but they show that it is possible to give a symbol for any thermodynamic potential. Natural 
variables must be independent, and so we must consider the independence of both intensive and extensive 
variables. 

This paper is concerned with chemical work and work of electric transport, but it is clear that these same 
considerations apply to gravitational work, centrifugal work, mechanical work on solids, surface work, 
work of electric polarization, and work of magnetic polarization. 

LEGENDRE TRANSFORM TO INTRODUCE THE CHEMICAL 
POTENTIAL OF A SPECIES 

When chemical work is involved in a single-phase system, the fundamental equation for G becomes 
N 

dG = - SdT + VdP + z p i d n i  ( 5 )  

where N is the number of species. When there are no chemical reactions, the amounts of species are 
natural variables, and the criterion of equilibrium based on G is (dG)Tp,Ini) 5 0, where { n j )  is the set of 
amounts of species. But when there are chemical reactions, the amounts of species are not independent 
variables and cannot be natural variables. At chemical equilibrium, Vipi = 0 for each of the R 
independent reactions for the system, where the Vi are stoichiometric numbers that are positive for 
products and negative for reactants. These R relations can be used to eliminate R chemical potentials of 
species from equation 5 to obtain 

i= 1 

C 

dG = - SdT + VdP + X pidni' (6 )  

where ni' is the amount of component i. The number C of components is equal to the number N of 
species minus the number R of independent reactions; C = N - R (ref. 3). Components are independent 
variables because components are conserved when reactions occur. The number of components is often 
equal to the number of elements, but that is not necessarily true. If two elements in a system always occur 
in the same ratio, as in SO4, the combination counts as an element, and the number of components is 
reduced by one. There may be additional components, like electric charge, but this constraint is not 
necessarily independent of element balances. Further constraints may be introduced by mechanisms that 
cause the number of reactions that actually occur to be less than the number of possible independent 
reactions. The determination of the number of constraints of complex systems really requires computers 
with mathematical programs because the number of components is equal to the rank of the conservation 
matrix for the system (ref. 3). The choice of components is not unique, but the number of components is 
unique. Legendre transforms can be used to introduce up to C - 1 chemical potentials of species as natural 
variables. 

My own introduction to the possibility of using the chemical potential of a species as a natural variable was 
not in terms of Legendre transforms, but was more down to earth. When I was working on the 
thermodynamics of petroleum processing, I learned about calculations at Mobil Research and Development 
that gave me an idea. They were making equilibrium calculations on a reactor, which for some reason had 
a nearly constant partial pressure of molecular hydrogen, let's say 10-3 bar. To simplify the calculations, 
which involved a very large number of species, someone suggested that since the standard state pressure 
for molecular hydrogen of 1 bar is arbitrary, they might as well redefine the standard state of molecular 
hydrogen to be 10-3 bar and then leave molecular hydrogen out of the calculations. They did this by 
adjusting the standard Gibbs energies of formation of the various species in the system according to their 
hydrogen content. At that time I was making calculations on the degrees of polymerization in homologous 

i= 1 
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series in complex mixtures of hydrocarbons under various conditions, and I recognized that I could set the 
partial pressure of ethylene at some specified value and recalculate the standard Gibbs energies of 
formation for the other species using ethylene at a specified partial pressure as a reference state. After 
doing this for some time and working with Irwin Oppenheim on the statistical mechanics of these systems 
(ref. 4-6), we realized that we were really using a Legendre transform to define a new thermodynamic 
potential, which has its minimum value at specified T, P, and P(C2H4). 

As a simple example of a Legendre transform of the Gibbs energy for a system that involves chemical 
work, consider a chemical reaction system containing species A, B, and C that react according to 

A + B = C  (7) 
The differential of the Gibbs energy at constant T and P is given by 

(~G)T ,  P = P A ~ A  + pugdnug + w d n c  (8) 
When reaction 7 is at equilibrium, the equilibrium relation 

PA+PB=W (9) 
can be used to eliminate 

(dG)T,P = pA(dnA + dnc) + P B ( ~ B  + dnc) = P A ~ ~ A ' +  pugdnug' (10) 
where nA' = nA + n c  is the amount of component A and ng' = ng + n c  is the amount of component B. 
Note that there are two components because C = N - R = 3 - 1 = 2.  The amounts of the two components, 
nA' and ng', are independent variables, in contrast with the amounts of species, nA, ng, and nc. The fact 
that components have the same chemical potentials as species is not often discussed in the literature, but 
Beattie and Oppenheim discuss it in their book Principles of Thermodynamics (ref. 7). 

Now, let us think about reaction 7 being carried out in a reactor that is connected to a reservoir for B with a 
semipermeable membrane that is permeable to species B. The pressure of B in the reservoir can be 
maintained at any desired value. Since we want to make the chemical potential of B a natural variable, we 
use the following Legendre transform to define a transformed Gibbs energy G :  

Note that the conjugate extensive variable of the chemical potential of a species is not the amount nB of the 
species in a chemically reacting system because nB is not an independent variable. The amount nB' of 
component B is an independent variable. The amount ng' of component B is the amount of free B plus 
the amount of bound B, namely C, in the reactor. Taking the differential of G' and substituting (dG)T,p 
from equation 10 yields 

(12) 
When the chemical potential of B is specified, 

and the system becomes effectively a one-component system. The number C' of apparent components is 
equal to the number N' of species with variable concentrations minus the number R' of independent 
reactions; C' = N - R' = 2 - 1 = 1. According to Callen's suggestion G'  could be represented by 
U[T,P,pug], but the advantage of the symbol G is that this thermodynamic potential is very much like G 
because the criterion for equilibrium becomes (dG)rp,pB < 0. For ideal gases, (dG')T,p,pB < 0. 

from equation 8 to obtain 

G' = G - ng'pug (11) 

(dG')T,P = PAdnA' - nug'dpug 

(dG')~,~,pug = P A ~ ~ A '  (13) 

Making the Legendre transformation in equation 11 has had the effect of making it possible to describe this 
chemical equilibrium in a simpler way. We have gone from three species at T, P to one component at T, 
P, pug. This may not seem very important for such a simple system, but it is very useful for complex 
systems. Since dnA' = dnA + dnc and p~ = /.@ - pug, equation 13 can be written 

(14) 
Equation 14 has two partial derivatives that define transformed chemical potentials pi' for A and C: 

(dG')~,~,pug = PAdnA' = PA(dnA + h C )  = MdnA + (K - PB)dnC 

The transformed chemical potential of species A is equal to its chemical potential PA, but the transformed 
chemical potential of species C is equal to w - pug. 
Equation 14 can be rewritten in terms of these transformed chemical potentials. 

( ~ G ' ) T , P , ~ B  = Y A ' ~ ~ A  + Pc'dnc 
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Thus when the chemical potential of a species is specified, the transformed chemical potentials pi' of the 
variable species (A and C) replace their chemical potentials in the fundamental equation. Equation 17 can 
be used to show that at equilibrium at specified pg the transformed chemical potentials of A and C are 
equal, PA' = pc' .  Equation 17 is like the fundamental equation for G for two isomers. At chemical 
equilibrium, the chemical potentials of isomers are equal. An isomer group at equilibrium has a certain 
standard Gibbs energy of formation and standard enthalpy of formation (ref. 8). Thus we can interpret 
equation 17 by saying that at equilibrium, pseudoisomer A has the same transformed chemical potential as 
pseudoisomer C. Since the pseudoisomer group A,C has a transformed chemical potential PA' and the 
amount of the pseudoisomer group is represented by nA', equation 13 can be written 

This equation can be integrated at constant T, P, p g  to obtain the Euler equation G = nA'pA'. 

If there are more species and more pseudoisomer groups, equation 18 can be generalized to 

( d G ' ) ~ , ~ , p g  = P A ' ~ ~ A '  (18) 

N 

( ~ G ' ) T , P , ~ B  = x ~ i ' d n i '  (19) 
i= 1 

where the pi' are the transformed chemical potentials of the IV pseudoisomer groups and the ni' are the 
amounts of the N' pseudoisomer groups. This equation looks very much like equation 8 for (dG)T,p 
except that it is for the transformed Gibbs energy and is written in terms of pseudoisomer groups at 
specified p g ,  rather than species. The fact that equation 19 looks so much like equation 8 suggests that the 
pseudoisomer groups can be treated like species are treated in familiar chemical equilibrium calculations. 
The fundamental equation for G' yields new Maxwell equations, a Gibbs-Duhem equation, and a Gibbs- 
Helmholtz equation. Equation 19 can be integrated at constant T, P, p g  to obtain the Euler equation 

N 

G' = Z pj'ni' (20) 
i= 1 

Thus the transformed Gibbs energy G' is additive in the transformed chemical potentials pi' of the 
pseudoisomer groups, just like the Gibbs energy G is additive in the chemical potentials pi of species. 
When the chemical potential of a species is specified, the thermodynamic treatment of the reaction system 
can be reconceptualized in terms of pseudoisomer groups. A pseudoisomer group is a sum of species 
differing only with respect to the number of B molecules in the species. 

Equation 20 can be derived in another way that is useful because it is more general and provides a relation 
for the calculation of the transformed chemical potential of a species. We start with the Legendre 
transform in equation 11 and substitute G = x ,Uini and ng' = x NB(i)ni, where Ng(i) is the number of B 
molecules in a molecule of i, to obtain 

N N N N IV 
G' = x f.l,jni - Pg Ng(i)ni = x ni[f..li - f.f.gNB(i)] = ni,Ll; = x ni 'pi' (21) 

i= 1 i= 1 i= 1 i= 1 i= 1 
where the transformed chemical potential of i is given by 

Pi' = Pi - NB(~)PB (22) 

Derivations are carried out with chemical potentials, but calculations on actual systems are carried out with 
standard Gibbs energies of formation, so that equation 22 can be written as 

(23) 
where the gases are assumed to be ideal. 

Just as isomer groups can be treated as species in equilibrium calculations at specified T and P (ref. 8), 
pseudoisomer groups at a specified chemical potential of a species can be treated as pseudo "species." The 
standard transformed Gibbs energy of formation of a pseudoisomer group is given by 

= A@iO - Ng(i)[A.fcgo + RT~(PB/P')]  

N 

A@'O(pseudoisomer group) = - RT In { x exp[-A@i'O/Rr] } 

ri = exp{ [A@'o(pseudoisomer group) - A@i'O]/RT} 

(24) 
i= 1 

The mole fraction ri of the ith pseudoisomer in the pseudoisomer group is given by 
(25) 
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The summation in equation 24 is a kind of partition function, and the distribution in equation 25 is a kind 
of Boltzmann distribution. The standard transformed enthalpy of formation of the pseudoisomer group is 
a mole fraction weighted average and is given by 

M 
AfH'o(pseudoisomer group) = x riAfHi'0 (26) 

There is a corresponding standard transformed entropy of formation. Thus the use of Legendre transform 
brings in a whole set of transformed thermodynamic properties. 

This approach has been used to calculate equilibrium distributions in a number of hydrocarbon 
homologous series as functions of P(C2H4), P(C2H2), P(H2), and P(H) (ref. 9). 

i= 1 

LEGENDRE TRANSFORM TO INTRODUCE pH AND pMg AS NATURAL 
VARIABLES 

Biochemistry provides a good example of the usefulness of the transformed Gibbs energy because 
biochemists are primarily interested in what happens at a specified pH. Since most biochemical reactants 
are weak acids, specifying the chemical potential of H+ means that the Gibbs energy is not the criterion of 
equilibrium. To make the chemical potential of H+ a natural variable, the following Legendre transform is 
used (ref. 10-1 1): 

(27) 
where n'(H+) is the total amount of hydrogen in the system, namely the amount of the hydrogen 
component, which is given by 

G' = G - n'(H+)p(H+) 

N 

n'(H+) = x N ~ ( i ) n i  (28) 
i= 1 

where NH(i) is the number of hydrogen atoms in species i, and ni is the amount of species i. Substituting 
this and G = c pini into the Legendre transform (equation 27) yields 

G ' = x nipi - x N~(i)p(H+)ni (29) 

= C n i b i  - NH(i)dH+>] 

= C nip; 
where the transformed chemical potential pi' of species i is given by 

Substituting this equation in equation 5 yields 
pl = pi - NH(i>pL(H+> 

N- 1 N 

dG = - SdT + VdP + x pj'dni + p(H+) x NH(i)dni (3 1) 
i= 1 i= 1 

Since the amount n'(H+) of the hydrogen component is given by equation 28, equation 31 can be written 
N- 1 

dG = - SdT + VdP + pidni + p(H+)dn'(H+) (32) 

Since the hydrogen component contributes a single term, we can use the Legendre transform to 
interchange the roles of the intensive (p(H+)) and extensive (n'(H+)) variables in the last term. 

i= 1 

The differential of G' (equation 27) is 

and substituting equation 32 yields 
dG ' = dG - n'(H+)dp(H+) - p(H+)dn'(H+) 

N- 1 

dG ' = - SdT + VdP + x pi'dni - n'(H+)dp(H+) 
i= 1 

We can make the hydrogen ion concentration the independent variable, rather than p(H+), by use of 

(33) 

(34) 
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dp(H+) = { -1 JPW+) [H+ldT + 
a T  

When this equation is substituted in equation 34 and we take the indicated derivatives, we obtain 
N-  1 

dG ' = - S 'dT + VdP + 2 Pi'dni + 2.303n'(H+)RTdpH 
i= 1 

(35) 

where pH = - log([H+]/P) and co is the standard concentration. The transformed entropy S ' of the 
system is given by 

s = s - ~ ( H + ) S ( H + )  (37) 

where $H+) is the molar entropy of hydrogen ion. Defining the transformed enthalpy as H ' = G ' + TS ' 
yields 

H ' = H - n'(H+)fi(H+) (38) 

Equation 36 shows that the criterion for spontaneous change and equilibrium is (dG ')T,P,~H 5 0. Thus 
the transformed Gibbs energy G ' is minimized at equilibrium at specified T, P, and pH. 

Since Mg2+ is often bound by biochemical reactants, the chemical potential of Mg2+ can also be included 
in the Legendre transform given in equation 27. When this is done equation 36 can be written 

N- 2 

(dG')pH,pMg = - S'dT + VdP + x Pi'dni 
i= 1 

where the transformed chemical potential of species i is given by 
P i  = Pi - NH(i)P(H+) + NMg(i)P(Mg2+) 

(39) 

To see how this applies to a biochemical reaction system, consider adenosine triphosphate (ATP), which is 
the sum of AT@-, HATP3-, HzATPZ-, MgATP2-, MgHATP-, and Mg2ATP. At specified pH and pMg, 
these six species are pseudoisomers and have the same transformed chemical potential pi'. Therefore, 
equation 39 for a biochemical reaction system can be written in terms of the differential amounts dn; of 
pseudoisomer groups, rather than species, to obtain 

" 

(dG')pH,pMg = - S'dT + VdP + c Pi'dni' 
i= 1 

where N is the number of pseudoisomer groups. 

Equation 41 can be used to derive the expression for the apparent equilibrium constant K ,  which is 
written in terms of reactants (sums of species). The values of K for a number of biochemical reactions 
and their temperature coefficients, or calorimetric data, can be used to calculate standard transformed 
Gibbs energies and standard transformed enthalpies of reaction of the reactants by using 

iv 

A,G'O = - RT In K = x vi'AfGi'0 
i= 1 

iv 

A r H O  = E Vi'AfHi'O 
i= 1 

(43) 

where the vi' are stoichiometric numbers for the reactants. Biochemical reactions are written in terms of 
sums of species at specified pH and pMg and should not include H+ or Mg2+ because they are not 
conserved. In order to discuss metabolism, biochemists need a different kind of thermodynamic table than 
chemists because they are interested in reactants, like ATP, and are not interested in dealing with all of the 
species that make up ATP. Thus they are interested in the transformed thermodynamic properties of sums 
of species at a particular pH value, and perhaps a specified free concentration of metal ions, like Mg2+, 
that are bound by the reactant species. 
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By use of the equations discussed here, thermodynamic tables can be prepared at specified pH and pMg, 
for example, when the AGO and AfHo values of the various species are known (ref. 12-14). There is a 
problem in calculating AGO and A f l p  for the more complicated molecules of biochemical interest, even 
when the acid dissociation and metal-complex dissociation constants are known. The problem is that it is 
not yet possible to relate the thermodynamic properties of these complicated molecules to the elements in 
their reference states. However, this problem can be handled by assigning one species AGO = A f l p  = 0 
and stating this as a convention of the table. In the absence of data on AGO and AfHO for species, A G O  
and AfHO can be calculated from R values and heats of reaction (ref. 15) at specified pH and pMg by 
using equations 42-43. This nomenclature has been approved by IUPAC and IUBMB (ref. 16). 

I like to think of equilibrium calculations at specified pH as being at Level 2. Level 1 equilibrium 
calculations are the familiar calculations in terms of species. The advantage of Level 2 is that it deals with 
sums of species, like ATP, and so there is a simplification in the description of the system. Calculations 
on biochemical systems can also be carried out at Level 3 (ref. 17). As an illustration of Level 3, consider 
the glucokinase reaction: 

(44) 
The apparent equilibrium constant Ic for this reaction at specified T, P, pH, pMg, and ionic strength is 
given by 

(45) 
In considering systems of reactions like this, biochemists are often interested in the extent to which 
glucose is phosphorylated at equilibrium at specified concentrations of ATP and ADP because these 
reactants are involved in many reactions in a living cell and may have rather steady concentrations. 
Equilibrium calculations at specified T, P, pH, pMg, [ATP], and [ADP] are Level 3 calculations. To make 
[ATP] and [ADP] natural variables it is necessary to define a further transformed Gibbs energy G" with 
the following Legendre transform: 

There are two reactants (glucose and glucose 6-phosphate) and one component, and so glucose and 
glucose-6 phosphate are pseudoisomers under these conditions. Since R" = lv" - C'  = 2 - 1 = 1, there is a 
single apparent reaction at specified T, P, pH, [ATP], and [ADP]: 

The fundamental equation is now 

and the apparent equilibrium constant of reaction 47 is defined by 

and can be calculated using the further transformed A@"O for glucose and glucose 6-phosphate. The 
advantage of the successive Legendre transforms is in the reduction in the number of equilibrium 
concentrations to be calculated for reaction 44 from 15 (Level I), to 4 (Level 2), to 2 (Level 3). 

Since the fundamental equations at the three levels are all of the same form, (1) expressions for K, R, and 
K '  are derived in the same way, (2) S, S', and S' and H, IT, and H '  are calculated in the same way, and 
(3) the same computer program (equcalc, ref. 18) can be used to calculate the equilibrium composition at 
each level. The equilibrium composition of a multi-reaction system can be calculated with a computer 
program that uses an iterative method. Fred Krambeck of Mobil Research and Development has written 
such a program, called equculc, in APL and in Muthematicu. This program, which is only about 20 lines 
long, uses the conservation matrix for the reaction system, calculates an initial estimate of the equilibrium 
composition, and then uses the Newton-Raphson method to minimize the Gibbs energy subject to the 
conservation conditions. Gas reactions and solution reactions have to be handled in slightly different ways 
because gas reactions are discussed in terms of partial pressures at a specified total pressure and solution 
reactions are discussed in terms of concentrations in a constant volume. The modified version of equculc 
for solution reactions is referred to as equculcc. Variations of these two basic programs are needed when 
the input is the stoichiometric number matrix rather than the conservation matrix. When the partial 
pressures or concentrations of one or more reactants are specified (Level 2), the same program can be used 
to calculate the equilibrium composition by minimizing the transformed Gibbs energy G', but with the 
specified component omitted from the conservation equations. The same program can be used at Level 3 
to calculate the equilibrium composition that minimizes the further transformed Gibbs energy G'. 

Legendre transforms can also be used in considering mechanical work, surface work, electrical work, 
work of electric polarization, and work of magnetic polarization (ref. 19), but there is only time to discuss 
one more example. 

ATP + Glucose = ADP + Glucose 6-phosphate 

[ADP] [Glucose 6-phosphate] 
[ATP] [Glucose] k"= 

G" = G' - n'(ATP)p'(ATP) - n'(ADP)y'(ADP) (46) 

Glucose = Glucose 6-phosphate (47) 

(~G")T,P,~H, [ATP],[ADP] = y"(Glu)dn"(Glu) -I- (Ut'(G6P"n"(G6P) (48) 

K' = [Glucose 6-phosphate]/[Glucose] (49) 
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LEGENDRE TRANSFORM TO INTRODUCE ELECTRIC POTENTIALS OF 
PHASES AS NATURAL VARIABLES 

When a multi-phase system involves work of electric transport, terms of the form $idQi = F$izidni are 
added to the fundamental equations for U, H, A, and G, where $i is the electric potential of the phase 
containing species i, Qi is the electric charge of species i, F is the Faraday constant, and zi is the charge 
number of species i. Since the extensive variables in the electric work terms are dni, the electric work 
terms are not independent of the chemical work terms, which also involve dni. Since the electric work 
terms do not introduce new natural variables, the Gibbs energy G continues to be the thermodynamic 
potential that provides the criterion of equilibrium at specified T and P, and equation 5 applies. The 
electric potentials of the phases are constants for a particular system and need to be specified, but they are 
not natural variables of the Gibbs energy G. In order to make the electric potentials of the phases natural 
variables, it is necessaq to make the following Legendre transform (ref. 20): 

N N 

G' = G - C + i ~ i  = G - F X zi$ini (50) 
i= 1 i= 1 

where N can be as large as the number of different species times the number of phases. Substituting G = 
c pini yields 

N N N N 

G' = X pini - F C zi$ini = C (pi - ~zi$i)ni = C pi'ni (51) 
i= 1 i= 1 i= 1 i= 1 

where the transformed chemical potential pi' of species i is defined by 
(52)  

Equation 5 1 shows that the transformed Gibbs energy is additive in the transformed chemical potentials of 
the species, just like the Gibbs energy is additive in the chemical potentials of the species. The chemical 
potential pi of ion i, which is given by 

(53) 
has the same value in each phase at equilibrium, as can be shown by use of equation 5. This constancy of 
,Ui at equilibrium throughout a multi-phase system is one of the most important ideas of chemical 
thermodynamics. At constant T and P, pi is independent of the phase at equilibrium, even if the phases 
are different states of matter, are at different pressures, or have different electric potentials. Thus at 
equilibrium the transformed chemical potential pi' has different values in phases with different electric 
potentials. 

pi' = pi - FZi$i 

pi = pi' + FZi$i 

To find out more about the transformed chemical potential pi', consider the fundamental equation for the 
transformed Gibbs energy G' for a multi-phase system with phases at different electric potentials. The 
differential of G (defined by the Legendre transform in equation 50) is given by 

N N 

d G  = dG - F X zi$idni - F C zinid& 
i= 1 i= 1 

Substituting the expression for dG from equation 5 yields 
N N 

(54) 

dG' = - SdT + VdP + C pi'dni - F C zinid& (55 )  
i= 1 i= 1 

This shows that the electric potentials of the phases are natural variables of the transformed Gibbs energy. 
It is evident from equation 55 that the transformed chemical potential pi' is given by 

where j # i. This can be compared with the definition of the chemical potential of a species, which is given 
by 

where j # i. There are corresponding molar transformed entropies and molar transformed enthalpies. 
Equation 55 also yields new Maxwell equations, a Gibbs-Duhem equation, and a Gibbs-Helmholtz 
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equation. In a multi-phase system, the amounts of species are not independent variables because of the 
phase distribution constraints, and this is discussed elsewhere (ref. 21) 

The electric potentials of phases are not natural variables of the Gibbs energy, but the electric potential of 
the phase an ion is in can be brought into calculations with the Gibbs energy by defining the activity ai of a 
species in a system having electric potential differences between phases with (ref. 21) 

(58) 
The definition of the activity is simply a means for replacing the chemical potential of a species with a 
property, the activity ai, that is more closely related with its concentration or partial pressure. Since the 
chemical potential of an ion in a phase is affected by the electric potential of the phase, it is reasonable to 
bring the electric potential into the definition of the activity in such a system. This means that the standard 
state chemical potential pjo of an ion in a multi-phase system with electric potential differences between 
phases is the value of the chemical potential at unit activity and at a reference electric potential for the whole 
multi-phase system. Substituting equation 58 into equation 5 yields 

N 

pi = pi0 + RT lnai + Fz& 

dG = - SdT + VdP + c (pi0 + RT lnai + Fzi@j )dni (59) 

Note that this equation does not give the derivative of the Gibbs energy with respect to the electric 
potentials of the phases because they have been introduced as constants involved in the description of the 
system and are not natural variables of G. Bailynzz has pointed out that d@i does not appear in the Gibbs- 
Duhem equation corresponding with equation 59. 

Equation 59 can be used to derive the equilibrium expression for a reaction that involves species in two 
phases with the same solvent: 

(60) 

i= 1 

AZA(a) + BZB(a) = CZc(P) 
The equilibrium condition derived from equation 5 is 

Substituting equation 58 yields the following expression for the equilibrium constant: 
pu(AzA,a) + p(BZB,a) = p(CZC,P> 

where 
(63) 

is the value the equilibrium constant would have if there was no electric potential difference. Issues of 
natural variables, components, and electroneutrality are dealt with elsewhere (ref. 21). 

Equation 53 differs from the IUPAC recommendation (ref. 23), which is 

where zi is referred to as the electrochemical potential and pi is referred to as the chemical potential. 
There are two problems with the IUPAC recommendation of 1974: The first problem is that pi is the 
chemical potential pi defined by equation 57. The more serious problem is that pi on the right side of 
equation 64 is not the chemical potential for species i; it is given by the derivative in equation 56 and at 
equilibrium has different values in phases with different electric potentials. 

K' = exp{ - [po(CZC,P) - po(AZA,a) - pO(BZB,a)]/RT} 

j& = pj + Fzi@j (64) 

DISCUSSION 

Since the number of possible thermodynamic potentials for a system is given by 2k, where k is the number 
of conjugate pairs of variables in the fundamental equation, it is important to be systematic and think about 
nomenclature problems when non-PV work is involved. 

When the chemical potential ps of a species is specified in a chemical reaction system, the conjugate 
extensive variable is the amount n,' of the s component, rather than the amount ns of the s species. The 
amounts of components are independent variables when there are chemical reactions at equilibrium or 
phase equilibria, but amounts of species are not. In order to make ps a natural variable, it is necessary to 
use a Legendre transform to define a transformed Gibbs energy G' by usingG' = G - ysns'. The 
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maximum number of components that can be removed in this way is C - 1. There are four expressions for 
the transformed chemical potential of species i: 

where n)di,s indicates that the amounts of all pseudoisomer groups except i and s are held constant. There 
are corresponding molar transformed entropies and molar transformed enthalpies. 

When a system involves work in addition to PV work and chemical work, there at two possibilities, either 
the extensive properties in the additional terms are independent of { ni) or dependent on { ni} . If the new 
extensive property is independent of { n i } ,  it is a natural variable for U, H ,  A ,  and G. In this case a 
Legendre transform can be used to introduce the conjugate intensive property as a natural variable and the 
new thermodynamic potential can be designated with a new capital roman letter, following the custom of 
using H ,  A,  and G. When Legendre transforms are used to define additional thermodynamic potentials by 
replacing some of the extensive natural variables { X )  with the corresponding intensive properties { P } ,  the 
chemical potential is given by 

There are corresponding molar entrop?es and enthalpies. 

If the new extensive property is dependent on { ni) ,  as for a multi-phase system with phases at different 
electric potentials, the presence of this new work term does not affect the fundamental equations for U, H, 
A,  and G. However, the introduction of the corresponding intensive variable as a natural variable using a 
Legendre transform leads to a transformed thermodynamic potential. The transformed thermodynamic 
potentials U', H' ,  A' ,  and G', which are very much like U, H, A ,  and G, yield new fundamental 
equations, Maxwell equations, Gibbs-Helmholtz equations, and a Gibbs-Duhem equation. 
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