I  U  P  A  C

 

 

 

News & Notices

Organizations & People

Standing Committees

Divisions

Projects

Reports

Publications
. . CI
. . PAC
. . Macro. Symp.

. . Books
. . Solubility Data

Symposia

AMP

Links of Interest

Search the Site

Home Page

 

Pure Appl. Chem. 75(5), 601-608, 2003

Pure and Applied Chemistry

Vol. 75, Issue 5

Dynamic barriers and tunneling. New views of hydrogen transfer in enzyme reactions

J. P. Klinman

Department of Chemistry and Department of Molecular and Cell Biology,
University of California, Berkeley, CA 94720, USA

Abstract: Hydrogen-transfer processes are expected to show appreciable quantum mechanical behavior. Intensive investigations of enzymes under their physiological conditions show this to be true in practically every example investigated. Initially, tunneling was treated either as a tunneling correction [cf. Bell, The Tunnel Effect in Chemistry, Chapman & Hall, New
York, (l980)], or as corner-cutting [Truhlar et al., J. Chem. Phys. 100, 12771 (l996)]. This worked well as long as the observed properties could be explained by “corrections” to transition-state theory. However, over the past several years, enzymatic behaviors have been observed that are so deviant as to lie outside of transition-state theory. This phenomenon is discussed in the context of the enzyme, soybean lipoxygenase. An environmentally coupled
hydrogen-tunneling model is presented that derives from the treatments of Kuznetsov and Ullstrup [Can. J. Chem. 77, 689 (l999)], and includes heavy-atom reorganization (temperature-dependent and largely isotope-independent), together with heavy-atom gating (temperature- and isotope-dependent). This treatment can explain a wide range of behaviors and leads to a new view of the origin of kinetic isotope effects in hydrogen-transfer reactions. These properties link enzyme fluctuations to the hydrogen-transfer reaction coordinate, making a quantum view of H-transfer necessarily a dynamic view of catalysis.

*Plenary lectures presented at the 16th International Conference on Physical Organic Chemistry (ICPOC-16): Structure and Mechanism in Organic Chemistry,San Diego, California, USA, 4�9 August 2002. Other presentations are published in this issue, pp. 541�630.


Page last modified 19 May 2003.
Copyright © 2003 International Union of Pure and Applied Chemistry.
Questions or comments about IUPAC, please contact, the Secretariat.
Questions regarding the website, please contact web manager.