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Abstract: The formation of C,C-bonds via photolytically generated biradicals can occur with
high stereoselectivity. If triplet biradicals are involved, chiral induction is highly likely.
Syntheses that occur only via singlet biradicals have a good chance to show a memory effect
of chirality. 

It has been known for about 20 years that radicals are versatile intermediates in organic synthesis [1],
and 5–10 years ago it became clear that the rules for stereoselectivity can be applied also for reactions
between radicals and nonradicals (Fig. 1) [2].

However, for reactions between two radicals, which occur with diffusion-controlled rates, one
cannot expect that substituents induce stereoselectivity. We have now shown that this changes in reac-
tions of photolytically generated biradicals: Both the singlet and the triplet biradicals can react with
high stereoselectivity, but the outcome of the reactions depends upon the multiplicity of the biradical.

*Lecture presented at the 13th International Conference on Organic Synthesis (ICOS-13), Warsaw, Poland, 1–5 July 2000. Other
presentations are published in this issue, pp. 1577–1797.
†Corresponding author

Fig. 1 Preferred and reactive conformations of acyclic radicals leading to stereoselective reactions.



We worked out the rules by studying the photocyclization of acyclic amino acids 1 into proline deriva-
tives 3. Intermediate of the reaction is biradical 2 formed in intramolecular H-abstraction by the pho-
toexcited carbonyl group [3].

In experiments that we have carried out with Pablo Wessig, glycine 4, substituted by a phenyl
ketone as photoactive group and a C2-symmetrical amine as auxiliary (see 6), photocyclized in 70%
yield and gave diastereomer 5 as only detectable proline [4]. Whereas the simple diastereoselectivity
could be easily explained by steric and H-bridging effects, the high asymmetric induction was a sur-
prise (Scheme 2).

Photocyclization of selectively deuterated glycine derivative 7 lead to the 2R-glycine 8 for both
H- and D-abstraction. Thus, the formation of the biradical does not influence the stereochemical out-
come of the reaction. It is the C,C-bond formation of biradical 9 that determines the stereochemistry
(Scheme 3).
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Scheme 1

Scheme 2



Obviously, the lifetime of the intermediate biradical is so long that a conformation like 9 can be
adopted where the benzyl radical attacks the glycinyl radical from the less-shielded side. In order to
understand the long lifetime of the biradical, we carried out reactions in the presence of naphthalene as
quencher of the triplet ketone. Under these conditions no cyclization occurred. Thus, the photocycliza-
tion of 7 occurred via a triplet ketone and therefore, via a triplet biradical that cannot directly cyclize
and thus has a relatively long lifetime. In order to cyclize, this triplet biradical has to undergo a triplet-
singlet interconversion. This reaction occurs via a partial overlap of the radical orbitals, which brings
the radical carbon centers close to each other and is therefore influenced by the chiral auxiliary 
(Scheme 3). The singlet biradical then cyclizes rapidly as will be demonstrated with ketoesters.
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Scheme 3

Scheme 4



In peptides, asymmetry can be induced by the stereogenic centers of the amino acids. Thus, sub-
stituted dipeptide 10 (Scheme 4) yielded with high regioselectivity (6- versus 5-membered ring), high
simple diastereoselectivity (cis versus trans), and also remarkable asymmetric induction lactone 11 as
major photoproduct [5]. 

The regioselectivity could be explained by the preferred conformation of 10 where the A-strain
forced the substituted amino acid to adopt a conformation that is not favorable for an intramolecular H-
abstraction by the photoexcited phenyl ketone. The cis orientation of the OH- and NHBoc-groups is
presumably caused by H-bridges, because in solvents that break these intramolecular H-bridges, the
selectivity disappeared. H-bridges are presumably also the reason for the chiral induction. We deduced
this from experiments with tetrapeptide 12,which reacted with very similar regioselectivity and simple
diastereoselectivity, but the asymmetric induction in the formation of 13a was opposite to that of 11
(Scheme 4). Ab initio calculations demonstrated that in triplet biradical 14 (Fig. 2) the OH-group of the
benzyl radical forms a H-bond with the amide group of the peptide. This brings the radical to the front
side and explains the cyclization from this side leading to 13a. Solvents that break the intramolecular
H-bridges destroy the asymmetric induction. In dipeptides like 10 the H-bridge from the backside to the
NHBoc-group is preferred.
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Fig. 2 Preferred conformation of biradical 14 and solvent influence on the diastereoselectivity 13a:13b. In 13b
the configuration of both RCONH– and HO– substituents are opposite to that of 13a.



Next, we checked what happens in cases where the C,C-bond formation occurs in the stereogenic
center of an amino acid (Scheme 5). We expected that during photocyclization of alanine derivatives,
the information of the chiral center of the alanine would be lost because of the long lifetime of the inter-
mediate triplet biradical. This was indeed the case in reactions with 15 but the situation changed dra-
matically when ketoester 17 was used (Scheme 6). In the presence of the triplet quencher naphthalene,
the reaction occurred with a high retention at the stereogenic center of the amino acid [6].

The high retention of configuration in the photocyclization of the ketoester 17 shows that the
intermediate biradical19 has a memory of chirality [7].

This memory effect can easily be explained by conformation 20a(Fig. 3) that is formed in the H-
abstraction step by the ketoester group of 17. Because the lifetime of the S1 state of naphthalene is about
100 ns, the kinetic and thermodynamic parameters make a singlet energy transfer from the photoexcit-
ed naphthalene to the S1 state of ketoester 17 possible [8]. This singlet ketoester reacts to the cyclized
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Scheme 5

Scheme 6



product 18a. The major amount is transferred to the T1 state of 17 that is then trapped by naphthalene.
On the way from educt 17, via singlet biradical 20a to product 18a, the central chirality of 17 is con-
verted into a helical chirality of 20a. The racemization of singlet biradicals 20a 20bby rotation
around C,C-single bonds is considerably slower than the cyclization of the singlet biradical (20a →→
18a). This leads to the observed memory effect of chirality.

CONCLUSION

Photochemical cyclization experiments of glycine derivatives demonstrate that the stereoselective
intramolecular C,C-bond formation of a biradical can be governed a) by asymmetric induction if the
reaction occurs via a triplet biradical, and b) by a memory effect if triplet biradicals are not intermedi-
ates on the pathway leading to the reaction products (Scheme 7).

B. GIESE et al.

© 2000 IUPAC, Pure and Applied Chemistry 72, 1623–1629

1628

Fig. 3 Energy profile diagram for the racemization and cyclization of singlet biradicals 20aand 20b.
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