I  U  P  A  C

 

 

 

News & Notices

Organizations & People

Standing Committees

Divisions

Projects

Reports

Publications
. . CI
. . PAC
. . Macro. Symp.

. . Books
. . Solubility Data

Symposia

AMP

Links of Interest

Search the Site

Home Page

 

Pure Appl. Chem. 76(1), 147-155, 2004

Pure and Applied Chemistry

Vol. 76, Issue 1

Critical Raman line shape behavior of fluid nitrogen

M. Musso, F. Matthai, D. Keutel, and K.-L. Oehme

Institut für Physik und Biophysik, Universität Salzburg, Hellbrunnerstrasse 34,
A-5020 Salzburg, Austria
Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Strasse 1, D-85741 Garching, Germany
Carl Zeiss Jena GmbH, D-07745 Jena, Germany
Institut für Physikalische Chemie, Friedrich-Schiller-Universität Jena, Helmholtzweg 4, D-07743 Jena, Germany

Abstract:

Isotropic Raman line shapes of simple molecular fluids exhibit critical line broadening near their respective liquid-gas critical points. In order to observe this phenomenon, it is essential that the band position of a given vibrational mode is density-dependent, and that vibrational depopulation processes negligibly contribute to line broadening. Special attention was given to the fact that the isotropic (i.e., nonrotationally broadened) line shape of liquid N2 is affected by resonant intermolecular vibrational interactions between identical oscillators. By means of the well-chosen isotopic mixture (14N2).975 - (14N15N).025, the temperature and density dependences of shift, width, and asymmetry of the resonantly coupled 14N2 and, depending on the S/N ratio available, of the resonantly uncoupled 14N15N were determined, with up to milli-Kelvin resolution, in the coexisting liquid and gas phases and along the critical isochore, using a highest-resolution double monochromator and modern charge-coupled device detection techniques. Clear evidence was found that vibrational resonance couplings are present in all dense phases studied.

*Lecture presented at the European Molecular Liquids Group (EMLG) Annual Meeting on the Physical Chemistry of Liquids: Novel Approaches to the Structure, Dynamics of Liquids: Experiments, Theories, and Simulation,Rhodes, Greece, 7-15 September 2002. Other presentations are published in this issue, pp. 1-261.


Page last modified 3 March 2004.
Copyright © 2004 International Union of Pure and Applied Chemistry.
Questions or comments about IUPAC, please contact, the Secretariat.
Questions regarding the website, please contact web manager.