I  U  P  A  C

 

 

 

News & Notices

Organizations & People

Standing Committees

Divisions

Projects

Reports

Publications
. . CI
. . PAC
. . Macro. Symp.

. . Books
. . Solubility Data

Symposia

AMP

Links of Interest

Search the Site

Home Page

 

Pure Appl. Chem. 76(1), 37-47, 2004

Pure and Applied Chemistry

Vol. 76, Issue 1

Ab initio QM/MM MD simulations of the hydrated Ca2+ ion

C. F. Schwenk and B. M. Rode

Department of Theoretical Chemistry, Institute of General,Inorganic and
Theoretical Chemistry, University of Innsbruck, Innrain 52a, A-6020 Innsbruck, Austria

Abstract:

The comparison of two different combined quantum mechanical (QM)/molecular mechanical (MM) simulations treating the quantum mechanical region at Hartree-Fock (HF) and B3-LYP density functional theory (DFT) level allowed us to determine structural and dynamical properties of the hydrated calcium ion. The structure is discussed in terms of radial distribution functions, coordination number distributions, and various angular distributions and the dynamical properties, as librations and vibrations, reorientational times and mean residence times were evaluated by means of velocity autocorrelation functions. The QM/MM molecular dynamics (MD) simulation results prove an eightfold-coordinated complex to be the dominant species, yielding average coordination numbers of 7.9 in the HF and 8.0 in the DFT case. Structural and dynamical results show higher rigidity of the hydrate complex using DFT. The high instability of calcium ion's hydration shell allows the observation of water-exchange processes between first and second hydration shell and shows that the mean lifetimes of water molecules in this first shell (<100 ps) have been strongly overestimated by conclusions from experimental data.

*Lecture presented at the European Molecular Liquids Group (EMLG) Annual Meeting on the Physical Chemistry of Liquids: Novel Approaches to the Structure, Dynamics of Liquids: Experiments, Theories, and Simulation,Rhodes, Greece, 7-15 September 2002. Other presentations are published in this issue, pp. 1-261.


Page last modified 2 March 2004.
Copyright © 2004 International Union of Pure and Applied Chemistry.
Questions or comments about IUPAC, please contact, the Secretariat.
Questions regarding the website, please contact web manager.