I  U  P  A  C

 

 

 

News & Notices

Organizations & People

Standing Committees

Divisions

Projects

Reports

Publications
. . CI
. . PAC
. . Macro. Symp.

. . Books
. . Solubility Data

Symposia

AMP

Links of Interest

Search the Site

Home Page

 

Pure Appl. Chem. 76(1), 49-61, 2004

Pure and Applied Chemistry

Vol. 76, Issue 1

Solid-state proton conduction: An ab initio molecular dynamics investigation of ammonium perchlorate doped with neutral ammonia

L. Rosso and M. E. Tuckerman

Department of Chemistry, New York University, New York, NY 10003, USA;
Department of Chemistry and Courant Institute of Mathematical Sciences, New York University, New York, NY 10003, USA

Abstract:

The charge-transport mechanism in solid ammonium perchlorate crystal exposed to an ammonia-rich environment is studied using ab initio molecular dynamics. Ammonium perchlorate is an ionic crystal composed of NH4+ and ClO4- ; units that possesses an orthorhombic phase at T < 513 K and a cubic phase at T > 513 K. Exposure to an ammonia-rich atmosphere allows ammonia molecules to be absorbed into the crystal at interstitial sites. It has been proposed that these neutral ammonias can form short-lived N2H7+ complexes with the NH4+ ions allowing proton transfer between them, thereby enhancing the conductivity considerably. To date, however, there has been no direct evidence of this proposed mechanism. In this paper, ab initio molecular dynamics techniques are employed to explore this mechanism. By comparing computed infrared spectra of the pure and ammonia-doped crystals, we observe a significant broadening of the NH stretch peak into a lower frequency region, indicating through an experimentally verifiable observable, the formation of hydrogen bonds between NH3 and NH4+ units. This suggestion is confirmed by direct observation of N2H7+ complexes from the trajectory. Comparison of the diffusion constants of NH4+ in the pure and doped crystals yields a ratio that is comparable to the experimentally measured conductivity ratio and clearly shows an enhanced positive charge mobility. Finally, compelling evidence suggesting the possibility of an ammonia umbrella inversion following proton transfer from NH4+ and NH3 is obtained.

*Lecture presented at the European Molecular Liquids Group (EMLG) Annual Meeting on the Physical Chemistry of Liquids: Novel Approaches to the Structure, Dynamics of Liquids: Experiments, Theories, and Simulation,Rhodes, Greece, 7-15 September 2002. Other presentations are published in this issue, pp. 1-261.


Page last modified 2 March 2004.
Copyright © 2004 International Union of Pure and Applied Chemistry.
Questions or comments about IUPAC, please contact, the Secretariat.
Questions regarding the website, please contact web manager.