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Abstract: Siloxane methodology is extended to couplings with iodo- and bromoanilines, hin-
dered arylbromides, and substituted siloxanes as substrates. Additionally, initial studies with
5-bromoindole and other heteroaromatics suggest that the siloxane-mediated cross coupling
methodology will also be applicable in these systems.

INTRODUCTION

Palladium-catalyzed cross coupling reactions have been developed as a versatile tool for the formation
of carbon–carbon bonds [1–4]. Traditional methods used to accomplish this type of transformation
include the Stille and Suzuki reactions [1–6]. Recently, silicon-based reagents have been reported to
effect these type of cross coupling reactions [7–14]. Results from our group, Hiyama, and others have
shown palladium-catalyzed, fluoride-promoted reactions of silicon derivatives to be an attractive alter-
native to the Stille and Suzuki coupling reactions.

Initially, we demonstrated the ability of siloxane derivatives to cross couple with aryl iodides,
electron-deficient aryl bromides, and allylic benzoates in excellent yields [7]. A more general palladi-
um catalyst/ligand system has been developed that activates a wide range of aryl bromides, including
bromopyridines and bromothiophenes [15]. Additionally, the addition of Buchwald’s ligand [16–19]
allowed the couplings of aryl chlorides to proceed with good yield [15].

RESULTS AND DISCUSSION

We examined a variety of substituted anilines as substrates in cross couplings with siloxanes (Table 1)
and found that p-iodoaniline (entry 1) underwent reaction in good yield, as did p-bromoaniline (entry
6). Additional attempts with acetamides and sulfonamides (entries 4, 5, 8, and 9) proceeded success-
fully, as did couplings with N, N-dimethyl-p-iodoaniline (entries 2 and 3).

Our results also indicate that anilines couple in good yield regardless of the position of substitu-
tion on the aromatic ring (entries 1, 10, and 11). This result illustrates the general nature of the silox-
ane-mediated cross coupling with electron-rich anilines. The versatility of the reaction is further
demonstrated with the successful coupling of electron-deficient substrate 1-bromo-2-nitrobenzene
(entry 12).

A second area of investigation involves the steric tolerance of this methodology. When subjected
to typical coupling conditions, 2-bromo-m-xylene (1) underwent cross coupling with phenyl-
trimethoxysilane to afford heterocoupled adduct 2 in 85% yield (Scheme 1).

*Lecture presented at the 13th International Conference on Organic Synthesis (ICOS-13), Warsaw, Poland, 1–5 July 2000. Other
presentations are published in this issue, pp. 1577–1797.
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Interestingly, a large decrease in yield occurred when the catalyst loading was dropped below 10
mol%. In unhindered substrates, we have previously found this methodology to be tolerant of catalyst
loadings as low as 3 mol%.

While coupling proceeds efficiently with a wide variety of aryl iodides, bromides, and chlorides,
little work has been undertaken to determine the tolerance of the methodology toward substituted silox-
anes. Consequently, several substituted siloxanes were synthesized using a modified procedure of
Masuda [20]. These siloxanes were subjected to cross coupling conditions identical to that described in
Table 1. Acceptable yields of biaryl adducts were obtained in all examined cases.
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Table 1.Substrate studies.

Entry X R Phosphine Siloxane Yield 

1 4-I NH2 PPh3 PhSi(OMe)3 95%
2 4-I NMe2 PPh3 PhSi(OMe)3 69%
3 4-I NMe2 PPh3 PhSi(OCH2CF3)3 85%
4 4-I NHAc PPh3 PhSi(OMe)3 70%
5 4-I NHTs PPh3 PhSi(OMe)3 65%
6 4-Br NH2 PPh3 PhSi(OMe)3 48%
7 4-Br NH2 P(o-tol)3 PhSi(OMe)3 78%
8 4-Br NHAc P(o-tol)3 PhSi(OMe)3 77%
9 4-Br NHTs P(o-tol)3 PhSi(OMe)3 72%
10 3-I NH2 P(o-tol)3 PhSi(OMe)3 75%
11 2-I NH2 PPh3 PhSi(OMe)3 82%
12 2-I NO2 PPh3 PhSi(OMe)3 58%

Scheme 1



Table 2Cross couplings with substituted siloxanes.

CONCLUSIONS

This work further demonstrates the versatility and generality of the fluoride-mediated siloxane cross
coupling methodology. Electron-rich iodo- and bromoanilines undergo cross coupling, as does electron-
deficient 1-bromo-2-nitrobenzene. The ability of this methodology to tolerate sterically-challenged sys-
tems is also demonstrated, as well as couplings to substituted siloxanes.

Additional studies underway involve the coupling of heteroaromatic systems. Preliminary results
of the cross coupling of 5-bromoindole (3) afford heterocoupled product 4 in 65% yield (Scheme 2).
An interesting byproduct of the reaction involving phenyltrimethoxysilane is indole (5). Optimization
of this reaction, as well as couplings of 2-bromothiazole and 4-bromopyrazole are currently under
investigation.
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Studies involving the preparation of a wide variety of substituted siloxanes and their application
in the siloxane cross coupling methodology are also underway and will be reported in due course.
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Scheme 2


