Thermodynamics and non/equilibrium criteria for development
and application of supplemented phase diagrams

Database

  2. Experimental data on phase transitions


Simple (binary/ternary) aqueous systems.

2.a Sugars, polyols, vitamins

2.b Proteins

2.c Biopolymers


Complex systems

2.d Foods

2.e Edible films

2.f Biological systems

2.g Drugs

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Simple (binary/ternary) aqueous systems.

2.a Sugars, polyols, vitamins

  • Ablett, S., Izzard, M.J., and Lillford, P.J. 1992. Differential scanning calorimetric study of frozen sucrose and glycerol solutions. J. Chem. Soc. Faraday Trans. 88, 789-794.

  • Ablett, S., Izzard, M.J., Lillford, P.J., Arvanitoyannis, I. and Blanshard, J.M.V. 1993.Calorimetric study of the glass transition occurring in fructose solutions. Carbohydr. Res. 246, 13-22.

  • Ablett, S., Clarke, C.J., Izzard, M.J., and Martin, D.R. 2002. Relationship between ice recrystallization rates and the glass transition in frozen sugar solutions. J. Sci. Food Agric. 82:1855-1859.
  • Aldous, B.J., Auffret, A.D., and Franks, F. 1995. The crystallization of hydrates from amorphous carbohydrates. Cryo-Lett. 16, 181-186.
  • Andersen, A.B. and Skibsted, L.H. 1998. Glass transition of freeze-concentrated aqueous solution of ascorbic acid as studied by alternating DSC. Lebensm. Wiss. Technol. 31:69-73.
  • Angell, C.A., Stell, R.C. & Sichina, W. 1982. Viscosity-Temperature Function for Sorbitol from Viscosity and DSC Studies. J. Phys. Chem. 86, 1540-42
  • Arvanitoyannis, I., Blanshard, J.M.V., Ablett, S., Izzard, M.J., and Lillford, P.J. 1993.Calorimetric study of the glass transition occurring in aqueous glucose:fructose solutions. J. Sci. Food Agric. 63, 177-188.
  • Arvanitoyannis, I., and Blanshard, J. M. V. 1993a. Rates of crystallization of dried lactose-sucrose mixtures. J. Food Sci. 59, 197-205 (1994).
  • Aubuchon, S.R., Thomas, L.C., Theuerl, W., and Renner, H. 1998. Investigations of the sub-ambient transitions in frozen sucrose by modulated DSC. J. Thermal Anal. 52:53-64.
  • Bhandari, B.R. and Hartel, R.W. 2002. Co-crystallization of sucrose at high concentration in the presence of glucose and fructose. J. Food Sci. 67:1797-1802.
  • Blond, G. 1989. Water-galactose system: supplemented state diagram and unfrozen water. Cryo-Letters 10, in press.
  • Blond, G., Simatos, D., Catte, M., Dussap, C.G., and Gros, J.B. 1997. Modeling of the water-sucrose state diagram below 0 C. Carbohydr. Res. 298:139-145.
  • Bohon, R.L. and Conway, W.T., DTA studies on the glycerol-water system, 1972. Thermochim. Acta, 4, 321-341.
  • Borde, B. and Cesaro, A. 2001. A DSC study of hydrated sugar alcohols - isomalt. J. Therm. Anal. Calorim. 66:179-195.
  • Borde, B. and Cesaro, A. 2002. Thermal properties of isomalt. J. Therm. Anal. Calorim. 69:267-280.
  • Boutron, P. & Kaufmann, A. 1979. Stability of the Amorphous State in the Water-Propylene Glycol System. Cryobiol. 16, 557-68.
  • Boutron, P. 1990. Levo- and dextro-2,3-butanediol and their racemic mixture: very efficient solutes for vitrification. Cryobiology 27, 55-69.
  • Bressan, C. and Mathlouthi, M. 1994. Thermodynamic activity of water and sucrose and the stability of crystalline sugar. Zuckerindustrie 119:652-658.
  • Bustin, O. and Descamps, M. 1999. Slow structural relaxations of glass-forming maltitol by modulated DSC. J. Chem. Phys. 110:10982-10992.
  • Cammenga, H.K. and Zielasko, B. 1996. Glasses of sugars and sugar substitutes. Ber. Bunsenges. Phys. Chem. 100:1607-1609.
  • Carpentier, L. and Descamps, M. 2003. Dynamic decoupling and molecular complexity of glass-forming maltitol. J. Phys. Chem. B 107:271-275.
  • Carre, J., Claudy, P., Feve, M., Gerard, J.F., Letoffe, J.M., and Siniti, M. 1993. Study of the vitreous transition in maltitol glasses. Calorim. Anal. Therm. 24.
  • Carrington, A.K., Sahagian, M.E., Goff, H.D., and Stanley, D.W. 1994. Ice crystallization temperatures of sugar/polysaccharide solutions and their relationship to Tg'. Cryo-Letters 15, 235-244.
  • Chang, Z.H. and Baust, J.G. 1991a. Physical aging of glassy state: DSC study of vitrified glycerol systems. Cryobiology 28: 87-95.
  • Chang, Z. and Baust, J.G. 1991b. Further inquiry into the cryobehavior of aqueous solutions of glycerol. Cryobiology 28: 268-278.
  • Chang, Z.H. and Baust, J.G. 1991c. Physical aging of the glassy state: sub-Tg ice nucleation in aqueous sorbitol systems. J. Non-Cryst. Solids, 130, 198-203.
  • Chang, Z. and Baust, J.G. 1993. Effect of sub-Tg annealing on the critical warming rate to avoid devitrification in 60% w/w aqueous sorbitol solutions. Cryo-Lett. 14, 359-364.
  • Chen, T., Bhowmick, S., Sputtek, A., Fowler, A., and Toner, M. 2002. The Tg of mixtures of trehalose and HES. Cryobiol. 44:301-306.
  • Chen, T., Fowler, A., and Toner, M. 2000. Literature review: supplemented phase diagram of the trehalose-water binary mixture. Cryobiol. 40:277-282.
  • Chongprasert, S., Knopp, S.A., and Nail, S.L. 2001. Characterization of frozen solutions of glycine. J. Pharm. Sci. 90:1720-1728.
  • Claudy, P., Siniti, M., and El Hajri, J. 2002. Thermodynamic study of the glass relaxation phenomena - DSC study of annealing of maltitol glass. J. Therm. Anal. Calorim. 68:251-264.
  • Contreras Lopez, E. Champion, D., Blond,G and Le Meste, M. 2005. Influence of dextran, pullulan and gum arabic on the physical properties of frozen sucrose solutions. Carbohyd. Polymers, 59: 83-91.
  • de Cindio, B., Correra, S., and Hoff, V. 1995. Low temperature sugar-water equilibrium curve by a rapid calorimetric method. J. Food Eng. 24:405-415.
  • Finegold, L., Franks, F. and Hatley, R.H.M. 1989. Glass/Rubber Transitions and Heat Capacities of Binary Sugar Blends. J. Chem. Soc., Faraday Trans. I, 85, 2945-51.
  • Franks, F. 1982, The Properties of Aqueous Solutions at Subzero Temperatures, in Water: A Comprehensive Treatise (ed F. Franks), Vol. 7, New York, Plenum Press, 215-338.
  • Franks, F. 1987. Physical Chemistry of Small Carbohydrates - Equilibrium Solution Properties. Pure & Appl. Chem. 59, 1189-1202.
  • Goff, H.D. and Sahagian, M.E. 1996. Glass transitions in aqueous carbohydrate solutions and their relevance to frozen food stability. Thermochim. Acta 280/281:449-464.
  • Goff, H.D., Verespej, E., and Jermann, D. 2003. Glass transitions in frozen sucrose solutions are influenced by solute inclusions within ice crystals. Thermochim. Acta 399:43-55.
  • Hatakeyama, T., Nakamura, K., and Hatakeyama, H. 1996. Glass transition of poly-saccharide electrolyte-water systems. Kobunshi Ronbunshu 53:795-802.
  • Hatley, R.H.M., van den Berg, C., and Franks, F. 1991. The unfrozen water content of maximally freeze-concentrated carbohydrate solutions: validity of the methods used for its determination. Cryo-Lett. 12: 113-124.
  • Hatley, R. H. M., and Mant, A. 1993. Determination of the unfrozen water content of maximally freeze-concentrated carbohydrate solutions. Int. J. Biol. Macromol. 15, 227-232.
  • Herrera, J.J.R., Pastoriza, L., and Sampedro, G. 2000. Inhibition of formaldehyde production in frozen-stored minced blue whiting muscle by cryostabilizers: an approach from the glassy state theory. J. Agric. Food Chem. 48:5256-5262.
  • Hofer, K., Hallbrucker, A., Mayer, E., and Johari, G.P., 1989.Vitrified dilute aqueous solutions. 3. Plasticization of water's H-bonded network and the glass transition temperature's minimum, J. Phys. Chem., 93, 4674-77.
  • Hofer, K., Mayer, E., and Johari, G.P. 1991. Glass-liquid transition and calorimetric relaxation of glassy aqueous solutions imbibed in poly(2-hydroxyethyl methacrylate): a comparison with bulk behavior. J. Phys. Chem. 95: 7100-7103.
  • Hofer, K., Astl, G., Mayer, E., and Johari, G.P. 1991. Vitrified dilute aqueous solutions. 4. Effects of electrolytes and polyhydric alcohols on the glass transition features of hyperquenched aqueous solutions. J. Phys. Chem. 95: 10777-10781.
  • Hsu, C.L., Heldman, D.R., Taylor, T.A., and Kramer, H.L. 2003. Influence of cooling rate on Tg of sucrose solutions and rice starch gel. J. Food Sci. 68:1970-1975.
  • Imamura, K., Fukushima, A., Sakaura, K., Sugita, T., Sakiyama, T., and Nakanishi, K. 2002. Water sorption and glass transition behaviors of freeze-dried sucrose-dextran mixtures. J. Pharm. Sci. 91:2175-2181.
  • Izutsu, K., Yoshioka, S., Kojima, S., Randolph, T.W., and Carpenter, J.F. 1996. Effects of sugars and polymers on crystallization of PEG in frozen solutions: phase separation between incompatible polymers. Pharm. Res. 13:1393-1400.
  • Izutsu, K.I., Heller, M.C., Randolph, T.W., and Carpenter, J.F. 1998. Effect of salts and sugars on phase separation of PVP-dextran solutions induced by freeze-concentration. J. Chem. Soc., Faraday Trans. 94:411-417.
  • Izutsu, K.I., Rimando, A., Aoyagi, N. and Kojima, S. 2003. Effect of Sodium Tetraborate (Borax) on the thermal properties of Frozen aqueous sugar and polyol solutions. Chem.Pharm.Bull. 51:663-666.
  • Izzard, M.J., Ablett, S., and Lillford, P.J., 1991. A calorimetric study of the glass transition occurring in sucrose solutions.. In Food Polymers, Gels and Colloids, E. Dickinson, ed., Royal Society Chemistry, Cambridge, 289-300.
  • Kajiwara, K. and Franks, F. 1997. Crystalline and amorphous phases in the binary system water-raffinose. J. Chem. Soc., Faraday Trans. 93:1779-1783.
  • Kajiwara, K., Franks, F., Echlin, P., and Greer, A.L. 1999. Structural and dynamic properties of crystalline and amorphous phases in raffinose-water mixtures. Pharm. Res. 16:1441-1448.
  • Kajiwara, K., Motegi, A., and Murase, N. 2001. Freeze-thawing behavior of highly concentrated aqueous alkali chloride-glucose systems. Cryo-Lett. 22:311-320.
  • Kamrul Haque, M. and Roos, Y.H. 2004. Water plasticization and crystallization of lactose in spray-dried lactose/protein mixtures. J. Food Sci. 69:FEP23-29.
  • Kantor, Z., Pitsi, G., and Thoen, J. 2001. A model for freeze-concentration and glass transition of carbohydrate solutions as determined by DSC. High Temp.-High Press. 33:103-110.
  • Kasapis, S. and Sworn, G. 2000. Separation of the variables of time and temperature in the mechanical properties of high sugar/polysaccharide mixtures. Biopolymers 53:40-45.
  • Kasapis, S, Al-Marhoobi, I.M.A. and Khan, A.J., 2000. Viscous solutions, networks and the glass transition in high sugar galactomannan and k -carrageenan mixtures. Int.J.Biol.Macromol. 27, 13-20.
  • Kasapis, S. 2001a. The use of Arrhenius and WLF kinetics to rationalise the rubber-to-glass transition in high sugar/kappa-carrageenan systems. Food Hydrocol. 15: 239-245.
  • Kasapis, S. 2001b. Advanced topics in the application of the WLF/free volume theory to high sugar/biopolymer mixtures: a review. Food Hydrocol., 15, 631-641.
  • Kasapis, S. Mitchell, J., Abeysekera, R. and MacNaughtan, W. 2004. Rubber-to-glass transitions in high sugar/biopolymer mixtures. Trends Food Sci Tech. 15, 298-304.
  • Kedward, C.J., MacNaughtan, W., Blanshard, J.M.V., and Mitchell, J.R. 1998. Crystallization kinetics of lactose and sucrose based on isothermal DSC. J.Food Sci. 63:192-197.
  • Kedward, C.J., MacNaughtan, W., and Mitchell, J.R. 2000. Crystallization kinetics of amorphous lactose as a function of moisture content using isothermal DSC. J. Food Sci. 65:324-328.
  • Kett, V.L., Craig, D.Q.M., and Deutsch, D. 2000. The effect of annealing on the glass transition region of sucrose solutions. Proc. NATAS 28th Annu. Conf. Therm. Anal. Appl., pp. 653-658.
  • Kilmartin, P.A., Reid, D.S., and Samson, I. 2000. The measurement of the Tg of sucrose and maltose solutions with added NaCl. J. Sci. Food Agric. 80:2196-2202.
  • Kim, A.I., Akers, M.J., and Nail, S.L. 1998. The physical state of mannitol after freeze-drying: effects of mannitol concentration, freezing rate, and a noncrystallizing cosolute. J. Pharm. Sci. 87:931-935.
  • Kim, S.J., Kim, C.S., Oh, J., Seo, J.A., Yang, Y.S., Kim, H.K., and Hwang, Y.H. 2002. A DSC study of the glass transitions of sugars. Sae Mulli 44:252-255.
  • Kokini, J.L., Cocero, A.M., and Madeka, H. 1995. State diagrams help predict rheology of cereal proteins. Food Technol. 49(10):74-82.
  • Kouassi, K. and Roos, Y.H. 2002. Glass transition and glycerol effects on sucrose inversion in pullulan-sucrose systems. Ann. Trans. Nordic Rheol. Soc. 10:161-164.
  • Kouassi, K. and Roos, Y.H. 2002. Glass transition, water, and glycerol effects on sucrose inversion in pullulan-sucrose systems. J. Food Sci. 67:3402-3407.
  • Le Meste, M. and Huang, V. 1991. Thermomechanical properties of frozen sucrose solutions. Institute of Food Technologists Annual Meeting, June 2-5, Dallas, abs. #653; J. Food Sci., 57, 1230-1233 (1992).
  • Levine,H. and Slade, L. 1988. Thermochemical properties of small-carbohydrate-water glasses and ¨rubbers¨. J.Chem.Soc.Faraday Trans. 84: 2619-2633.

  • Levine, H. and Slade, L. 1988. Thermomechanical Properties of Small Carbohydrate-Water Glasses and "Rubbers": Kinetically-Metastable Systems at Subzero Temperatures. J. Chem. Soc., Faraday Trans. I, 84(8), 2619-2633.
  • Liu, B. and Hua, Z. 1998. The effect of some factors on the Tg' of sucrose solutions. Proceedings ICCR '98, pp. 125-128.
  • Lloyd, R.J., Chen, X.D., and Hargreaves, J.B. 1996. Glass transition and caking of spray-dried lactose. Int. J. Food Sci. Technol. 31:305-311.
  • Lofgren, C. and Stading, M. 1997. Glass transitions in frozen sucrose solutions. Ann. Trans. Nord. Rheol. Soc. 5:18-21.
  • Longinotti, M.P., Mazzobre, M.F., Buera, M.P., and Corti, H.R. 2002. Effect of salts on the properties of aqueous sugar systems in relation to biomaterial stabilization. Part 2. Sugar crystallization rate and electrical conductivity behavior. Phys. Chem. Chem. Phys. 4:533-540.
  • Luyet, B. 1939. The devitrification temperatures of solutions of a carbohydrate series, J. Phys. Chem. 43, 881-85.
  • Luyet, B. 1960, On Various Phase Transitions Occurring in Aqueous Solutions at Low Temperatures, Annals of the New York Academy of Sciences, 85, 549-569.
  • Luyet, B., Rasmussen, D. and Kroener, C., 1966. Successive crystallization and recrystallization, during rewarming, of rapidly cooled solutions of glycerol and ethylene glycol, Biodynamica 10, 53-60.
  • Luyet, B. and Rasmussen, D., 1968. Study by DTA of the temperatures of instability in rapidly cooled solutions of glycerol, ethylene glycol, sucrose, and glucose, Biodynamica 10, 167-191.
  • Luyet, B. and Rasmussen, D., 1973. On some inconspicuous changes occurring in aqueous systems subjected to subzero temperatures, Biodynamica 11, 209-215.
  • Maaruf, A.G., Che Man, Y.B., Asbi, B.A., Junainah, A.H., and Kennedy, J.F. 2001a. Gelatinization of sago starch in the presence of sucrose and sodium chloride as assessed by DSC. Carbohydr. Polym. 45:335-345.
  • Maaruf, A.G., Che Man, Y.B., Asbi, B.A., Junainah, A.H., and Kennedy, J.F. 2001b. Effect of water content on the gelatinization temperature of sago starch. Carbohydr. Polym. 46:331-337.
  • Macdonald, C. and Johari, G.P. 2000. Glass-softening of trehalose and calorimetric transformations in its liquid state. J. Mol. Struct. 523:119-132.
  • MacFarlane, D.R. 1985. Anomalous Glass Transitions in Aqueous Propylene Glycol Solutions. Cryo-Letters 6, 313-318.
  • Majumdar, S., Alexander, K.S., and Riga, A.T. 2002. Determination of Tg for various grades of microcrystalline cellulose and the effect of absorbed moisture on this parameter. Proc. 30th NATAS Conf., pp. 118-123.
  • Makower, B. and Dye, W.B. 1956. Equilibrium moisture content and crystallization of amorphous sucrose and glucose. J. Agric. Food Chem. 4:72-77.
  • Maltini, E., Anese, M., and Shtylla, I. 1997. State diagrams of some organic acid-water systems of interest in food. Cryo-Letters 18:263-268.
  • Marchisano, C., Gennaro, L., Sepe, M., and Masi, P. 1996. Characterizing in situ starch gelatinization - thermal and DMA of durum wheat dough. J. Therm. Anal. 47:181-194.
  • Marshall, W.E. 1994. Starch gelatinization in brown and milled rice: a study using DSC. Food Sci. Technol. 59, 205-227.
  • Mathew, R. and Hoseney, R.C. 1994. Glass transition of wheat gluten and starch. AACC 79th Annual Meeting, Nashville, Oct. 23-27, abs. 267.
  • Mathlouthi, M. 1995. Amorphous sugar. In Sucrose: Properties and Applications, eds. M. Mathlouthi and P. Reiser, Blackie Acad. & Prof., London, pp. 75-100.
  • Mazzobre, M.F., Longinotti, M.P., Corti, H.R., and Buera, M.P. 2001. Effect of salts on the properties of aqueous sugar systems, in relation to biomaterial stabilization. 1. Water sorption behavior and ice crystallization/melting. Cryobiology 43:199-210.
  • McGarvey, O.S., Kett, V.L., and Craig, D.Q.M. 2003. An investigation into the crystallization of alpha,alpha-trehalose from the amorphous state. J. Phys. Chem. B 107:6614-6620.
  • Mehl, P.M. 1996. Observation of multiple glass transitions in the system water/ 1,3-butanediol. Effect on ice crystallization. Thermochim. Acta 284:191-212.
  • Mehl, P.M. 1996. Dependence of glass transitions with cooling and warming rates in the system alpha-D-trehalose-water. 30th ACS MARM, Villanova, PA, 5/22-24.
  • Mehl, P.M. 1997. Solubility and glass transition in the system à-D-trehalose/ water. J. Therm. Anal. 49:817-822.
  • Mehl, P.M. 1998. Fictive Tg and fragility for the phase diagram of the system fructose-water. Thermochim. Acta 324:215-221.
  • Michelmore, R.W. & Franks, F. 1982. Nucleation Rates of Ice in Undercooled Water and Aqueous Solutions of Polyethylene Glycol. Cryobiology 19, 163-71.
  • Miller, D.P., de Pablo, J.J., and Corti, H. 1997. Thermophysical properties of trehalose and its concentrated aqueous solutions. Pharm. Res. 14:578-590.
  • Miller, D.P., de Pablo, J.J., and Corti, H.R. 1999. Viscosity and Tg of aqueous mixtures of trehalose with borax and NaCl. J. Phys. Chem. B 103:10243-10249.
  • Milton, N., Nail, S.L., and Akers, M.J. 1997. The crystallization kinetics of glycine hydrochloride from "frozen" solution. Cryo-Lett. 18:335-342.
  • Mitsuiki, M., Yamamoto, Y., Mizuno, A., and Motoki, M. 1998. Glass transition properties as a function of water content for various low moisture galactans. J. Agric. Food Chem. 46:3528-3534.
  • Mizuno, A., Mitsuiki, M., and Motoki, M. 1997. Effect of crystallinity on the Tg of starch. J. Agric. Food Chem. 46:98-103.
  • Moates, G.K., Noel, T.R., Parker, R., Ring, S.G., Cairns, P., and Morris, V.J. 1997. Observations on the crystallization and melting of maltopentaose hydrate. Carbohydr. Res. 299:91-94.
  • Momany, F.A. and Willett, J.L. 2002. Molecular dynamics calculations on amylose fragments. I. Tgs of maltodecaose at 1, 5, 10, and 15.8% hydration. Biopolymers 63:99-110.
  • Noel, T.R., Ring, S.G. and Whittam, M.A. 1991. Kinetic aspects of the glass- transition behavior of maltose-water mixtures. Carbohydr. Res., 212, 109-117.
  • Noel, T., Ring, S., and Whittam, M. 1992. The structure and gelatinization of starch. Food Sci. Technol. Today 6(3): 159-162.
  • Noel, T.R., Ring, S.G. and Whittam, M.A. 1993. Relaxations in supercooled carbohydrate liquids. In The Glassy State in Foods (Blanshard, J.M.V. and Lillford, P.J., Eds.), Nottingham University Press, Loughborough, pp. 173-187.
  • Oliver, A.E., Crowe, L.M., and Crowe, J.H. 1998. Methods for dehydration-tolerance: depression of the phase transition temperature in dry membranes and carbohydrate vitrification. Seed Sci. Res. 8:211-221.
  • Orford, P.D., S.G. Ring, V. Carroll, M.J. Miles & V.J. Morris. 1987. Effect of Concentration and Botanical Source on Gelation and Retrogradation of Starch. J. Sci. Food Agric. 39, 169-79.
  • Orford, P.D., Parker, R., Ring, S.G. & Smith, A.C. 1989. The Effect of Water as a Diluent on the Glass Transition Behavior of Malto-Oligosaccharides, Amylose and Amylopectin. Int'l. J. Biol. Macromol. 11, 91-96.
  • Orford, P.D., Parker, R., and Ring, S.G., 1990. Aspects of the glass transition behavior of mixtures of carbohydrates of low molecular weight, Carbohydr. Res. 196, 11-18.
  • Ottenhof, M.A., MacNaughtan, W., and Farhat, I.A. 2003. FTIR study of state and phase transitions of low moisture sucrose and lactose. Carbohydr. Res. 338:2195-2202.
  • Papageorgiou, M., Kasapis, S., and Richardson, R.K. 1994. Glassy-state phenomena in gellan-sucrose-corn syrup mixtures. Carbohydr. Polym. 25, 101-109.
  • Papageorgiou, M. and Kasapis, S. 1995. The effect of added sucrose and corn syrup on the physical properties of gellan-gelatin mixed gels. Food Hydrocolloids 9:211-220.
  • Parks, G.S., Huffman, H.M., and Cattoir, F.R. 1928. Studies on glass. II. The transition between the glassy and liquid states in the case of glucose. J. Phys. Chem. 32, 1366-1379.
  • Pegg, D.E. & Arnaud, F.G. 1988. Equations for obtaining melting points in the quaternary system propane-1,2-diol/glycerol/sodium chloride/water. Cryo-Letters 9, 404-17.
  • Pyne, A., Surana, R., and Suryanarayanan, R. 2002. Crystallization of mannitol below Tg' during freeze-drying in binary and ternary aqueous systems. Pharm. Res. 19:901-908.
  • Randzio, S.L., Flis-Kabulska, I., and Grolier, J.P.E. 2002. Reexamination of phase transformations in the starch-water system. Macromolecules 35:8852-8859.
  • Rasmussen, D. and Luyet, B. 1969, Complementary Study of Some Non-equilibrium Phase Transitions in Frozen Solutions of Glycerol, Ethylene Glycol, Glucose and Sucrose, Biodynamica, 10, 319-331.
  • Reid, D.S. 1985, Correlation of the Phase Behavior of DMSO/NaCl/Water and Glycerol/NaCl/Water as Determined by DSC with Their Observed Behavior on a Cryomicroscope, Cryo-Letters 6, 181-88.
  • Ring, S.G. Studies on Starch Gelation. Staerke 37, 80-83 1985.
  • Ring, S.G. & P.D. Orford. 1986. Recent Observations on Retrogradation of Amylopectin. In Gums and Stabilizers for the Food Industry 3 (eds. G.O. Phillips, D.J. Wedlock & P.A. Williams). Elsevier Applied Science: London, pp. 159-65.
  • Roberts, C.J. and Franks, F. 1995. Crystalline and amorphous phases in the binary system water-beta,beta-trehalose. J. Chem. Soc. Faraday Trans. 92: 1337-1343.
  • Roos, Y. 1993. Melting and glass transitions of low molecular weight carbohydrates. Carbohydr. Res. 238, 39-48.
  • Roos, Y. and Karel, M. 1991d, Phase transitions of amorphous sucrose and frozen sucrose solutions, J. Food Sci. 56, 266-267.
  • Roos, Y. and Karel, M. 1991e. Water and molecular weight effects on glass transitions in amorphous carbohydrates and carbohydrate solutions. J. Food Sci. 56: 1676-1681.
  • Roos, Y. and Karel, M. 1991f. Non-equilibrium ice formation in carbohydrate solutions. Cryo-Letters, 12: 367-376.
  • Roos, Y. and Karel, M. 1991g. Amorphous state and delayed ice formation in sucrose solutions. Int. J. Food Sci. Technol., 26, 553-566.
  • Roos, Y. and Karel, M. 1992. Crystallization of amorphous lactose. J. Food Sci., 57, 775-777.
  • Roos, Y.H. 1998e. Phase transitions in frozen water containing sugars and other solutes. J. Pharm. Pharmacol. 50:6.
  • Sablani, S.S. , S. Kasapis, M. S. Rahman, A. Al-Jabri and N. Al-Habsi 2004. Sorption isotherms and the state diagram for evaluating stability criteria of abalone. Food Res.Int. 37, 915-924.
  • Sahagian, M. E., and Goff, H. D. 1992. Glass transitions of sucrose and polysaccharide solutions and their relevance to food stability. Proceedings 42nd Canadian Chem. Engn. Conference, pp. 301-302. Can. Soc. Chem. Engn., Toronto.
  • Sahagian, M.E. and Goff, H.D. 1994. Effect of freezing rate on the thermal, mechanical, and physical aging properties of the glassy state in frozen sucrose solutions. Thermochim. Acta 246, 271-283.
  • Sahagian, M.E. and Goff, H.D. 1996. Non-reversing and reversing thermal properties of frozen stabilized sucrose solutions as measured by modulated DSC. ISOPOW-6, Santa Rosa, CA, March 3-7, poster 22.
  • Saiter, J.M., Delahaye, N., Bardat, A., and Chatenet, E. 1998. Freeze-drying kinetics of sucrose-NaCl-protein aqueous mixtures. J. Thermal Anal. 51:905-911.
  • Sala, R. and Tomka, I. 1993. On the equation of state of thermoplastic starch. In The Glassy State in Foods (Blanshard, J.M.V. and Lillford, P.J., Eds.), Nottingham University Press, Loughborough, pp. 475-482.
  • Saleki-Gerhardt, A. and Zografi, G. 1994. Non-isothermal and isothermal crystallization of sucrose from the amorphous state. Pharmaceut. Res. 11, 1166-1173.
  • Saleki-Gerhardt, A., Stowell, J.G., Byrn, S.R., and Zografi, G. 1995. Hydration and dehydration of crystalline and amorphous forms of raffinose. J. Pharm. Sci. 84:318-323.
  • Schmidt, S.J., and Lammert, A.M. 1995. Physical aging of maltose glasses. J.Food Sci. 61:870-875 (1996).
  • Schmitt, E.A., Law, D., and Zhang, G.G.Z. 1999. Nucleation and crystallization kinetics of hydrated amorphous lactose above Tg. J. Pharm. Sci. 88:291-296.
  • Seow, C. C., and Thevamalar, K. 1993. Internal plasticization of granular rice starch by hydroxypropy-lation: effects on phase transitions associated with gelatinization. Starke 45, 85-88.
  • Seow, C.C. 1995. Phenomenon of enthalpy relaxation at the glass transition in granular starches. In Food Macromolecules and Colloids, eds. E. Dickinson and D. Lorient, Royal Soc. Chem., Cambridge, pp. 534-542.
  • Seow, C.C. and Vasanti-Nair, C.K. 1994. Sub-Tg annealing of granular rice starch: effects on enthalpy relaxation and starch/sucrose interactions. Carbohydr. Res. 261, 307-316.
  • Shalaev, E.Y. and Franks, F. 1994. Structural glass transitions and thermophysical processes in amorphous carbohydrates and their supersaturated solutions. J. Chem. Soc. Faraday Trans. 91, 1511-1517 (1995).
  • Shalaev, E.Y., Franks, F., and Echlin, P. 1996. Crystalline and amorphous phases in the ternary system water-sucrose-NaCl. J. Phys. Chem. 100:1144-1152.
  • Shalaev, E.Y., Varaksin, N.A., Rjabicheva, T.G., and Aborneva, I.V. 1996. Solid-liquid state diagrams of the pseudo-ternary systems hydrolysed protein-sucrose-water: implication for freeze-drying. Cryo-Lett. 17:183-194.
  • Shastry, A.V. and Hartel, R.W. 1996. Crystallization during drying of thin sucrose films. J. Food Eng. 30:75-94.
  • Shastry, A.V. and Hartel, R.W. 1996. Crystallization and drying in thin sucrose films during panning. J. Food Sci. 61:978-981.
  • Shi, Y.C. and Seib, P.A. 1992. The structure of four waxy starches related to gelatinization and retrogradation. Carbohydr. Res. 227, 131-145.
  • Silverio, J. and Eliasson, A.C. 1996. The influence of different temperature treatments on starch retrogradation of starches from various botanical sources. AACC 81st Annual Meeting, Baltimore, 9/15-19, abs. 295; Cereal Foods World 41:602.
  • Silverio, J., Fredriksson, H., Andersson, R., Eliasson, A.C., and Aman, P. 2000. The effect of temperature cycling on the amylopectin retrogradation of starches with different amylopectrin unit-chain length distribution. Carbohydr. Polym. 42:175-184.
  • Siniti, M., Carre, J., Letoffe, J.M., Bastide, J.P., and Claudy, P. 1993. Etude du comportement thermique des hexitols. Partie 1. Vitrification et cristallisation de l'iditol, du mannitol, du sorbitol et du dulcitol. Thermochim. Acta 224:97-104.
  • Siniti, M., Jabrane, S., and Letoffe, J.M. 1999. Study of the respective binary phase diagrams of sorbitol with mannitol, maltitol and water. Thermochim. Acta 325:171-180.
  • Slade, L. and Levine, H. 1988. Non-Equilibrium Behavior of Small Carbohydrate-Water Systems. Pure & Applied Chemistry 60, 1841-1864, 1988.

  • Slade, L. and Levine, H. 1991. A Polymer Science Approach to Structure/Property Relationships in Aqueous Food Systems: Non-Equilibrium Behavior of Carbohydrate-Water Systems, in Water Relationships in Foods, eds. H. Levine and L. Slade, Plenum Press, New York, 29-101.

  • Smits, A.L.M., Kruiskamp, P.H., van Soest, J.J.G., and Vliegenthart, J.F.G. 2003. The influence of various small plasticizers and malto-oligosaccharides on the retrogradation of (partly) gelatinized starch. Carbohydr. Polym. 51:417-424.
  • Sumnu, G., Ndife, M.K., and Bayindirh, L. 1999. Effects of sugar, protein and water content on wheat starch gelatinization due to microwave heating. Eur. Food Res. Technol. 209:68-71.
  • Sussich, F., Princivalle, F., and Cesaro, A. 1999. The interplay of the rate of water removal in the dehydration of à,à-trehalose. Carbohydr. Res. 322:113-119.
  • Sussich, F. and Cesaro, A. 2000. Transitions and phenomenology of à,à-trehalose polymorphs inter-conversion. J. Therm. Anal. Calorim. 62:757-768.
  • Sussich, F., Skopec, C., Brady, J., and Cesaro, A. 2001. Reversible dehydration of trehalose and anhydrobiosis: from solution state to an exotic crystal? Carbohydr. Res. 334:165-176.
  • Sutton, R.L., Lips, A., Piccirillo, G., and Sztehlo, A. 1996. Kinetics of ice recrystallization in aqueous fructose solutions. J. Food Sci. 61:741-745.
  • Sutton, R.L., Cooke, D., and Russell, A. 1997. Recrystallization in sugar/stabilizer solutions as affected by molecular structure. J. Food Sci. 62:1145-1149.
  • Suzuki, T., and Franks, F. 1993. Solid-liquid phase transitions and amorphous states in ternary sucrose-glycine-water systems. J. Chem. Soc. Faraday Trans. 89:3283-3288.
  • Svensson, E. and Eliasson, A.C. 1995. Crystalline changes in native wheat and potato starches at intermediate water levels during gelatinization. Carbohydr. Polym. 26:171-176.
  • Svensson, E., Autio, K., and Eliasson, A.C. 1998. The effect of SDS on gelatinization and gelation properties of wheat and potato starches. Food Hydrocol. 12:151-158.
  • Takaya, T., Sano, C., and Nishinari, K. 2000. Thermal studies on the gelatinization and retrogradation of heat-moisture treated starch. Carbohydr. Polym. 41:97-100.
  • Takeuchi, H., Yasuji, T., Yamamoto, H., and Kawashima, Y. 2000. Temperature- and moisture-induced crystallization of amorphous lactose in composite particles with sodium alginate prepared by spray-drying. Pharm. Dev. Technol. 5:355-363.
  • Talja, R.A. and Roos, Y.H. 2001. Phase and state transition effects on dielectric, mechanical, and thermal properties of polyols. Thermochim. Acta 380:109-121.
  • Tananuwong, K. and Reid, D.S. 2004. DSC study of glass transition behavior in frozen starch gels. J. Agric. Food Chem., submitted.
  • Taylor, L.S. and York, P. 1998. Characterization of the phase transitions of trehalose dihydrate on heating and subsequent dehydration. J. Pharm. Sci. 87:347-355.
  • te Booy, M.P.W.M., de Ruiter, R.A. and de Meere, A.L.J. 1992. Evaluation of the physical stability of freeze-dried sucrose-containing formulations by DSC. Pharmaceut. Res., 9, 109-114.
  • Telang, C., Yu, L., and Suryanarayanan, R. 2003. Effective inhibition of mannitol crystallization in frozen solutions by sodium chloride. Pharm. Res. 20:660-667.
  • Thiewes, H.J. and Steeneken, P.A.M. 1997. The glass transition and the sub-Tg endotherm of amorphous and native potato starch at a low moisture content. Carbohydr. Polym. 32:123-130.
  • Thom, F. & Matthes, G. 1986. Ice Formation in Binary Aqueous Solutions of Ethylene Glycol. Cryo-Letters 7, 311-26.
  • Thom, F. and Matthes, G. 1990. Remarks on ice formation in binary aqueous solutions of ethylene glycol and DMSO. II: DMSO. Cryo-Letters 11, 13-26.
  • Tjuradi, P. and Hartel, R.W. 1995. Corn syrup oligosaccharide effects on sucrose crystallization. J. Food Sci. 60:1353-1356.
  • Urbani, R., Sussich, F., Prejac, S., and Cesaro, A. 1997. Enthalpy relaxation and glass transition behavior of sucrose by static and dynamic DSC. Thermochim. Acta 304/305:359-367.
  • Vainionpaa, J., Forssell, P., and Virtanen, T. 1993. High-pressure gelatinization of barley starch at low moisture levels and elevated temperature. Starke 45, 19-24.
  • van den Berg, C. 1992. Glass transitions in carbohydrates. Carbohydr. Netherlands 8, 23-25.
  • van den Berg, C., Franks, F. and Echlin, P. 1993. The ultrastructure and stability of amorphous sugars. In The Glassy State in Foods (Blanshard, J.M.V. and Lillford, P.J., Eds.), Nottingham University Press, Loughborough, pp. 249-267.
  • van den Dries, I., van den Berg, C., and Hemminga, M. 1996. Tg and Tg' of glucose determined with spin-probe ESR. ISOPOW-6, Santa Rosa, CA, March 3-7, poster 16.
  • van den Dries, I.J., Besseling, N.A.M., van Dusschoten, D., Hemminga, M.A., and van der Linden, E. 2000. Relation between a transition in molecular mobility and collapse phenomena in glucose-water systems. J. Phys. Chem. B 104:9260-9266.
  • Vanhal, I. and Blond, G. 1999. Impact of melting conditions of sucrose on its Tg. J. Agric. Food Chem. 47:4285-4290.
  • van Soest, J.J.G., Bezemer, R.C., de Wit, D., Vliegenthart, J.F.G. 1996. Influence of glycerol on the melting of potato starch. Indust. Crops Prods. 5:1-9.
  • van Winden, E.C.A., Talsma, H., and Crommelin, D.J.A. 1998. Thermal analysis of freeze-dried liposome-carbohydrate mixtures with modulated temperature DSC. J. Pharm. Sci. 87:231-237.
  • Vodovotz, Y. and Chinachoti, P. 1997. Characterization of the glassy-rubbery transition in starch gels of variable moisture contents by multiple molecular techniques. IFT 1997 Annual Meeting, Orlando, abs. 59A-26.
  • Vodovotz, Y. and Chinachoti, P. 1998. Glassy-rubbery transition and recrystallization during aging of wheat starch gels. J. Agric. Food Chem. 46:446-453.

  • Wang, G.M. and Haymet, A.D.J. 1998. Trehalose and other sugar solutions at low temperature: Modulated DSC. J. Phys. Chem. B 102:5341-5347.

  • Wang, S., and Chinachoti, P. 1993. Phase transition of fructose, glucose, and sucrose upon water sorption. IFT '93 Annual Meeting, Chicago, abs. 619.

  • Whittam, M.A., Noel, T.R., and Ring, S.G., 1991. Melting and glass/rubber transitions of starch polysaccharides, in Food Polymers, Gels and Colloids, E. Dickinson, ed., Royal Society Chemistry, Cambridge, pp. 277-288.

  • Willart, J.F., De Gusseme, A., Hemon, S., Odou, G., Danede, F., and Descamps, M. 2001. Direct crystal to glass transformation of trehalose induced by ball milling. Solid State Commun. 119:501-505.

  • Willart, J.F., De Gusseme, A., Hemon, S., Descamps, M., Leveiller, F., and Rameau, A. 2002. Vitrification and polymorphism of trehalose induced by dehydration of trehalose dihydrate. J. Phys. Chem. B 106:3365-3370.

  • Willenbucher, R.W., Tomka, I. and Muller, R. 1993. Thermally induced structural transitions in the starch-water system. In The Glassy State in Foods (Blanshard, J.M.V. and Lillford, P.J., Eds.), Nottingham University Press, Loughborough, pp. 491-497.

  • Wungtanagorn, R. and Schmidt, S.J. 2001. Thermodynamic properties and kinetics of the physical ageing of amorphous glucose, fructose, and their mixture. J. Therm. Anal. Calorim. 65:9-35.

  • Yu, L., Mishra, D.S., and Rigsbee, D.R. 1998. Determination of the glass properties of d-mannitol using sorbitol as an impurity. J. Pharm. Sci. 87:774-777.

    2.b Proteins

  • Ablett, S., Barnes, D.J., Davies, A.P., Ingman, S.J. & Patient, D.W. 1988. C13 and Pulse NMR Spectroscopy of Wheat Proteins. J. Cereal Sci. 7, 11-20.
  • Aguilera, J.M., Levi, G., and Karel, M. 1993. Effect of water content on the glass transition and caking of fish protein hydrolyzates. Biotechnol. Prog. 9, 651-654.
  • Apostolov, A.A., Fakirov, S., Vassileva, E., Patil, R.D., and Mark, J.E. 1999. DSC and TGA studies of the behavior of water in native and crosslinked gelatin. J. Appl. Polym. Sci. 71:465-470.
  • Barkalov, I.M., Bolshakov, A.I., Goldanskii, V.I., and Krupyanskii, Y.F. 1993. Vitrification effects in water-protein systems. Chem. Phys. Lett. 208, 1-4.
  • Berlin, E., Kliman, P.G. and Pallansch, M.J. 1970. Changes in State of Water in Proteinaceous Systems. J. Colloid Interface Sci. 34, 488-94.
  • Blanshard, J.M.V. 1995. The glass transition, its nature and significance in food processing. In Physico-Chemical Aspects of Food Processing, ed. S.T.Beckett, Chapman & Hall, London, pp. 17-48.
  • Borchard, W., Bergmann, K., Emberger, A. and Rehage, G. 1976. Thermodynamische eigenschaften des systems gelatine-water, Progress in Colloid and Polymer Science, 60, 120-29.
  • Borchard, W., Bremer, W. and Keese, A. 1980. State Diagram of the Water-Gelatin System, Colloid and Polymer Science, 258, 516-26.
  • Busk, G.C. 1984. Polymer-Water Interactions in Gelation. Food Technol. - May, 59-64.
  • Cocero, A.M. and Kokini, J.L. 1991. The study of the glass transition of glutenin using small amplitude oscillatory rheological measurements and DSC. J. Rheol. 35: 257-270.
  • de Graaf, E.M., Madeka, H., Cocero, A.M., and Kokini, J.L. 1993. Determination of the effect of moisture on gliadin glass transition using mechanical spectrometry and DSC. Biotechnol. Prog. 9, 210-213.
  • Doster, W., Cusack, S., and Petry, W. 1991. Structural dynamics of proteins, scaling behavior, and liquid-glass transition. J. Non-Cryst. Solids 131-133: 357-361.
  • Fakirov, S., Sarac, Z., Anbar, T., Boz, B., Bahar, I., Evstatiev, M., Apostolov, A.A., Mark, J.E., and Kloczkowski, A. 1996. Mechanical properties and transition temperatures of cross-linked oriented gelatin. 1. Static and dynamic mechanical properties of cross-linked gelatin. Colloid Polym. Sci. 274:334-341.
  • Fakirov, S., Sarac, Z., Anbar, T., Boz, B., Bahar, I., Evstatiev, M., Apostolov, A.A., Mark, J.E., and Kloczkowski, A. 1997. Mechanical properties and transition temperatures of crosslinked-oriented gelatin. II. Effect of orientation and water content on transition temperatures. Colloid Polym. Sci. 275:307-314.
  • Fakirov, S., Cagiao, M.E., Calleja, F.J.B., Sapundjieva, D., and Vassileva, E. 1999. Melting of gelatin crystals below Tg: a direct crystal-glass transition as revealed by microhardness. Int. J. Polym. Mater. 43:195-206.
  • Ferrari, C. and Johari, G.P. 1997. Thermodynamic behavior of gliadins mixture and the glass-softening transition of its dried state. Int. J. Biol. Macromol. 21:231-241.
  • Gekko, K., Li, X., and Makino, S. 1992. Effects of polyols and sugars on the sol-gel transition of gelatin. Biosci. Biotech. Biochem. 56, 1279-1284.
  • Godard, P., Biebuyck, J.J., Daumerie, M., Naveau, H. and Mercier, J.P. 1978, Crystallization and Melting of Aqueous Gelatin, Journal of Polymer Science: Polymer Physics Edition, 16, 1817-28.

  • Gosline, J.M. 1987. Structure and mechanical properties of rubber-like proteins in animals. Rubber Chem. Technol. 60: 417-438.

  • Green, J.L., Fan, J., and Angell, C.A. 1994. The protein-glass analogy: new insights from homopeptide comparisons. J. Phys. Chem. 98, 13780-13790.
  • Gregory, R.B. 1995. Protein hydration and glass transition behavior. In Protein-Solvent Interactions, ed. R.B. Gregory, pp. 191-264, Marcel Dekker, New York.
  • Gregory, R.B. 1998. Protein hydration and glass transitions. In The Properties of Water in Foods - ISOPOW 6 (D.S. Reid, ed.), Blackie Academic & Professional, London, pp 57-99.
  • Gutierrez, A.G. and Moreira, T.H. 1997. Studies on the stability of model freeze-dried proteins using DSC. Rev. CENIC Cien. Biol. 28:47-50.
  • Hoeve, C.A.J. and Hoeve, M.B.J.A. 1978, The Glass Point of Elastin as a Function of Diluent Concentration, Organ. Coat. Plast. Chem. 39, 441-43.
  • Hoeve, C.A.J. and Hoeve, M.B.J.A. 1980. The glass point of elastin as a function of diluent concentration. Polym. Eng. Sci. 20: 290-293.
  • Imamura, K., Iwai, M., Ogawa, T., Sakiyama, T., and Nakanishi, K. 2001. Evaluation of hydration states of protein in freeze-dried amorphous sugar matrix. J. Pharm. Sci. 90:1955-1963.
  • Inoue, C. and Ishikawa, M. 2000. The contribution of water to the specific heat change at the glass-to-rubber transition of the ternary system BSA-water-NaCl. J. Food Sci. 65:1187-1193.
  • Kakivaya, S.R. and Hoeve, C.A.J. 1975. The Glass Transition of Elastin. PNAS USA 72, 3505-7.
  • Kalichevsky, M.T. and Blanshard, J.M.V. 1992. A study of the effect of water on the glass transition of 1:1 mixtures of amylopectin, casein, and gluten using DSC and DMTA. Carbohydr. Polym., 19, 271-278.
  • Kalichevsky, M.T., Jaroszkiewicz, E.M., and Blanshard, J.M.V. 1992. The glass transition of gluten. 1. Gluten and gluten-sugar mixtures. Int. J. Biol.Macromol., 14, 257-266.
  • Kalichevsky, M.T., Jaroszkiewicz, E.M. and Blanshard, J.M.V. 1992. The glass transition of gluten. 2. The effect of lipids and emulsifiers. Int. J. Biol. Macromol., 14, 267-273.
  • Kalichevsky, M.T. and Blanshard, J.M.V. and Tokarczuk, P.F. 1993. Effect of water content and sugars on the glass transition of casein and sodium caseinate. Int. J. Food Sci. Technol. 28, 139-151.
  • Kinsella, J.E., Rector, D.J., and Phillips, L.G. 1994. Physicochemical properties of proteins: texturization via gelation, glass and film formation. In Protein Structure-Function Relationships in Foods, eds. R.Y. Yada, R.L. Jackman, and J.L. Smith, pp. 1-21, Blackie A & P, London.
  • Kokini, J.L., Cocero, A.M., Madeka, H., and deGraaf, E. 1994. The development of state diagrams for cereal proteins. Trends Food Sci. Technol. 5, 281-288.
  • Kokini, J.L., Cocero, A.M., and Madeka, H. 1995. State diagrams help predict rheology of cereal proteins. Food Technol. 49(10):74-82.
  • Kumagai, H., Sugiyama, T., and Iwamoto, S. 2000. Effect of water content on dielectric relaxation of gelatin in a glassy state. J. Agric. Food Chem. 48:2260-2265.
  • Kunisaki, N., Ishizaki, S., and Tanaka, M. 1997. The glass transition of protamine. Fisheries Sci. 63: 132-136.
  • Kuntz, I.D. & Kauzmann, W. 1974. Hydration of Proteins and Polypeptides. Adv. Protein Chem. 28, 239-345.
  • Le Meste, M., Viguier, L., Lorient, D., and Simatos, D., 1990. Rotational diffusivity of solutes in concentrated caseinates: influence of glycosylation, J. Food Sci. 55, 724-727.
  • Lillie, M.A. and Gosline, J.M. 1990. The effect of hydration on the dynamic mechanical properties of elastin. Biopolymers 29: 1147-1160.
  • Lillie, M.A. and Gosline, J.M. 1993a. The effects of swelling solvents on the glass transition in elastin and other proteins. In The Glassy State in Foods (Blanshard, J.M.V. and Lillford, P.J., Eds.), Nottingham University Press, Loughborough, pp. 281-301.
  • Lillie, M.A. and Gosline, J.M. 1993b. The effects of polar solutes on the viscoelastic behavior of elastin. Biorheol. 30, 229-242.
  • Mackie, I.M. 1993. The effects of freezing on flesh proteins. Food Rev. Int. 9, 575-610.

  • Madeka, H. and. Kokini, J.L. 1994. Changes in rheological properties of gliadin as a function of temperature and moisture: Development of a state diagram. Journal of Food Engineering, 22(1-4): 241-252.
  • Madeka, H. and Kokini, J.L. 1996. Effect of glass transition and cross-linking on rheological properties of zein: development of a preliminary state diagram. Cereal Chem. 73:433-438.

  • Magoshi, J., Nakamura, S. and Murakami, K. 1992. Structure and physical properties of seed proteins. I. Glass transition and crystallization of zein protein from corn. J. Appl. Polym. Sci., 45, 2043-2048.
  • Magoshi, J., Becker, M.A., Han, Z., and Nakamura, S. 2002. Thermal properties of seed proteins. J. Therm. Anal. Calorim. 70:833-839
  • Mahmoud, M.I., Schenz, T., and Israel, B. 1994. A study of protein hydrolysate-starch interaction by DSC. Plant Polysaccharide Symposium, Guelph, Canada, July 13-15, abs. P6.
  • Martini, A., Crivellente, M., Muggetti, L., Artico, R., and Kume, S. 1997. Use of subambient DSC to monitor the frozen state behavior of amino acids in simulated freeze-drying conditions. S.T.P. Pharma Sci. 7:377-381.
  • Marshall, A.S. and Petrie, S.E.B. 1980, Thermal Transitions in Gelatin and Aqueous Gelatin Solutions, Journal of Photographic Science, 28, 128-34.
  • Mauer, L.J., Smith, D.E., and Labuza, T.P. 2000. Effect of water content, temperature and storage on the glass transition, moisture sorption characteristics and stickiness of beta-casein. Int. J. Food Prop. 3:233-248.
  • Megret, C., Guantieri, V., Lamure, A, Pieraggi, M.T., Lacabanne, C. and Tamburro, A.M. 1992. Phase transitions and chain dynamics, in the solid state, of a pentapeptide sequence of elastins. Int. J. Biol. Macromol., 14, 45-49.
  • Menegalli, F.C., Sobral, P.J., Roques, M.A., and Laurent, S. 1999. Characteristics of gelatin biofilms in relation to drying process conditions near melting. Drying Technol. 17:1697-1706.
  • Michon, C., Cuvelier, G., Relkin, P., and Launay, B. 1997. Influence of thermal history on the stability of gelatin gels. Int. J. Biol. Macromol. 20:259-264.
  • Milczarek, P., Zielinski, M., and Garcia, M. L. 1992. The mechanism and stability of thermal transitions in hair keratin. Colloid Polym. Sci. 270, 1106-1115.
  • Miyazaki, Y., Matsuo, T., and Suga, H. 1993. Glass transition of myoglobin crystal. Chem. Phys. Lett. 213, 303-308.
  • Mizuno, A., Mitsuiki, M., and Motoki, M. 1999. Tg of casein as affected by transglutaminase. J. Food Sci. 64:796-799.
  • Mizuno, A., Mitsuiki, M., and Motoki, M. 2000. Effect of transglutaminase treatment on the glass transition of soy protein. J. Agric. Food Chem. 48:3286-3291.
  • Mizuno, A., Mitsuiki, M., Motoki, M., Ebisawa, K., and Suzuki, E. 2000. Relationship between the glass transition of soy protein and molecular structure. J. Agric. Food Chem. 48:3292-3297.
  • Morales, A. and Kokini, J.L. 1997. Glass transition of soy globulins using DSC and mechanical spectrometry. Biotechnol. Prog. 13:624-629.
  • Morales, A. and Kokini, J.L. 1999. State diagrams of soy globulins. J. Rheol. 43:315-325.
  • Morales-Diaz, A. and Kokini, J.L. 1998. Understanding phase transitions and chemical complexing reactions in the 7S and 11S soy protein fractions. In Phase/State Transitions in Foods, eds. M.A. Rao and R.W. Hartel, Marcel Dekker, NY, pp. 273-311.
  • Morozov, V.N. and Gevorkian, S.G. 1985, Low-Temperature Glass Transition in Proteins, Biopolymers, 24, 1785-1799.
  • Moura Ramos, J.J., Correia, N.T., Taveira-Marques, R., and Collins, G. 2002. The activation energy at Tg and the fragility index of indomethacin, predicted from the influence of the heating rate on the temperature position and on the intensity of thermally stimulated depolarization current peak. Pharm. Res. 19:1879-1884.
  • Mousia, Z., Farhat, I.A., Blachot, J.F., and Mitchell, J.R. 2000. Effect of water partitioning on the glass-transition behavior of phase separated amylopectin-gelatin mixtures. Polymer 41:1841-1848.
  • Netto, F.M., Desobry, S.A., and Labuza, T.P. 1998. Effect of water content on the glass transition, caking, and stickiness of protein hydrolysates. Int. J. Food Prop. 1:141-161.
  • Nicholls, R.J. and Davies, A.P. 1994. Glass transitions and mechanical properties of heat-set gluten proteins. In Gluten Proteins 1993, Assoc. Cereal Res., Detmold, pp. 440-449.
  • Noel, T.R., Parker, R., Ring, S.G., and Tatham, A.S. 1995. The glass-transition behavior of wheat gluten proteins. Int. J. Biol. Macromol. 17:81-85.
  • Patil, R.D., Mark, J.E., Apostolov, A., Vassileva, E., and Fakirov, S. 2000. Crystallization of water in some crosslinked gelatins. Eur. Polym. J. 36:1055-1061.
  • Reutner, P., Luft, B. and Borchard, W. 1985, Compound Formation and Glassy Solidification in the System Gelatin-Water, Colloid Polymer Sci. 263, 519-29.
  • Sarciaux, J.M.E. and Hageman, M.J. 1997. Effects of bovine somatotropin concentration at different moisture levels on the physical stability of sucrose in freeze-dried rbSt/sucrose mixtures. J. Pharm. Sci. 86:365-371.
  • Slade, L., Levine, H. and Finley, J.W. 1989. Protein-Water Interactions: Water as a Plasticizer of Gluten and Other Protein Polymers. In Protein Quality and the Effects of Processing, eds R.D. Phillips and J.W. Finley,Marcel Dekker, New York, 9-124.

    2.c Biopolymers

  • Ablett, S., Darke, A.H., Izzard, M.J. and Lillford, P.J. 1993. Studies of the glass transition in malto-oligomers. In The Glassy State in Foods (Blanshard, J.M.V. and Lillford, P.J., Eds.), Nottingham University Press, Loughborough, pp. 189-206.
  • Abu-Jdayil, B., Azzam, M.O.J., and Al-Malah, K.I.M. 2001. Effect of glucose and storage time on the viscosity of wheat starch dispersions. Carbohydr. Polym. 46:207-215.
  • Ahmad, F.B. and Williams, P.A. 1999. Effect of sugars on the thermal and rheological properties of sago starch. Biopolymers 50:401-412.
  • Al-Ruqaie, I.M., Kasapis, S., Richardson, R.K., and Mitchell, G. 1997. The glass transition zone in high solids pectin and gellan preparations. Polymer 38:5685-5694.
  • Al-Ruqaie, I.M., Kasapis, S., and Abeysekera, R. 1997. Structural properties of pectin-gelatin gels. Part II: effect of sucrose/glucose syrup. Carbohydr.Polym. 34:309-321.
  • Andreev, N.R., Kalistratova, E.N., Wasserman, L.A., and Yuryev, V.P. 1999. The influence of heating rate and annealing on the melting thermodynamic parameters of some cereal starches in excess water. Starke 51:422-429.
  • Appelqvist, I. A. M., Cooke, D., Gidley, M. J., and Lane, S. J. 1993. Thermal properties of polysaccharides at low moisture 1. An endothermic melting process and water-carbohydrate interactions. Carbohydr. Polym. 20, 291-299.
  • Appelqvist, I.A.M. and Debet, M.R.M. 1997. Starch-biopolymer interactions – a review. Food Rev. Int. 13:163-224.
  • Arvanitoyannis, I., Kolokuris, I., Blanshard, J.M.V., and Robinson, C. 1993. Study of the effect of annealing, draw ratio, and moisture upon the crystallinity of native and commercial gutta percha (transpolyisoprene) with DSC, DMTA, and X-rays: determination of the activation energies at Tg. J. Appl. Polym. Sci. 48: 987-998.

  • Atichokudomchai, N., Varavinit, S., and Chinachoti, P. 2002. A study of annealing and freeze-thaw stability of acid-modified tapioca starches by DSC. Starke 54:343-349.
  • Aubin, M. & Prud'homme, R.E. 1988. Analysis of the Tg of miscible polymer blends. Macromolecules 21, 2945-49. NO PDF
  • Baek, M.H., Yoo, B., and Lim, S.T. 2004. Effects of sugars and sugar alcohols on thermal transition and cold stability of corn starch gel. Food Hydrocolloids 18:133-142.
  • Baik, M.Y., Kim, K.J., Cheon, K.C., Ha, Y.C., and Kim, W.S. 1997. Recrystallization kinetics and glass transition of rice starch gel system. J. Agric. Food Chem. 45:4242-4248.
  • Beleia, A., Miller, R.A., and Hoseney, R.C. 1996. Starch gelatinization in sugar solutions. Starke 48:259-262.
  • Bello-Perez, L.A. and Paredes-Lopez, O. 1995. Starch and amylopectin: effect of solutes on their calorimetric behavior. Food Chem. 53:243-247.
  • Biliaderis, C.G., Page, C.M. and Maurice, T.J. 1986a, Non-Equilibrium Melting of Amylose-V Complexes, Carbohydrate Polymers, 6, 269-88.
  • Biliaderis, C.G., Page, C.M. & Maurice, T.J. 1986b. Multiple Melting Transitions of Starch/Monoglyceride Systems. Food Chem. 22, 279-95.
  • Biliaderis, C.G. and Juliano, B.O. 1993. Thermal and mechanical properties of concentrated rice starch gels of varying composition. Food Chem. 48, 243-250.
  • Biliaderis, C.G. and Seneviratne, H.D., 1990a. On the supermolecular structure and metastability of glycerol monostearate-amylose complex, Carbohydr. Polym. 13, 185-206.
  • Biliaderis, C.G. and Seneviratne, H.D. 1990b. Solute effects on the thermal stability of glycerol monostearate-amylose complex superstructures. Carbohydr. Res. 208: 199-213.
  • Biliaderis, C.G. 1998. Structures and phase transitions of starch polymers. Food Sci. Technol. 87:57-168.
  • Biliaderis, C.G., Lazaridou, A., and Arvanitoyannis, I. 1999a. Glass transition and physical properties of polyol-plasticized pullulan-starch blends at low moisture. Carbohydr. Polym. 40:29-47.
  • Biliaderis, C.G., Swan, R.S., and Arvanitoyannis, I. 1999b. Physicochemical properties of commercial starch hydrolyzates in the frozen state. Food Chem. 64:537-546.
  • Bizot, H., Le Bail, P., Leroux, B., Davy, J., Roger, P., and Buleon, A. 1997. Calorimetric evaluation of the glass transition in hydrated, linear and branched polyanhydroglucose compounds. Carbohydr. Polym. 32:33-50.
  • Blond, G. and Colas, B. 1991. Freezing in polymer-water systems. In Food Freezing: Today and Tomorrow, ed. W.B. Bald, Springer-Verlag, London, pp. 27-43.
  • Blond, G. and Simatos, D. 1991. Glass transition of the amorphous phase in frozen aqueous systems. Thermochim. Acta 175: 239-247.
  • Blond, G. and Simatos, D. 1998. Optimized thermal treatments to obtain reproducible DSC thermograms with sucrose + dextran frozen solutions. Food Hydrocol. 12:133-139.
  • Boischot, C., Moraru, C.I., and Kokini, J.L. 2003. Factors that influence the microwave expansion of glassy amylopectin extrudates. Cereal Chem. 80:56-61.
  • Boltz, K.W. and Thompson, D.B. 1999. Initial heating temperature and native lipid affects ordering of amylose during cooling of high-amylose starches. Cereal Chem. 76:204-212.
  • Borde, B., Bizot, H., Vigier, G., Emery, J., and Buleon, A. 1999. Sub-Tg relaxations and physical aging in hydrated glassy polysaccharides. In Les Colloques 91: Biopolymer Science, INRA, Paris, pp. 167-171.
  • Borde, B., Bizot, H., Vigier, G., and Buleon, A. 2002a. Calorimetric analysis of the structural relaxation in partially hydrated amorphous polysaccharides. I. Glass transition and fragility. Carbohydr. Polym. 48:83-96.
  • Borde, B., Bizot, H., Vigier, G., and Buleon, A. 2002b. Calorimetric analysis of the structural relaxation in partially hydrated amorphous polysaccharides. II. Phenomenological study of physical ageing. Carbohydr. Polym. 48:111-123.

  • Buleon, A., Bizot, H., Delage, M.M. & Pontoire, B. 1987. Comparison of X-Ray Diffraction and Sorption Properties of Hydrolyzed Starches. Carbohydr. Polym. 7, 461-82.
  • Buleon, A., Le Bail, P., Colonna, P., and Bizot, H. 1998. Phase and polymorphic transitions of starches at low and intermediate water contents. In The Properties of Water in Foods - ISOPOW 6 (D.S. Reid, ed.), Blackie Academic & Professional, London, pp 160-178.

  • Carvalho, C.W.P. and Mitchell, J.R. 2001. Effect of sucrose on starch conversion and glass transition of nonexpanded maize and wheat extrudates. Cereal Chem. 78:342-348.
  • Cauley, B.J., Cipriani, C., Ellis, K., Roy, A.K., Jones, A.A., Inglefield, P.T.,McKinley, B.J., and Kambour, R.P. 1991. Glass transition and dynamics of phosphate esters dissolved in two glassy polymer matrices. Macromolecules 24, 403-409.
  • Chang, Y.P., Cheah, P.B., and Seow, C.C. 2000. Plasticizing-antiplasticizing effects of water on physical properties of tapioca starch films in the glassy state. J. Food Sci. 65:445-451.
  • Chatakanonda, P., Varavinit, S., and Chinachoti, P. 2000a. Effect of crosslinking on thermal and microscopic transitions of rice starch. Lebensm. Wiss. Technol. 33:276-284.

  • Chatakanonda, P., Varavinit, S., and Chinachoti, P. 2000b. Relationship of gelatinization and recrystallization of crosslinked rice to Tg. Cereal Chem. 77:315-319.

  • Chevallier, S. and Colonna, P. 1999. Thermal analysis of protein-starch interactions at low moisture contents. Sci. Aliments 19:167-182.
  • Chinachoti, P., Kim-Shin, M.S., Mari, F., and Lo, L. 1991. Gelatinization of wheat starch in the presence of sucrose and NaCl: correlation between gelatinization temperature and water mobility as determined by O17 NMR. Cereal Chem. 68: 245-248.
  • Chiotelli, E., Pilosio, G., and Le Meste, M. 2002. Effect of sodium chloride on the gelatinization of starch: a multimeasurement study. Biopolymers 63:41-58.
  • Chung, H.J., Lee, E.J., and Lim, S.T. 2002. Comparison in glass transition and enthalpy relaxation between native and gelatinized rice starches. Carbohydr. Polym. 48:287-298.
  • Chung, H.J., Woo, K.S., and Lim, S.T. 2004. Glass transition and enthalpy relaxation of cross-linked corn starches. Carbohydr. Polym. 55:9-15.
  • Chungcharoen, A. & Lund, D.B. 1987. Influence of Solutes and Water on Rice Starch Gelatinization. Cereal Chem. 64, 240-43.
  • Cruz-Orea, A., Pitsi, G., Jamee, P., and Thoen, J. 2002. Phase transitions in the starch-water system studied by adiabatic scanning calorimetry. J. Agric. Food Chem. 50:1335-1344.
  • de Graaf, R.A., Karman, A.P., and Janssen, L.P.B.M. 2003. Material properties and Tgs of different thermoplastic starches after extrusion processing. Starke 55:80-86.
  • DiMarzio, E.A. 1990. The glass temperature of polymer blends. Polymer 31:2294-2298.
  • Domszy, R.C., Alamo, R., Edwards, C.O. and Mandelkern, L. 1986, Thermoreversible Gelation and Crystallization of Homopolymers and Copolymers, Macromolecules, 19, 310-25.
  • Donovan, J.W. 1979. Phase Transitions of the Starch-Water System, Biopolymers, 18, 263-75.
  • Donovan, J.W. & Mapes, C.J. 1980. Multiple Phase Transitions of Starches and Nageli Amylodextrins. Starke 32, 190-93.
  • Donovan, J.W., Lorenz, K. & Kulp, K. 1983. DSC of Heat-Moisture Treated Wheat and Potato Starches. Cereal Chem. 60, 381-87.
  • Eliasson, A.C. 1992. A calorimetric investigation of the influence of sucrose on the gelatinization of starch. Carbohydr. Polym., 18, 131-138.
  • Ferrero, C., Martino, M.N., and Zaritzky, N.E. 1994. Corn starch-xanthan gum interaction and its effect on the stability during storage of frozen gelatinized suspensions. Starke 46, 300-308.
  • Ferrero, C., and Zaritzky, N.E. 2000. Effect of freezing rate and frozen storage on starch-sucrose-hydrocolloid systems. J. Sci. Food Agric. 80:2149-2158.
  • Fessas, D. and Schiraldi, A. 2001. State diagrams of arabinoxylan-water binaries. Thermochim. Acta 370:83-89.
  • Ford, J.L. 1999. Thermal analysis of HPMC and methylcellulose: powders, gels and matrix tablets. Int. J. Pharm. 179:209-228.
  • Francisco, J.D.C., Silverio, J., Eliasson, A.C., and Larsson, K. 1996. A comparative study of gelatinization of cassava and potato starch in an aqueous lipid phase (L2) compared to water. Food Hydrocolloids 10:317-322.
  • Garcia, V., Buleon, A., Colonna, P., Della Valle, G., and Lourdin, D. 1995. Phase transitions of tapioca starch. In Food Macromolecules and Colloids, eds. E. Dickinson and D. Lorient, Royal Soc. Chem., Cambridge, pp. 566-571. .
  • Georget, D.M.R., Smith, A.C., and Waldron, K.W. 2002. DMTA of cell wall polysaccharides extracted from lyophilised carrot Daucus carota. Carbohydr. Polym. 48:277-286.
  • Ghani, M.B.A., Che Man, Y.B., Ali, A.B., and Hashim, D.B.M. 1999. DSC: gelatinization of sago starch in the presence of sucrose and sodium chloride. J. Sci. Food Agric. 79:2001-2009.
  • Gonera, A. and Cornillon, P. 2002. Gelatinization of starch/gum/sugar systems studied by using DSC, NMR, and CSLM. Starke 54:508-516.
  • Haward, R.N. 1973. The Nature of Polymer Glasses, Their Packing Density, and Mechanical Behavior. In The Physics of Glassy Polymers, R.N. Haward, ed., Applied Science, London, 1-51.
  • Hoeve, C.A.J. 1980. The Structure of Water in Polymers. In Water in Polymers (ed. S.P. Rowland), ACS Symp. Ser. 127. ACS: Washington, D.C., pp. 135-46.
  • Holt, C. 1991. The effect of polymers on ice crystal growth. In Food Freezing: Today and Tomorrow, ed. W.B. Bald, Springer-Verlag, London, pp. 81-86.

  • Huang, R.M., Chang, W.H., Chang, Y.H., and Lii, C.Y. 1994. Phase transitions of rice starch and flour gels. Cereal Chem. 71, 202-207.

  • Iijima, M., Nakamura, K., Hatakeyama, T., and Hatakeyama, H. 2000. Phase transition of pectin with sorbed water. Carbohydr. Polym. 41:101-106.
  • Jang, J.K. and Pyun, Y.R. 1997. Effect of moisture level on the crystallinity of wheat starch aged at different temperatures. Starke 49:272-277.
  • Jang, J.K. and Pyun, Y.R. 1996. Effect of moisture content on the melting of wheat starch. Starke 48:48-51.
  • Jouppila, K., Ahonen, T., and Roos, Y. 1995. Water adsorption and plasticization of amylopectin glasses. In Food Macromolecules and Colloids, eds. E. Dickinson and D. Lorient, Royal Soc. Chem., Cambridge, pp. 556-559.
  • Jouppila, K. and Roos, Y.H. 1997. The physical state of amorphous corn starch and its impact on crystallization. Carbohydr. Polym. 32:95-104
  • Jouppila, K. and Roos, Y.H. 1996. The effect of physical state and glass transition on crystallization in starch. In Crystal Growth of Organic Materials, eds A.S. Myerson, D.A. Green, and P. Meenan, Amer. Chem. Soc., Washington, DC, pp. 196-199.
  • Kalichevsky, M.T. and Blanshard, J.M.V. 1992. The effect of fructose on the mechanical properties of food biopolymers. 53rd Easter School - The Science and Technology of the Glassy State in Foods, Univ. Nottingham, UK, April 6-9, abs. P4.
  • Kalichevsky, M.T. and Blanshard, J.M.V. 1993. The effect of fructose and water on the glass transition of amylopectin. Carbohydr. Polym. 20, 107-113.
  • Kalichevsky, M.T., Jaroszkiewicz, E.M., and Blanshard, J.M.V. 1993. A study of the glass transition of amylopectin-sugar mixtures. Polymer, 34, 346-358.
  • Kararli, T.T., Hurlbut, J.B., and Needham, T.E. 1990. Glass-rubber transitions of cellulosic polymers by DMA. J. Pharmaceut. Sci. 79: 845-848.
  • Kasapis, S., Morris, E.R., Norton, I.T., and Clark, A.H. 1993. Phase equilibria and gelation in gelatin/ maltodextrin systems - Part I: gelation of individual components. Carbohydr. Polym. 21, 243-248.
  • Kasapis, S. 1995. Review: phase separated, glassy and rubbery states of gellan gum in mixtures with food biopolymers and co-solutes. Int. J. Food Sci. Technol. 30:693-710.
  • Kasapis, S. 1998. Structural properties of high solids biopolymer systems. In Functional Properties of Food Macromolecules, eds. S.E. Hill, D.A. Ledward, and J.R. Mitchell, Aspen Publishers, Gaithersburg, MD, pp. 227-251.
  • Kasapis, S., Al-Marhobi, I.M.A., and Sworn, G. 2001. Alpha and beta mechanical dispersions in high sugar/acyl gellan mixtures. Int. J. Biol. Macromol. 29:151-160.
  • Kasapis, S. 2002. Viscoelasticity of oxidized starch/low methoxy pectin mixtures in the presence of glucose syrup. Int. J. Food Sci. Technol. 37:403-413.
  • Kasapis, S. and Al-Marhoobi, I.M.A. 2002. Alpha and beta mechanical relaxations in high sugar biopolymer mixtures. Gums and Stabilisers for the Food Industry 11:39-53.
  • Kasapis, S., Abeysekera, R., Atkin, N., Deszczynski, M., and Mitchell, J.R. 2002a. Tangible evidence of the transformation from enthalpic to entropic gellan networks at high levels of co-solute. Carbohydr. Polym. 50:259-262.
  • Kasapis, S., Desbrieres, J., Al-Marhoobi, I.M., and Rinaudo, M. 2002b. Disentangling alpha from beta mechanical relaxations in the rubber-to-glass transition of high-sugar--chitosan mixtures. Carbohydr. Res. 337:595-605.
  • Katsuta, K., Nishimura, A. and Miura, M. 1992a. Effects of saccharides on stabilities of rice starch gels. 1. Mono- and disaccharides. Food Hydrocolloids, 6, 387-398.
  • Katsuta, K., Nishimura, A. and Miura, M. 1992b. Effects of saccharides on stabilities of rice starch gels. 2. Oligosaccharides. Food Hydrocolloids, 6, 399-408.
  • Kim, C.S. and Walker, C.E. 1992. Effects of sugars and emulsifiers on starch gelatinization evaluated by DSC. Cereal Chem. 69: 212-217.
  • Kim, S.S. and Setser, C.S. 1992. Wheat starch gelatinization in the presence of polydextrose or hydrolyzed barley á-glucan. Cereal Chem., 69, 447-452.
  • Kim, K.J., Kim, Y.K., and Taub, I.A. 1994. Glass transition in a model heat-processed rice system. IFT '94 Annual Meeting, Atlanta, June 26.
  • Kim, Y.J., Suzuki, T., Matsui, Y., Pradistsuwanna, C., and Takai, R. 2001a. Water sorption for amorphous starch and structural relaxation by ball milling. Japan J. Food Eng. 2:121-125.
  • Kim, Y.J., Suzuki, T., Hagiwara, T., Yamaji, I., and Takai, R. 2001b. Enthalpy relaxation and glass to rubber transition of amorphous potato starch formed by ball-milling. Carbohydr. Polym. 46:1-6.
  • Kim, Y.J., Hagiwara, T., Kawai, K., Suzuki, T., and Takai, R. 2003. Kinetic process of enthalpy relaxation of glassy starch and effect of physical aging upon its water vapor permeability property. Carbohydr. Polym. 53:289-296.
  • Kindel, P.K., Liao, S.Y., Liske, M.R., and Olien, C.R. 1989. Arabinoxylans from Rye and Wheat Seed that Interact with Ice, Carbohydr. Res. 187, 173-185.
  • Knutson, C.A., 1990. Annealing of maize starches at elevated temperatures, Cereal Chem. 67, 376-384.
  • Krueger, B.R., Knutson, C.A., Inglett, G.E. & Walker, C.E. 1987. DSC Study on Effect of Annealing on Gelatinization Behavior of Corn Starch. J. Food Sci. 52, 715-18.
  • Kuge, T. & Kitamura, S. 1985. Annealing of starch granules - Warm water treatment and heat-moisture treatment. J. Jpn. Soc. Starch Sci. 32, 65-83.
  • Lai, Y.C., Sung, P.H., and Chien, J.T. 2000. Evaluation of compatibility of rice starch and pectins by glass transition and sub-Tg endotherms and the effect of compatibility on gel viscosity and water loss. Cereal Chem. 77:544-550.
  • Larsson, I. and Eliasson, A.-C. 1991. Annealing of starch at an intermediate water content. Starke 43: 227-231.
  • Lazaridou, A. and Biliaderis, C.G. 2002. Thermophysical properties of chitosan, chitosan-starch and chitosan-pullulan films near the glass transition. Carbohydr. Polym. 48:179-190.
  • Lazaridou, A., Biliaderis, C.G., and Kontogiorgos, V. 2003. Molecular weight effects on solution rheology of pullulan and mechanical properties of its films. Carbohydr. Polym. 52:151-166.
  • Leloup, V.M., Colonna, P., and Ring, S.G. 1992. Physico-chemical aspects of resistant starch. J. Cereal Sci. 16, 253-266.

  • Levine, H. and Slade, L. 1986. A Polymer Physico-Chemical Approach to the Study of Commercial Starch Hydrolysis Products (SHPs). Carbohydrate Polymers 6(3), 213-244.
  • Levine, H. and Slade, L. 1988. Water as a Plasticizer: Physico-Chemical Aspects of Low-Moisture Polymeric Systems. In Water Science Reviews, Vol. 3, ed F. Franks, Cambridge University Press, Cambridge, 79-185.

  • Le Meste, M. and Duckworth, R.B. 1988. Effect of water content on the mobility of solute molecules and of protein side chains in caseinate preparations. Int'l. J. Food Sci. & Technol. 23, 457-66.
  • Le Meste, M. and Voilley, A. 1988. Influence of hydration on rotational diffusivity of solutes in model systems. J. Phys. Chem. 92: 1612-1616.
  • Le Meste, M., Viguier, L., Lorient, D., and Simatos, D. 1990. Rotational diffusivity of solutes in concentrated caseinates: influence of glycosylation, J. Food Sci. 55, 724-727.
  • Li, S., Tang, J. and Chinachoti, P. 1996. Thermodynamics of starch-water systems: an analysis from solution-gel model on water sorption isotherms. J.Polym. Sci.: B: Polym. Phys. 34:2579-2589.
  • Li, T.Y. and Chien, J.T. 2001. Evaluation of rice starch-hydrocolloid compati-bility at low-moisture content by glass transitions. J. Food Sci. 66:698-704.
  • Lim, H., Setser, C.S., Paukstelis, J.V. and Sobczynska, D. 1992. O17 NMR studies on wheat starch-sucrose-water interactions with increasing tempera-ture. Cereal Chem., 69, 382-386.
  • Lim, J.K., Hayashi, N., Matsuo, H., Hayakawa, I., and Fujio, Y. 1993. Plasticization of wheat starch-gluten mixture under an elevated temperature. J. Fac.Agr. Kyushu Univ. 37, 307-313.
  • Lim, M.H., Wu, H., and Reid, D.S. 2000. The effect of starch gelatinization and solute concentrations on Tg' of starch model system. J. Sci. Food Agric. 80:1757-1762.
  • Lim, S.T., Chang, E.H., and Chung, H.J. 2001. Thermal transition characteristics of heat-moisture treated corn and potato starches. Carbohydr. Polym. 46:107-115.
  • Lii, C.Y., Lai, V.M.F., Liu, K.F., and Chang, W.H. 1997. Influences of polyols on thermal and dynamic viscoelastic properties of rice starches during gelati-nization. Starke 49:346-354.
  • Liu, H. and Lelievre, J. 1992. Transitions in frozen gelatinized-starch systems studied by DSC. Carbohydr. Polym., 19, 179-183.
  • Liu, Q., Charlet, G., Yelle, S., and Arul, J. 2002. Phase transition in potato starch-water system. I. Starch gelatinization at high moisture level. Food Res. Int. 35:397-407.
  • Liu, Y., Roy, A.K., Jones, A.A., Inglefield, P.T., and Ogden, P. 1990. An NMR study of plasticization and antiplasticization of a polymeric glass. Macromolecules 23, 968-977.
  • Longton, J. & G.A. LeGrys. 1981. DSC Studies on Crystallinity of Aging Wheat Starch Gels. Staerke 33, 410-14.
  • Lourdin, D., Bizot, H., and Colonna, P. 1997. "Antiplasticization" in starch-glycerol films? J. Appl. Polym. Sci. 63:1047-1053.
  • Lourdin, D., Coignard, L., Bizot, H., and Colonna, P. 1997. Influence of ERH and plasticizer concentration on the water content and glass transition of starch materials. Polymer 38:5401-5406.
  • Lourdin, D., Colonna, P., Brownsey, G.J., Noel, T.R., and Ring, S.G. 2002. Structural relaxation and physical aging of starchy materials. Carbohydr. Res. 337:827-833.
  • Lu, X. and Jiang, B. 1991. Glass transition temperature and molecular parameters of polymer. Polymer 32: 471-478.

  • Maaruf, A.G., Che Man, Y.B., Asbi, B.A., Junainah, A.H., and Kennedy, J.F. 2001. Gelatinization of sago starch in the presence of sucrose and sodium chloride as assessed by DSC. Carbohydr. Polym. 45:335-345.
  • Maaruf, A.G., Che Man, Y.B., Asbi, B.A., Junainah, A.H., and Kennedy, J.F. 2001. Effect of water content on the gelatinization temperature of sago starch. Carbohydr. Polym. 46:331-337.
  • Majumdar, S., Alexander, K.S., and Riga, A.T. 2002. Determination of Tg for various grades of microcrystalline cellulose and the effect of absorbed moisture on this parameter. Proc. 30th NATAS Conf., pp. 118-123.
  • Marchisano, C., Gennaro, L., Sepe, M., and Masi, P. 1996. Characterizing in situ starch gelatinization - thermal and DMA of durum wheat dough. J. Therm. Anal. 47:181-194.
  • Marshall, W.E. 1994. Starch gelatinization in brown and milled rice: a study using DSC. Food Sci. Technol. 59, 205-227.
  • Matveev, Y.I., van Soest, J.J.G., Nieman, C., Waserman, L.A., Protserov, V.A., Ezernitskaja, M., and Yuryev, V.P. 2001. The relationship between thermodynamic and structural properties of low and high amylose maize starches. Carbohydr. Polym. 44:151-160
  • Mathew, A.P. and Dufresne, A. 2002. Plasticized waxy maize starch: effect of polyols and relative humidity on material properties. Biomacromol. 3:1101-1108.
  • Maurice, T.J., Slade, L., Page, C., and Sirett, R. 1985. Polysaccharide-Water Interactions - Thermal Behavior of Rice Starch. In Properties of Water in Foods, eds. D. Simatos & J.L. Multon, Martinus Nijhoff, Dordrecht, 211-227.

  • Mitsuiki, M., Yamamoto, Y., Mizuno, A., and Motoki, M. 1998. Glass transition properties as a function of water content for various low moisture galactans. J. Agric. Food Chem. 46:3528-3534.
  • Mizuno, A., Mitsuiki, M., and Motoki, M. 1997. Effect of crystallinity on the Tg of starch. J. Agric. Food Chem. 46:98-103.
  • Moraru, C.I., Lee, T.C., Karwe, M.V., and Kokini, J.L. 2002. Phase behavior of a meat-starch extrudate illustrated on a state diagram. J. Food Sci. 67:3026-3032.

  • Morris, V.J. 1986. Gelation of Polysaccharides. In Functional Properties of Food Macromolecules, J.R. Mitchell and D.A. Ledward (eds.), 121. Elsevier Applied Science, London, England.
  • Morris, V.J., Starch gelation and retrogradation, 1990. Trends Food Sci. Technol. 1, 2-6.
  • Mua, J.P. and Jackson, D.S. 1998. Retrogradation and gel textural attributes of corn starch amylose and amylopectin fractions. J. Cereal Sci. 27:157-166.
  • Muhr, A.H., Blanshard, J.M.V. & Sheard, S.J. 1986. Effects of Polysaccharide Stabilizers on the Nucleation of Ice. J. Food Technol. 21, 587-603.
  • Muhr, A.H. & Blanshard, J.M.V. 1986. Effect of Polysaccharide Stabilizers on the Rate of Growth of Ice.J. Food Technol. 21, 683-710.
  • Nakamura, K., Hatakeyama, T., and Hatakeyama, H. 1991. Formation of the glassy state and mesophase in the water-sodium alginate system. Polym. J. 23: 253-258.
  • Nakamura, K., Nishimura, Y., Hatakeyama, T., and Hatakeyama, H. 1995. Thermal properties of water-insoluble alginate films containing di- and trivalent cations. Thermochim. Acta 267:343-353.

  • Nakazawa, F., Noguchi, S., Takahashi, J. & Takada, M. 1984. Thermal Equilibrium State of Starch-Water Mixture Studied by DSC. Agric. Biol. Chem. 48, 2647-53.
  • Nakazawa, F., Noguchi, S., Takahashi, J. and Takada, M. 1985, Retrogradation of Gelatinized Potato Starch Studied by DSC, Agric. Biol. Chem. 49, 953-57.
  • Nashed, G., Rutgers, R.P.G., and Sopade, P.A. 2003. The plasticization effect of glycerol and water on the gelatinization of wheat starch. Starke 55:131-137.
  • Nicholls, R.J., Appelqvist, I.A.M., Davies, A.P., Ingman, S.J., and Lillford, P.J. 1995. Glass transitions and the fracture behavior of gluten and starches within the glassy state. J. Cereal Sci. 21, 25-36.
  • Nashed, G., Rutgers, R.P.G., and Sopade, P.A. 2003. The plasticization effect of glycerol and water on the gelatinization of wheat starch. Starke 55:131-137.
  • Navarro, A.S., Martino, M.N., and Zaritzky, N.E. 1995. Effect of freezing rate on the rheological behavior of systems based on starch and lipid phase. J. Food Eng. 26:481-495.
  • Nicholls, R.J., Appelqvist, I.A.M., Davies, A.P., Ingman, S.J., and Lillford, P.J. 1995. Glass transitions and the fracture behavior of gluten and starches within the glassy state. J. Cereal Sci. 21, 25-36.

  • Nishinari, K., Watase, M., Kohyama, K., Nishinari, N., Oakenfull, D., Koide, S., Ogino, K., Williams, P.A., and Phillips, G.O. 1992. The effect of sucrose on the thermoreversible gel-sol transition in agarose and gelatin. Polymer J. 24, 871-877.

  • Orford, P.D., Parker, R., Ring, S.G. & Smith, A.C., 1989. The Effect of Water as a Diluent on the Glass Transition Behavior of Malto-Oligosaccharides, Amylose and Amylopectin. Int'l. J. Biol. Macromol. 11, 91-96.
  • Papageorgiou, M. and Kasapis, S. 1995. The effect of added sucrose and corn syrup on the physical properties of gellan-gelatin mixed gels. Food Hydrocolloids 9:211-220.
  • Papageorgiou, M., Kasapis, S., and Richardson, R.K. 1994. Glassy-state phenomena in gellan-sucrose-corn syrup mixtures. Carbohydr. Polym. 25, 101-109.
  • Parker, R. and Ring, S.G. 2001. Aspects of the physical chemistry of starch. J. Cereal Sci. 34:1-17.

  • Pautrat, C., Bressan, C., and Mathlouthi, M. 1996. Physico-chemical study of the effect of some polysaccharides on the sucrose crystallization conditions. In Processing Expert Systems, Technological Value of Sugar Beet, pp. 204-215.

  • Peleg, M. 1996. Mathematical characterization of the plasticizing and antiplasticizing effects of fructose on amylopectin. Cereal Chem. 73:712-715.
  • Perry, P.A. and Donald, A.M. 2000. The role of plasticization in starch granule assembly. Biomacromol. 1:424-432.
  • Perry, P.A. and Donald, A.M. 2002. The effect of sugars on the gelatinization of starch. Carbohydr. Polym. 49:155-165.
  • Pravisani, C.I., Califano, A.N. & Calvelo, A. 1985. Kinetics of Starch Gelatinization in Potato. J. Food Sci. 50, 657-60.
  • Pouplin, M., Redl, A., and Gontard, N. 1999. Glass transition of wheat gluten plasticized with water, glycerol, or sorbitol. J. Agric. Food Chem. 47:538-543.
  • Prokopowich, D.J. and Biliaderis, C.G. 1995. A comparative study of the effect of sugars on the thermal and mechanical properties of concentrated waxy maize, wheat, potato and pea starch gels. Food. Chem. 52:255-262.

  • Radosta, S. and Schierbaum, F., 1990. Polymer-water interaction of maltodextrins. Part III: Non-freezable water in maltodextrin solutions and gels, Starke 42, 142-47.

  • Randzio, S.L., Flis-Kabulska, I., and Grolier, J.P.E. 2002. Reexamination of phase transformations in the starch-water system. Macromolecules 35:8852-8859.

  • Ratto, J., Hatakeyama, T., and Blumstein, R.B. 1995. DSC investigation of phase transitions in water-chitosan systems. Polymer 36:2915-2919.
  • Ratto, J.A., and Schneider, N. 1998. The effect of water interactions on the thermal transition behavior of pullulan. Polym. Mater. Sci. Eng. 79:469-470.
  • Raudonus, J., Bernard, J., Janssen, H., Kowalczyk, J., and Carle, R. 2000. Effect of oligomeric or polymeric additives on glass transition, viscosity and crystallization of amorphous isomalt. Food Res. Int. 33:41-51.
  • Ribeiro, C., Zimeri, J.E., Yildiz, E., and Kokini, J.L. 2003. Estimation of effective diffusivities and Tg of polydextrose as a function of moisture content. Carbohydr. Polym. 51:273-280.
  • Ross-Murphy, S.B. 1992. Physical gelation of biopolymers. In Viscoelasticity of Biomaterials, eds. Glasser, W. and Hatakeyama, H., pp. 204-216, ACS Symp. Ser. 489, ACS Books, Washington.
  • Sakurai, K., Maegawa, T., and Takahashi, T. 2000. Tg of chitosan and miscibility of chitosan/PVP blends. Polymer 41:7051-7056.

  • Sala, R. and Tomka, I. 1993. On the equation of state of thermoplastic starch. In The Glassy State in Foods (Blanshard, J.M.V. and Lillford, P.J., Eds.), Nottingham University Press, Loughborough, pp. 475-482.

  • Salmen, N.L. & Back, E.L. 1977. Influence of Water on Tg of Cellulose. Tappi 60, 137-40.

  • Seow, C.C. 1995. Phenomenon of enthalpy relaxation at the glass transition in granular starches. In Food Macromolecules and Colloids, eds. E. Dickinson and D. Lorient, Royal Soc. Chem., Cambridge, pp. 534-542.
  • Seow, C.C. and Vasanti-Nair, C.K. 1994. Sub-Tg annealing of granular rice starch: effects on enthalpy relaxation and starch/sucrose interactions. Carbohydr. Res. 261, 307-316.
  • Sievert, D. and Wursch, P. 1993. Thermal behavior of potato amylose and enzyme-resistant starch from maize. Cereal Chem. 70, 333-338.
  • Slade, L. and Levine, H. 1988. Non-Equilibrium Melting of Native Granular Starch: Part I. Temperature Location of the Glass Transition Associated with Gelatinization of A-Type Cereal Starches. Carbohydrate Polymers 8, 183-208.

  • Smits, A.L.M., Ruhnau, F.C., Vliegenthart, J.F.G., and van Soest, J.J.G. 1998. Ageing of starch-based systems as observed with FTIR and solid-state NMR spectroscopy. Starke 50:478-483.
  • Sudhakar, V., Singhal, R.S., and Kulkarni, P.R. 1995. Effect of sucrose on starch-hydrocolloid interactions. Food Chem. 52:281-284.
  • Tananuwong, K. and Reid, D.S. 2004. DSC study of glass transition behavior in frozen starch gels. J. Agric. Food Chem., submitted.
  • Thiewes, H.J. and Steeneken, P.A.M. 1997. The glass transition and the sub-Tg endotherm of amorphous and native potato starch at a low moisture content. Carbohydr. Polym. 32:123-130.
  • van Soest, J.J.G., Bezemer, R.C., de Wit, D., Vliegenthart, J.F.G. 1996. Influence of glycerol on the melting of potato starch. Indust. Crops Prods. 5:1-9.
  • Whittam, M.A., Noel, T.R. and Ring, S.G. 1990. Melting behavior of A- and B- type crystalline starch. Int. J. Biol. Macromol., 12, 359-362.
  • Whittam, M.A., Noel, T.R., and Ring, S.G., 1991. Melting and glass/rubber transitions of starch polysaccharides, in Food Polymers, Gels and Colloids, E. Dickinson, ed., Royal Society Chemistry, Cambridge, pp. 277-288.
  • Willenbucher, R.W., Tomka, I. and Muller, R. 1993. Thermally induced structural transitions in the starch-water system. In The Glassy State in Foods (Blanshard, J.M.V. and Lillford, P.J., Eds.), Nottingham University Press, Loughborough, pp. 491-497.
  • Yost, D.A. & Hoseney, R.C. 1986. Annealing and Glass Transition of Starch. Starke 38, 289-92.
  • Yuryev, V.P., Nemirovskaya, I.E., and Maslova, T.D. 1995. Phase state of starch gels at different water contents. Carbohydr. Polym. 26:43-46.

  • Zeleznak, K.J. & R.C. Hoseney. 1987. The Glass Transition in Starch. Cereal Chem. 64, 121-24.
  • Zobel, H.F., Young, S.N., and Rocca, L.A. 1988. Starch Gelatinization: An X-Ray Diffraction Study. Cereal Chem. 65, 443-446.
  • Zobel, H.F. and Stephen, A.M. 1995. Starch: structure, analysis and application. In Food Polysaccharides and their Applications, ed. A.M. Stephen, Marcel Dekker, NY, pp. 19-66.

    Complex systems
    2.d Foods

  • Aguilera, J.M., Cuadros, T.R., and del Valle, J.M. 1998. DSC of low-moisture apple products. Carbohydr. Polym. 37:79-86.
  • Anglea, S.A., Karathanos, V. and Karel, M. 1993. Low temperature transitions in fresh and osmotically dehydrated plant materials. Biotechnol. Prog. 9, 204- 209.
  • Anese, M., Shtylla, I., Torreggiani, D., and Maltini, E. 1996. Water activity and viscosity relations with Tgs in model food systems. Thermochim. Acta 275:131-137
  • Bai, Y., Rahman, M.S., Perera, C.O., Smith, B., and Melton, L.D. 2001. State diagram of apple slices: glass transition and freezing curves. Food Res. Int. 34:89-95.
  • Baroni, A.F., Sereno, A.M., and Hubinger, M.D. 2003. Thermal transitions of osmotically dehydrated tomato by MTDSC. Thermochim. Acta 395:237-249.
  • Barra, G., Di Matteo, P., Vittoria, V., Sesti Osseo, L., and Cesaro, A. 2000. A DSC study of thermal transitions of apple systems at several water contents. J. Therm. Anal. Calorim. 61:351-362.
  • Bhandari, B.R. and Howes, T. 1999. Implication of glass transition for the drying and stability of dried foods. J. Food Eng. 40:71-79.
  • Bindzus, W., Livings, S.J., Gloria-Hernandez, H., Fayard, G., van Lengerich, B., and Meuser, F. 2002. Glass transition of extruded wheat, corn and rice starch. Starke 54:393-400.
  • Blanshard, J.M.V. 1995. The glass transition, its nature and significance in food processing. In Physico-Chemical Aspects of Food Processing, ed. S.T.Beckett, Chapman & Hall, London, pp. 17-48.
  • Brake, N.C. and Fennema, O.R. 1999. Glass transition values of muscle tissue. J.Food Sci. 64:10-15.
  • Brent, J.L., Mulvaney, S.J., Cohen, C., and Bartsch, J.A. 1997. Thermomechanical glass transition of extruded cereal melts. J. Cereal Sci. 26:301-312.
  • Buera, M.P., Jouppila, K., Roos, Y.H., and Chirife, J. 1998. DSC Glass transition temperatures of white bread and mold growth in the putative glassy state. Cereal Chem. 75:64-69.
  • Busin, L., Buisson, P., and Bimbenet, J.J. 1996. Notion of glass transition applied to the spray-drying of carbohydrate solutions. Sci. Aliments 16:443-459.
  • Charoenrein, S. and Reid, D.S. 1989. Effect of freezing conditions and storage temperature on the stability of frozen green beans. In Quality Factors of Fruits and Vegetables, J.J. Jen, ed. Washington, ACS Books, pp. 226-238.
  • Cnossen, A.G. and Siebenmorgen, T.J. 2000. The Tg concept in rice drying and tempering: effect on milling quality. Trans. ASAE 43:1661-1667.
  • Colaco, C.A.L.S. and Roser, B. 1994. Trehalose - a multifunctional additive for food preservation. In Food Packaging and Preservation, ed. M. Mathlouthi, pp.123-140, Blackie Academic & Professional, London.
  • Cuq, B., Boutrot, F., Redl, A., and Lullien-Pellerin, V. 2000. Study of the temperature effect on the formation of wheat gluten network: influence on mechanical properties and protein solubility. J. Agric Food Chem. 48:2954-2959.
  • Cuq, B. and Icard-Verniere, C. 2001. Characterisation of glass transition of durum wheat semolina using MDSC. J. Cereal Sci. 33:213-221.
  • Cuq, B., Abecassis, J., and Guilbert, S. 2003. State diagrams to help describe wheat bread processing. Int. J. Food Sci. Technol. 38:759-766.
  • Cuq, B., Goncalves, F., Mas, J.F., Vareille, L., and Abecassis, J. 2003. Effects of moisture content and temperature of spaghetti on their mechanical properties. J. Food Eng. 59:51-60.
  • Czuchajowska, Z., Lin, P.Y., and Smolinski, S. 1996. Role in dough rheology of high MW glutenin subunits of soft white winter and club wheats. Cereal Chem. 73:338-345.
  • Fernandez, E., Schebor, C., and Chirife, J. 2003. Tg of regular and lactose- hydrolyzed milk powders. Lebensm. Wiss. Technol. 36:547-551.
  • Forssell, P.M., Mikkila, J.M., Moates, G.K., and Parker, R. 1997. Phase and glass transition behavior of concentrated barley starch-glycerol-water mixtures, a model for thermoplastic starch. Carbohydr. Polym. 34:275-282.
  • Genin, N. and Rene, F. 1995. Analyse du role de la transition vitreuse dans les procedes de conservation agro-alimentaires. J. Food Eng. 26:391-408.
  • Gloria, H. and Sievert, D. 2001. Changes in the physical state of sucrose during dark chocolate processing. J. Agric. Food Chem. 49:2433-2436.
  • Goff, H.D. 1994. Measuring and interpreting the glass transition in frozen foods and model systems. Food Res. Int. 27, 187-189.
  • Goff, H.D. 1995. The use of thermal analysis in the development of a better understanding of frozen food stability. Pure Appl. Chem. 67:1801-1808.
  • Goff, H.D. 1997. Measurement and interpretation of the glass transition in frozen foods. In Quality in Frozen Food, eds. M.C. Erickson and Y.C. Hung, Chapman & Hall, NY, pp. 29-50.
  • Griffith, M. and Ewart, K.V. 1995. Antifreeze proteins and their potential use in frozen foods. Biotech. Adv. 13, 375-402.
  • Hammami, C. and Rene, F. 1997. Determination of freeze-drying process variables for strawberries. J. Food Eng. 32:133-154.
  • Hartel, R.W. 1998. Phase transitions in ice cream. In Phase/State Transitions in Foods, eds. M.A. Rao and R.W. Hartel, Marcel Dekker, NY, pp. 327-368.
  • Inoue, C. and Ishikawa, M. 1997. Glass transition of tuna flesh at low temperature and effects of salt and moisture. J. Food Sci. 62:496-499.
  • Jagannath, J.H., Jayaraman, K.S., and Arya, S.S. 1998. Effect of wrappers, temperature, humidity and modified atmosphere on phase transitions during staling of bread. J. Food Sci. Technol. 35:132-137.
  • Jagannath, J.H. Jayaraman, K.S., and Arya, S.S. 1999. Studies on Tg during staling of bread containing different monomeric and polymeric additives. J. Appl. Polym. Sci. 71:1147-1152.
  • Jagannath, J.H., Nanjappa, C., Gupta, D.K.D., and Arya, S.S. 2001. Crystallization kinetics of precooked potato starch under different drying conditions (methods). Food Chem. 75:281-286.
  • Jardim, D.C.P., Candido, L.M.B., and Netto, F.M. 1999. Sorption isotherms and Tgs of fish protein hydrolysates with different degrees of hydrolysis. Int. J.Food Prop. 2:227-242.
  • Jensen, K.N., Jorgensen, B.M., and Nielsen, J. 2003. Low-temperature transitions in cod and tuna determined by DSC. Lebensm. Wiss. Technol. 36:369-374.
  • Jouppila, K. and Roos Y.H. 1994. Glass transitions and crystallization in milk powders. J. Dairy Sci. 77:2907-2915.
  • Jouppila, K., Kansikas, J., and Roos, Y.H. 1997. Glass transitions, water plasticization, and lactose crystallization in skim milk powder. J. Dairy Sci. 80:3152-3160.
  • Kaletunc, G. and Breslauer, K.J. 1993. Glass transitions of extrudates: relationship with processing induced fragmentation and end-product attributes. Cereal Chem. 70, 548-552.
  • Kanaya, H., Nishida, T., Ohara, M., Hara, K., Matsushige, K., Takushi, E., and Matsumoto, Y. 1994. Transformation of egg-white glass into partially crystallized glass induced by heat treatment and gamma-ray irradiation. Jpn. J. Appl. Phys. 33, 226-229.
  • Kantor, Z., Pitsi, G., and Thoen, J. 1999. Tg of honey as a function of water content as determined by DSC. J. Agric. Food Chem. 47:2327-2330.
  • Kasapis, S., Rahman, M.S., Guizani, N., and Al-Aamri, M. 2000. State diagram of temperature vs. date solids obtained from the mature fruit. J. Agric. Food Chem. 48:3779-3784.
  • Kayacier, A. and Singh, R.K. 2002. Glass transition studies of baked tortilla chips using DMTA. Lebensm. Wiss. Technol. 35:34-37.
  • Kerr, W.L., Ju, J., and Reid, D.S. 1993. Enthalpy of frozen foods determined by differential compensated calorimetry. J. Food Sci. 58, 675-679.
  • Khalloufi, S., El-Maslouhi, Y., and Ratti, C. 2000. Mathematical model for prediction of Tg of fruit powders. J. Food Sci. 65:842-848.
  • Knight, C.A., DeVries, A.L. & Oolman, L.D. 1984. Fish Antifreeze Protein and the Freezing and Recrystallization of Ice. Nature 308, 295-96.
  • Knudsen, J.C., Antanuse, H.S., Risbo, J., and Skibsted, L.H. 2002. Induction time and kinetics of crystallization of amorphous lactose, infant formula and whole milk powder as studied by isothermal DSC. Milchwissenschaft 57:543-546.
  • Kristott, J.U. and Jones, S.A. 1992. Crystallization studies of confectionery sugar glasses. LFRA Res. Rep. 699:1-62.
  • Krog, N., Olesen, S.K., Toernaes, H., and Joensson, T. 1989. Retrogradation of the starch fraction in wheat bread, Cereals Food World, 34, 281-85.
  • Kulp, K. and Ponte, J.G. 1981. Staling of white pan bread: fundamental causes, CRC Critical Reviews in Food Science and Nutrition, 15, 1-48.
  • Kulp, K. 1995. Biochemical and biophysical principles of freezing. In Frozen and Refrigerated Doughs and Batters, eds. K. Kulp, K. Lorenz, and J. Brummer, AACC, St. Paul, pp. 63-89.
  • Kuntz, L.A. 1995. Freeze/thaw-stability: keeping your assets frozen. Food Product Design 4(11), 45-54.
  • Lee, M.H., Baek, M.H., Cha, D.S., Park, H.J., and Lim, S.T. 2002. Freeze-thaw stabilization of sweet potato starch gel by polysaccharide gums. Food Hydrocol. 16:345-352.

  • Levine, H. and Slade, L. 1989. Interpreting the Behavior of Low-Moisture Foods. In Water and Food Quality, ed T.M. Hardman, Elsevier, London, 71-134.
  • Levine, H. and Slade, L. 1990 Influences of the Glassy and Rubbery States on the Thermal, Mechanical, and Structural Properties of Doughs and Baked Products. In Dough Rheology and Baked Product Texture: Theory and Practice, eds H. Faridi & J.M. Faubion, Van Nostrand Reinhold/AVI, New York, 157-330.
  • Levine, H. and Slade, L. 1992. Glass Transitions in Foods, in Physical Chemistry of Foods, eds. H.G. Schwartzberg and R.W. Hartel, Marcel Dekker, New York, pp. 83-221.
  • Levine, H. and Slade, L. 1992. Glass Transitions in Foods, in Physical Chemistry of Foods, eds. H.G. Schwartzberg and R.W. Hartel, Marcel Dekker, New York, pp. 83-221.

  • Le Meste, M., Huang, V.T., Panama, J., Anderson, G., and Lentz, R. 1992a. Glass transition of bread. Cereal Foods World, 37: 264-267.
  • Le Meste, M., Aynie, S., and Colas, B. 1992b. Etude des proprietes viscoelastiques du pain de mie. Indust. Agric. Aliment. 109, 862-866.
  • Le Meste, M., Davidou, S., and Fontanet, I. 1994. Relation entre le croustillant, le mecanisme de fracture et l'etat physique des produits cerealiers peu hydrates. Indust. Agric. Aliment. 110:11-15.
  • Le Meste, M., Roudaut, G., and Rolee, A. 1997. The physical state and quality of cereal-based foods. In Food Engineering 2000, eds. P. Fito, E. Ortega-Rodriguez, and G.V. Barbosa-Canovas, Chapman & Hall, NY, pp. 97-113.
  • Le Meste, M., Chiotelli, E., and Rolee, A. 2001. Thermo-mechanical behavior of concentrated starch-based products. In Bread Staling, eds. P. Chinachoti and Y. Vodovotz, CRC Press, Boca Raton, pp. 129-147.
  • Le Meste, M., Champion, D., Roudaut, G., Blond, G., and Simatos, D. 2002. Glass transition and food technology: a critical appraisal. J. Food Sci. 67:2444-2458.
  • Leon, A.E., Jovanovich, G., and Anon, M.C. 1998. Gelatinization profiles of triticale starch in cookies as influenced by moisture and solutes. Cereal Chem. 75:617-623.
  • Lillford, P.J. 1988. The Polymer/Water Relationship - Its Importance for Food Structure. In Food Structure - Its Creation and Evaluation (eds J.M.V. Blanshard & J.R. Mitchell), London, Butterworths, 75-92.
  • Lillford, P.J., Ablett, S., Davies, A.P., and Appelqvist, I.A.M. 1992. Glass transition in carbohydrates and cereal composites. American Association of Cereal Chemists 77th Annual Meeting, Sept. 20-24, Minneapolis, MN.
  • Ma, C.-Y. and Harwalkar, V.R. 1991. Thermal analysis of food proteins. In Advances in Food and Nutrition Research, Vol. 35 (Kinsella, J.E., Ed.), pp. 317-366. San Diego, CA, Academic Press.
  • Malisan, M. and Maltini, E. 1999. Thermal and physical behavior of honeys. Indust. Aliment. 38:549-559.
  • Martinez, N. and Chiralt, A. 1995. Glass transition and texture in a typical spanish confectionery product: xixona turron. J. Text. Stud. 26:653-663.
  • Mastrocola, D., Dalla Rosa, M., and Massini, R. 1997. Freeze-dried strawberries rehydrated in sugar solutions: mass tranfers and characteristics of final products. Food Res. Int. 30:359-364.
  • Mestres, C., Colonna, P. and Buleon, A. 1988. Gelation and Crystallization of Maize Starch After Pasting, Drum-Drying, or Extrusion Cooking. J. Cereal Sci. 7, 123-34.
  • Micard, V. and Guilbert, S. 2000. Thermal behavior of native and hydrophobized wheat gluten, gliadin and glutenin-rich fractions by modulated DSC. Int. J. Biol. Macromol. 27:229-236.
  • Micard, V., Morel, M.H., Bonicel, J., and Guilbert, S. 2001. Thermal properties of raw and processed wheat gluten in relation with protein aggregation. Polymer 42:477-485.
  • Moraga, G., Martinez-Navarrete, N., and Chiralt, A. 2004. Water sorption isotherms and glass transition in strawberries: influence of pretreatment. J.Food Eng. 62:315-321.
  • Moraru, C.I., Lee, T.C., Karwe, M.V., and Kokini, J.L. 2002. Phase behavior of a meat-starch extrudate illustrated on a state diagram. J. Food Sci. 67:3026-3032.
  • Nicholls, R.J., Appelqvist, I.A.M., Davies, A.P., Ingman, S.J., and Lillford, P.J. 1995. Glass transitions and the fracture behavior of gluten and starches within the glassy state. J. Cereal Sci. 21, 25-36.
  • Nesvadba, P. 1993. Glass transitions in aqueous solutions and foodstuffs. In The Glassy State in Foods (Blanshard, J.M.V. and Lillford, P.J., Eds.), Nottingham University Press, Loughborough, pp. 523-526.
  • Nikolaidis, A. and Labuza, T.P. 1996. Glass transition state diagram of a baked cracker and its relationship to gluten. J. Food Sci. 61:803-806.
  • Noel, T.R., Ring, S.G., and Whittam, M.A. 1990. Glass transitions in low-moisture foods. Trends Food Sci. Technol. 1: 62-67.
  • Normand, F.L. and Marshall, W.E. 1989. DSC of whole grain milled rice and milled rice flour, Cereal Chem., 66, 317-20.
  • Oliveira, J.C., Pereira, P.M., Frias, J.M., Cruz, I.B., and MacInnes, W.M. 1999. Application of the concepts of biomaterials science to the quality optimization of frozen foods. In Processing Foods, eds. F.A.R. Oliveira and J.C. Oliveira, CRC Press, Boca Raton, pp. 107-130.
  • Orlien, V., Risbo, J., Andersen, M.L., and Skibsted, L.H. 2003. The question of high- or low-temperature glass transition in frozen fish. Construction of the supplemented state diagram for tuna muscle by DSC. J. Agric. Food Chem. 51:211-217.
  • Paakkonen, K. and Roos, Y.H. 1990. Effects of drying conditions on water sorption and phase transitions of freeze-dried horseradish roots, J. Food Sci. 55, 206-209.
  • Paton, D. 1987. DSC of Oat Starch Pastes. Cereal Chem. 64, 394-99.
  • Perdon, A.A., Siebenmorgen, T.J., and Mauromoustakos, A. 2000. Glassy state transition and rice drying: Development of a brown rice state diagram. Cereal Chem. 77:708-713.
  • Pereira, P.M. and Oliveira, J.C. 2000. Measurement of glass transition in native wheat flour by DMTA. Int. J. Food Sci. Technol. 35:183-192.
  • Rahman, M.S. 1999. Glass transition and other structural changes in foods. In Handbook of Food Preservation, ed. M.S. Rahman, Marcel Dekker, NY, pp. 75-93.
  • Rahman, M.S., Kasapis, S., Guizani, N., and Al-Amri, O.S. 2003. State diagram of tuna meat: freezing curve and glass transition. J. Food Eng. 57:321-326.
  • Roman-Gutierrez, A.D., Guilbert, S., and Cuq, B. 2002. Frozen and unfrozen water contents of wheat flours and their components. Cereal Chem. 79:471-475.
  • Roos, Y.H. 1986. Phase Transitions and Unfreezable Water Content of Food Products Using DSC. J. Food Sci. 51, 684-86.
  • Roos, Y., 1987. Effect of moisture on the thermal behavior of strawberries studied using DSC, J. Food Sci., 52, 146-49,.
  • Roos, Y.H. 1992. Phase transitions and transformations in food systems. In Handbook of Food Engineering (Heldman, D.R. and Lund, D.B., eds.), pp. 145-197, Marcel Dekker, New York.
  • Roos, Y.H. 1994. Water activity and Tg: how do they complement and how do they differ? In Food Preservation by Moisture Control, eds. G.V. Barbosa-Canovas and J. Welti-Chanes, Technomic, Lancaster, PA, 1995, pp. 133-154.
  • Roos, Y. 1995. Phase Transitions in Foods. Academic Press, San Diego.
  • Roos, Y.H. 1997. Frozen state transitions in relation to freeze-drying. J. Therm. Anal. 48:535-544.
  • Roos, Y.H. 1998f. Role of water in phase transition phenomena in foods. In Phase/ State Transitions in Foods, eds. M.A. Rao and R.W. Hartel, Marcel Dekker, NY, pp. 57-93.
  • Roos, Y.H. 1998g. Phase transitions and structure of solid food matrices. Current Opinion Colloid Interface Sci. 3:651-656.
  • Roos, Y.H. 2002. Importance of glass transition and water activity to spray-drying and stability of dairy powders. Lait 82:475-484.
  • Roos, Y.H. 2003. Thermal analysis, state transitions and food quality. J. Therm. Anal. Cal. 71:197-203.
  • Roos, Y. and Karel, M. 1990. DSC study of phase transitions affecting the quality of dehydrated materials, Biotechnol. Prog. 6, 159-163.
  • Roos, Y.H., Karel, M., and Kokini, J.L. 1996. Glass transitions in low moisture and frozen foods: effects on shelf life and quality. Food Technol. 50(11):95-108.
  • Roos, Y.H., Roininen, K., Jouppila, K., and Tuorila, H. 1998. Glass transition and water plasticization effects on crispness of a snack food extrudate. Int. J. Food Prop. 1:163-180.
  • Sa, M.M. and Sereno, A.M. 1994. Glass transitions and state diagrams for typical natural fruits and vegetables. Thermochim. Acta 246, 285-297.
  • Sa, M.M., Figueiredo, A.M., and Sereno, A.M. 1999. Glass transitions and state diagrams for fresh and processed apple. Thermochim. Acta 329:31-38.
  • Sbirrazzuoli, N. 2002. Use of DSC as a new technique for detection of adulteration in honeys. 1. Study of adulteration effect on honey thermal behavior. J. Agric. Food Chem. 50:203-208.
  • Sereno, A.M. 2000. Thermal properties and state diagrams of fruits and vegetables by DSC. In Trends in Food Engineering, chap. 7, pp. 77-88.
  • Schenz, T.W. 1994. Glass transitions and product stability - an overview. Food Hydrocolloids 9:307-315.
  • Simatos, D., Blond, G., and Martin, F. 1995. Influence of macromolecules on glass transition in frozen systems. In Food Macromolecules and Colloids, eds. E. Dickinson and D. Lorient, Royal Soc. Chem., Cambridge, pp. 519-533.

  • Slade, L. and Levine, H. 1994.Structure-Function Relationships of Cookie and Cracker Ingredients. In The Science of Cookie and Cracker Production, ed. H. Faridi, Chapman & Hall/AVI, New York, pp. 23-141.
  • Slade, L. and Levine, H. 1988. Structural Stability of Intermediate Moisture Foods - A New Understanding? In Food Structure - Its Creation and Evaluation, eds J.M.V. Blanshard and J.R. Mitchell, Butterworths, London,115-147.
  • Slade, L. and Levine, H. 1993. The glassy state phenomenon in food molecules. In The Glassy State in Foods, eds. J.M. V. Blanshard & P.J. Lillford, Nottingham University Press, Loughborough, 35-101.
  • Slade, L. and Levine, H. 1994 Water and the glass transition - dependence of the glass transition on composition and chemical structure: special implications for flour functionality in cookie baking. J. Food Engn. 22, 143-188 (1994) and 24, 431-509 (1995), and in "Water in Foods: Fundamental Aspects and their Significance in the Processing of Foods - Proceedings of ISOPOW-V" (eds. P. Fito, A. Mulet, and B. McKenna), Elsevier, London, pp. 143-188.
  • Slade, L. and Levine, H. 1994 Structure-Function Relationships of Cookie and Cracker Ingredients. In The Science of Cookie and Cracker Production, ed. H. Faridi, Chapman & Hall/AVI, New York, pp. 23-141.
  • Tananuwong K and Reid DS. 2004. Differential scanning calorimetry study of glass transition in frozen starch gels. J Agric Food Chem. 2004 Jun 30;52:4308-17
  • Telis, V.R.N. and Sobral, P.J.A. 2001. Glass Transitions and State Diagram for Freeze-dried Pineapple. Lebensm.-Wiss. u.-Technol. 34:199-205.

    2.e Edible films

  • Arvanitoyannis, I.S., Nakayama, A., and Aiba, S.I. 1998. Chitosan and gelatin based edible films: state diagrams, mechanical and permeation properties. Carbohydr. Polym. 37:371-382.
  • Arvanitoyannis, I. and Biliaderis, C.G. 1998. Physical properties of polyol-plasticized edible films made from sodium caseinate and soluble starch blends. Food Chem. 62:333-342.
  • Arvanitoyannis, I., Nakayama, A., and Aiba, S. 1998. Edible films made from hydroxypropyl starch and gelatin and plasticized by polyols and water. Carbohydr. Polym. 36:105-11 9.
  • Arvanitoyannis, I. and Biliaderis, C.G. 1999. Physical properties of polyol-plasticized edible blends made of methyl cellulose and soluble starch. Carbohydr. Polym. 38:47-58.
  • Arvanitoyannis, I.S. 2002. Formation and properties of collagen and gelatin films and coatings. In Protein-Based Films and Coatings, ed. A. Gennadios, CRC Press, Boca Raton, pp. 275-304.
  • Barreto, P.L.M., Roeder, J., Crespo, J.S., Maciel, G.R., Terenzi, H., Pires, A.T.N., and Soldi, V. 2003. Effect of concentration, temperature and plasticizer content on rheological properties of sodium caseinate and sodium caseinate/sorbitol solutions and glass transition of their films. Food Chem. 82:425-431.
  • Beck, M.I., Tomka, I., and Waysek, E. 1996. Physico-chemical characterization of zein as a film-coating polymer - a direct comparison with ethyl cellulose. Int. J. Pharm. 141:137-150.
  • Cherian, G., Gennadios, A., Weller, C.L., and Chinachoti, P. 1995. Thermomechanical behavior of wheat gluten films: effect of sucrose, glycerin and sorbitol.Cereal Chem. 72:1-6.
  • Collares, F.P., Finzer, J.R.D., and Kieckbusch, T.G. 2004. Glass transition control of the detachment of food pastes dried over glass plates. J. Food Eng. 61:261-267.
  • Cuq, B., Gontard, N., Aymard, C., and Guilbert, S. 1997. Relative humidity and temperature effects on mechanical and water vapor barrier properties of myofibrillar protein-based films. Polym. Gels Networks 5:1-15.
  • Cuq, B., Gontard, N., Cuq, J.L., and Guilbert, S. 1997. Selected functional properties of fish myofibrillar protein-based films as affected by hydrophilic plasticizers. J. Agric. Food Chem. 45:622-626.
  • Cuq, B., Gontard, N., and Guilbert, S. 1997. Thermal properties of fish myofibrillar protein-based films as affected by moisture content. Polymer 38:2399-2405.
  • Debeaufort, F. and Voilley, A. 1997. Methylcellulose-based edible films and coatings: 2. mechanical and thermal properties as a function of plasticizer content. J. Agric. Food Chem. 45:685-689.
  • Gontard, N., Guilbert, S. and Cuq, J.L. 1993. Water and glycerol as plasticizers affect mechanical and water vapor barrier properties of an edible wheat gluten film. J. Food Sci. 58, 206-211.
  • Gontard, N., Duchez, C., Cuq, J.L., and Guilbert, S. 1994. Edible composite films of wheat gluten and lipids: water vapor permeability and other physical properties. Int. J. Food Sci. Technol. 29, 39-50.
  • Gontard, N. and Ring, S. 1996. Edible wheat gluten film: influence of water content on Tg. J. Agric. Food Chem. 44:3474-3478.
  • Gontard, N., Thibault, R., Cuq, B., and Guilbert, S. 1996. Influence of relative humidity and film composition on oxygen and CO2 permeabilities of edible films. J. Agric. Food Chem. 44:1064-1069.
  • Iwamoto, S., Kumagai, H., Hayashi, Y., and Miyawaki, O. 1999. Conductance and relaxations of gelatin films in glassy and rubbery states. Int. J. Biol. Macromol. 26:345-351.
  • Kasapis, S., Al-Alawi, A., Guizani, N., Khan, A.J., and Mitchell, J.R. 2000. Viscoelastic properties of pectin-cosolute mixtures at iso-free-volume states. Carbohydr. Res. 329:399-407.
  • Kellaway, I.W., Marriott, C. and Robinson, J.A.J. 1978. The Mechanical Properties of Gelatin Films. I., Canadian J. Pharmaceut. Sci. 13, 83-86.
  • Koelsch, C.M. and Labuza, T.P. 1992. Functional, physical and morphological properties of methyl cellulose and fatty acid-based edible barriers. Lebensm.Wiss. Technol. 25, 404-411.
  • Lai, H.M. and Padua, G.W. 1997. Properties and microstructure of plasticized zein films. Cereal Chem. 74:771-775.
  • Lawton, J.W. 1996. Effect of starch type on the properties of starch-containing films. Carbohydr. Polym. 29:203-208.
  • Lawton, J.W. 2004. Plasticizers for zein: their effect on tensile properties and water absorption of zein films. Cereal Chem. 81:1-5.
  • McHugh, T.H. and Krochta, J.M. 1994. Sorbitol- vs glycerol-plasticized whey protein edible films: integrated oxygen permeability and tensile property evaluation. J. Agric. Food Chem. 42, 841-845.
  • Menegalli, F.C., Sobral, P.J., Roques, M.A., and Laurent, S. 1999. Characteristics of gelatin biofilms in relation to drying process conditions near melting. Drying Technol. 17:1697-1706.
  • Psomiadou, E., Arvanitoyannis, I., and Yamamoto, N. 1996. Edible films made from natural resources; microcrystalline cellulose, methylcellulose and corn starch and polyols - Part 2. Carbohydr. Polym. 31:193-204.
  • Reich, G. 1996. Effect of sorbitol on structure and properties of soft gelatin capsules. Pharm. Ind. 58:941-946.
  • Sobral, P.J.A., Menegalli, F.C., Hubinger, M.D., and Roques, M.A. 2001. Mechanical, water vapor barrier and thermal properties of gelatin-based edible films. Food Hydrocolloids 15:423-432.
  • Westling, A., Stading, M., Hermansson, A.M., and Gatenholm, P. 1998. Structure, mechanical and barrier properties of amylose and amylopectin films. Carbohydr. Polym. 36:217-224.

 

2.f Biological systems

  • Ablett, S., Darke, A.H., Lillford, P.J., and Martin, D.R. 1999. Glass formation and dormancy in bacterial spores. Int. J. Food Sci. Technol. 34:59-69.
  • Aguilera, J.M. and Karel, M. 1997. Preservation of biological materials under desiccation. Crit. Rev. Food Sci. Nutr. 37:287-309.
  • Andersen, A.B., Fog-Petersen, M.S., Larsen, H., and Skibsted, L.H. 1999. Storage stability of freeze-dried starter cultures (Streptococcus thermophilus) as related to physical state of freezing matrix. Lebensm. Wiss. Technol. 32:540-547.
  • Berjak, P., Pammenter, N.W. and Vertucci, C. 1992. Homoiohydrous (recalcitrant) seeds: developmental status, desiccation sensitivity and the state of water in axes of Landolphia kirkii Dyer. Planta 186, 249-261.
  • Bernal-Lugo, I. and Leopold, A.C. 1995. Seed stability during storage: raffinose content and seed glassy state. Seed Sci. Res. 5:75-80.
  • Bernal-Lugo, I. and Leopold, A.C. 1998. The dynamics of seed mortality. J. Exptl. Bot. 49:1455-1461.
  • Bieganski, R.M., Fowler, A., Morgan, J.R., and Toner, M. 1998. Stabilization of active recombinant retroviruses in an amorphous dry state with trehalose. Biotechnol. Prog. 14:615-620.
  • Blissett, S.J., Bolton, K.J., Dodd, C.E.R., Gould, G.W., and Waites, W.M. 1994. Survival of Salmonella senftenberg and Salmonella typhimurium in glassy and rubbery states of gelatin. J. Appl. Bacteriol. 76: 345-349.
  • Bolton, K.J., Dodd, C.E.R., Gould, G.W., and Waites, W.M. 1996. Survival of Staphylococcus aureus and enterotoxin A in glassy and rubbery states of gelatin. J. Appl. Bacteriol. 81:191-194.
  • Bruni, F. and Leopold, A.C. 1991. Glass transitions in soybean seed. Plant Physiol., 96, 660-663.
  • Bruni, F. and Leopold, A.C. 1992. Cytoplasmic glass formation in maize embryos. Seed Sci. Res. 2:251-253
  • Buitink, J., Walters-Vertucci, C., Hoekstra, F.A., and Leprince, O. 1996. Calorimetric properties of dehydrating pollen. Plant Physiol. 111:235-242.
  • Buitink, J., Claessens, M.M.A.E., Hemminga, M.A., and Hoekstra, F.A. 1998. Influence of water content and temperature on molecular mobility and intracellular glasses in seeds and pollen. Plant Physiol. 118:531-541.
  • Buitink, J., Walters, C., Hoekstra, F.A., and Crane, J. 1998. Storage behavior of Typha latifolia pollen at low water contents: interpretation on the basis of water activity and glass concepts. Physiol. Planta. 103:145-153.
  • Buitink, J., Hemminga, M.A., and Hoekstra, F.A. 2000a. Is there a role for oligosaccharides in seed longevity? An assessment of intracellular glass stability. Plant Physiol. 122:1217-1224.
  • Buitink, J., Hoekstra, F.A., and Hemminga, M.A. 2000b. A critical assessment of the role of oligosaccharides in intracellular glass stability. In Seed Biology: Advances and Applications, eds. M. Black, K.J. Bradford, and J. Vasques-Ramos, CAB International, Wallingford, UK, pp. 461-466.
  • Buitink, J., van den Dries, I.J., Hoekstra, F.A., Alberda, M., and Hemminga, M.A. 2000c. High critical temperature above Tg may contribute to the stability of biological systems. Biophys. J. 79:1119-1128.
  • Buitink, J., Leprince, O., Hemminga, M.A., and Hoekstra, F.A. 2000d. The effects of moisture and temperature on the aging kinetics of pollen: interpretation in terms of cytoplasmic mobility. Plant Cell Environ 23: 967–974.
  • Buitink, J. and Leprince, O. 2004. Glass formation in plant anhydrobiotes: survival in the dry state.Cryobiology 48: 215–228
  • Burke, M.J. 1986. The glassy state and survival of anhydrous biological systems. In Membranes, Metabolism, and Dry Organisms, ed. A.C. Leopold, Cornell Univ. Press, Ithaca, pp. 358-363.
  • Cerrutti, P., Segovia de Huergo, M., Galvagno, M., Schebor, C., and Buera, M.P. 2000. Commercial baker's yeast stability as affected by intracellular content of trehalose, dehydration procedure and the physical properties of external matrices. Appl. Microbiol. Biotechnol. 54:575-580.
  • Chavarri, F.J., DePaz, M. & Nunez, M. 1988. Cryoprotective agents for frozen concentrated cheese starter cultures. Biotechnol. Lett. 10, 11-16.
  • Chirife, J. and Buera, M.P. 1994. Water activity, glass transition and microbial stability in concentrated/semi-moist food systems. J. Food Sci. 59, 921-927.
  • Chirife, J. and Buera, M.P. 1995. A critical review of some non-equilibrium situations and glass transitions on water activity values of foods in the microbiological growth range. J. Food Engn. 25, 531-552.
  • Chirife, J. and Buera, M.P. 1996. Water activity, water glass dynamics, and the control of microbiological growth in foods. Crit. Rev. Food Sci. Nutr. 36:465-513.
  • Chirife, J., Gonzalez, H.H.L., and Resnik, S.L. 1996. On water dynamics and germination time of mold spores in concentrated sugar and polyol solutions. Food Res. Int. 28:531-535.
  • Chirife, J., Buera, M.P., and Gonzalez, H.H.L. 1999. The mobility and mold growth in glassy/rubbery substances. In Water Management in the Design and Distribution of Quality Foods, eds. Y.H. Roos, R.B. Leslie and P.J. Lillford, Technomic, Lancaster, pp. 285-298.
  • Crowe, J. H., and Crowe, L. M. 1993. Evidence for direct interaction between disaccharides and dry phospholipids. Cryobiology 30, 226-227.
  • Crowe, J. H., Crowe, L. M., and Carpenter, J. F. 1993. Preserving dry biomaterials: the water replacement hypothesis. BioPharm 6(3), 28-37 and 6(4), 40-43.
  • Crowe, J.H., Leslie, S.B., and Crowe, L.M. 1994. Is vitrification sufficient to preserve liposomes during freeze-drying? Cryobiology 31, 355-366.
  • Crowe, J.H., Hoekstra, F.A., Nguyen, K.H.N., and Crowe, L.M. 1996. Is vitrification involved in depression of the phase transition temperature in dry phospholipids? Biochim. Biophys. Acta 1280:187-196.
  • Crowe, L.M., Reid, D.S., and Crowe, J.H. 1996. Is trehalose special for preserving dry biomaterials? Biophys. J. 71:2087-2093.
  • Crowe, J.H., Oliver, A.E., Hoekstra, F.A., and Crowe, L.M. 1997. Stabilization of dry membranes by mixtures of hydroxyethyl starch and glucose: the role of vitrification. Cryobiol. 35:20-30.
  • Crowe, J.H., Crowe, L.M., Carpenter, J.F., Prestrelski, S., Hoekstra, F.A., Araujo, P.D., and Panek, A.D. 1997. Anhydrobiosis: cellular adaptation to extreme dehydration. In Handbook of Physiology, section 13, ed. W.H. Dantzler, pp.1445-1477, Oxford Univ. Press, NY.
  • Crowe, J.H., Clegg, J.S., and Crowe, L.M. 1998. Anhydrobiosis: the water replacement hypothesis. In The Properties of Water in Foods - ISOPOW 6 (D.S. Reid, ed.), Blackie Academic & Professional, London, pp 440-455.
  • Crowe, J.H., Carpenter, J.F., and Crowe, L.M. 1998. The role of vitrification in anhydrobiosis. Ann. Rev. Physiol. 60:73-103.
  • Crowe, J.H., Crowe, L.M., Oliver, A.E., Tsvetkova, N., Wolkers, W., and Tablin, F. 2001. The trehalose myth revisited: introduction to a symposium on stabilization of cells in the dry state. Cryobiol. 43:89-105.
  • Cutler, A.J., Saleem, M., Kendall, E., Gusta, L.V., Georges, F., and Fletcher, G.L., Winter 1989 Flounder antifreeze protein improves the cold-hardiness of plant tissues, J. Plant Physiol. 135, 351-54.
  • Dereuddre, J., Hassen, N., Blandin, S., and Kaminski, M. 1991. Resistance of alginate-coated somatic embryos of carrot to desiccation and freezing in liquid nitrogen: 2. Thermal analysis. Cryo-Lett. 12: 135-148.
  • DeVries, A.L. 1983. Antifreeze Peptides and glycopeptides in cold-Water fishes. Ann. Rev. Physiol. 45, 245-60.
  • Duman, J. & Horwath, K. 1983. Role of hemolymph proteins in cold tolerance of insects. Ann. Rev. Physiol. 45, 261-70.
  • Ekdawi-Sever, N., Goentoro, L.A., and de Pablo, J.J. 2003. Effects of annealing on freeze-dried Lactobacillus acidophilus. J. Food Sci. 68:2504-2511.
  • Feeney, R.E. and Yeh, Y. 1993. Antifreeze proteins: properties, mechanism of action, and possible applications. Food Technol. 47(1), 82-90.
  • Feeney, R.E., Osuga, D.T., and Yeh, Y. 1996. Antifreeze proteins: from purely scientific interest to possible uses in agriculture, fish culture, foods, and medicine. Comments Agric. Food Chem. 3:155-174.
  • Fonseca, F., Obert, J.P., Beal, C., and Marin, M. 2001. State diagrams and sorption isotherms of bacterial suspensions and fermented medium. Thermochim. Acta 366:167-182.
  • Franks, F., Wakabayashi, T. & Mathias, S.F. 1987. Nucleation Kinetics of ice in undercooled yeast cells: Long-term stability against freezing. J. General Microbiol. 133, 2807-2815.
  • Gamez-Pastrana R, Martinez-Ocampo Y, Beristain CI, Gonzalez-Arnao MT. 2004. An improved cryopreservation protocol for pineapple apices using encapsulation-vitrification. Cryo Letters. 25:405-414
  • Iijima, T. 1998. Thermal analysis of cryoprotective solutions for red blood cells. Cryobiol. 36:165-173.
  • Kalichevsky-Dong, M.T. 2000. The glass transition and microbial stability. In The Stability and Shelf-Life of Food, eds. D. Kilcast and P. Subramaniam, CRC Press, Boca Raton, pp. 25-54.
  • Knight, C.A. & Duman, J.G. 1998. Inhibition of recrystallization of ice by insect thermal hysteresis proteins: cryoprotective role. Cryobiology 23, 256-62.
  • Koster, K. L., and Leopold, A. C. 1988. Sugars and desiccation tolerance in seeds. Plant Physiol. 88, 829-832.
  • Koster, K.L. 1991. Glass formation and desiccation tolerance in seeds. Plant Physiol. 96: 302-304.
  • Koster, K. L., Webb, M. S., Bryant, G., and Lynch, D. V. 1994. Interactions between soluble sugars and POPC during dehydration: vitrification of sugars alters the phase behavior of the phospholipid. Biochim. Biophys. Acta 1193, 143-150.
  • Kuleshova, L.L., MacFarlane, D.R., Trounson, A.O., and Shaw, J.M. 1999. Sugars exert a major influence on the vitrification properties of ethylene glycol- based solutions and have low toxicity to embryos and oocytes. Cryobiol. 38:119-130.
  • Lavoie, J. and Chinachoti, P. 1995. The role of water mobility in promoting Staph aureus and Aspergillus niger activities. In Magnetic Resonance in Food Science, ed. P.S. Belton, Royal Soc. Chem., Cambridge, UK, pp. 33-42.
  • Leopold, A.C. 1999. Survival of seeds in the dry state. Rev. Real Acad. Galega Cienc. 18:5-18.
  • Leopold, A.C., Sun, W.Q., and Bernal-Lugo, I. 1994. The glassy state in seeds: analysis and function. Seed Science Research 4:267-274.
  • Leprince, O. and Walters-Vertucci, C. 1995. A calorimetric study of the glass transition behaviors in axes of bean seeds with relevance to storage stability. Plant Physiol. 109:1471-1481.
  • Leprince, O. and Hoekstra, F.A. 1998. The responses of cytochrome redox state and energy metabolism to dehydration support a role for cytoplasmic viscosity in desiccation tolerance. Plant Physiol. 118:1253-1264.
  • Leslie, S.B., Israeli, E., Lighthart, B., Crowe, J.H., and Crowe, L.M. 1995. Trehalose and sucrose protect both membranes and proteins in intact bacteria during drying. Appl. Environ. Microbiol. 61:3592-3597.
  • Leuschner, R.G.K. and Lillford, P.J. 2002. Thermal properties of bacterial spores and biopolymers. Int. J. Food Microbiol. 80:131-143.
  • Lodato, P., Segovia de Huergo, M., and Buera, M.P. 1999. Viability and thermal stability of a strain of saccharomyces cerevisiae freeze-dried in different sugar and polymer matrices. Appl. Microbiol. Biotechnol. 52:215-220.
  • Luque, P. and Heredia, A. 1994. Glassy state in plant cuticles during growth. Z. Naturforsch. 49C, 273-275.
  • Luque, P. and Heredia, A. 1997. The glassy state in isolated cuticles: DSC of tomato fruit cuticular membranes. Plant Physiol. Biochem. 35:251-256.
  • Luyet, B. 1996. On the possible biological significance of some physical changes encountered in the cooling and rewarming of aqueous solutions, in Cellular Injury and Resistance in Freezing Organisms (ed. E. Asahina), Hokkaido Univ., Saporo, pp. 1-20.
  • Newman, Y.M., Ring, S.G., and Colaco, C. 1993. The role of trehalose and other carbohydrates in biopreservation. Biotechnol. Genetic Engng. Rev. 11, 263-294.
  • Oliver, A.E., Crowe, L.M., and Crowe, J.H. 1998. Methods for dehydration-tolerance: depression of the phase transition temperature in dry membranes and carbohydrate vitrification. Seed Sci. Res. 8:211-221.
  • Potts, M. 1994. Desiccation tolerance of prokaryotes. Microbiol. Rev. 58, 755-805.
  • Rall, W.F. & Fahy, G.M. 1985. Ice-free cryopreservation of mouse embryos by vitrification. Nature 313, 573-75.
  • Rindler, V., Pasch, J., Heschel, I., and Rau, G. 1999. Cryopreservation of suspended keratinocytes with HES. Cryo-Lett. 20:3-12.
  • Ring, R.A. and Danks, H.V. 1998. The role of trehalose in cold-hardiness and desiccation. Cryo-Lett. 19:275-282.
  • Sartor, G., Hallbrucker, A., Hofer, K. and Mayer, E. 1992. Calorimetric glass-liquid transition and crystallization behavior of a vitreous, but freezable, water fraction in hydrated methemoglobin. J. Phys. Chem., 96, 5133-5138.
  • Schebor, C., Galvagno, M., Buera, M.P., and Chirife, J. 2000. Tgs and fermentative activity of heat-treated commercial active dry yeasts. Biotechnol. Prog. 16:163-168.
  • Schreier, H. and Mobley, W.C. 1994. Phase transition temperature reduction and glass formation in dehydroprotected lyophilized liposomes. J. Controlled Release 31, 73-87.
  • Shalaev, E.Y. and Steponkus, P.L. 2003. Glass transition of a synthetic phospholipid in the lamellar phase. J. Phys. Chem. B 107:8734-8737.
  • Sobral, P.J.A., Menegalli, F.C., and Guilbert, S. 1999. Phase transitions of bovine hide gelatin plasticized by water. In Biopolymer Science: Food and Non Food Applications, Ed. INRA, Les Colloques no. 91, Paris, pp. 111-123.
  • Sussich, F., Skopec, C., Brady, J., and Cesaro, A. 2001. Reversible dehydration of trehalose and anhydrobiosis: from solution state to an exotic crystal? Carbohydr. Res. 334:165-176.

    2.g Drugs

  • Andronis, V. and Zografi, G. 1997. Molecular mobility of supercooled amorphous indomethacin, determined by DMA. Pharm. Res. 14:410-414.
  • Andronis, V., Yoshioka, M., and Zografi, G. 1997. Effects of sorbed water on the crystallization of indomethacin from the amorphous state. J. Pharm. Sci. 86:346-351.
  • Andronis, V. and Zografi, G. 1998. The molecular mobility of supercooled amorphous indomethacin as a function of temperature and relative humidity. Pharm. Res. 15:835-842 .
  • Andronis, V. and Zografi, G. 2000. Crystal nucleation and growth of indomethacin.
  • Aso, Y., Yoshioka, S., and Kojima, S. 2000. Relationship between the crystallization rates of amorphous drugs and their molecular mobility as measured by their enthalpy relaxation and NMR relaxation times. J. Pharm. Sci. 89:408-416.
  • Breen, E.D., Curley, J.G., Overcashier, D.E., Hsu, C.C., and Shire, S.J. 2001. Effect of moisture on the stability of a lyophilized humanized monoclonal antibody formulation. Pharm. Res. 18:1345-1353.
  • Carpenter, J.F. and Chang, B.S. 1996. Lyophilization of protein pharmaceuticals. In Biotechnology and Biopharmaceutical Manufacturing, eds. K. Avia and V. Wu, pp. 199-264.
  • Clas, S.D., Cotton, M., Moran, E., Spagnoli, S., Zografi, G., and Vadas, E.B. 1996. Assessment of the physical stability of lyophilized MK-0591 by DSC. Thermochim. Acta 288:83-96.
  • Costantino, H.R., Langer, R., and Klibanov, A.M. 1994. Solid-phase aggregation of proteins under pharmaceutically relevant conditions. J. Pharm. Sci. 83:1662-1669.
  • Costantino, H.R., Curley, J.G., Wu, S., and Hsu, C.C. 1998. Water sorption behavior of lyophilized protein-sugar systems and implications for solid-state interactions. Int. J. Pharm. 166:211-221.
  • Craig, D.Q.M., Royall, P.G., Kett, V.L., and Hopton, M.L. 1999. The relevance of the amorphous state to pharmaceutical dosage forms: glassy drugs and freeze-dried systems. Int. J. Pharm. 179:179-207.
  • Crowley, K.J. and Zografi, G. 2002. Cryogenic grinding of indomethacin in polymorphs and solvates: assessment of amorphous phase formation and amorphous phase physical stability. J. Pharm. Sci. 91:492-507.
  • Duddu, S.P. and Dal Monte, P.R. 1997. Effect of Tg on the stability of lyophilized formulations containing a chimeric therapeutic monoclonal antibody. Pharm. Res. 14:591-595.
  • Duddu, S.P., Zhang, G., and Dal Monte, P.R. 1997. The relationship between protein aggregation and molecular mobility below the Tg of lyophilized formulations containing a monoclonal antibody. Pharm. Res. 14:596-600.
  • Forster, A., Hempenstall, J., and Rades, T. 2001. Characterization of glass solutions of poorly water-soluble drugs produced by melt extrusion with hydrophilic amorphous polymers. J. Pharm. Pharmacol. 53:303-315.
  • Franks, F. 1999. Thermomechanical properties of amorphous saccharides: their role in enhancing pharmaceutical product stability. Biotech. Genet.Eng. Rev. 16:281-292.
  • French, D.L., McAuley, A.J., Chang, B., and Niven, R.W. 1995. Moisture-induced state changes in spray-dried trehalose/protein formulations. Pharm. Res. 12:S-83.
  • Fukuoka, E., Makita, M., and Yamamura, S. 1986. Some physicochemical properties of glassy indomethacin. Chem. Pharm. Bull. 34, 4314-4321.
  • Fukuoka, E., Makita, M., and Yamamura, S. 1989. Glassy state of pharmaceuticals. III. Thermal properties and stability of glassy pharmaceuticals and their binary glass systems. Chem. Pharm. Bull. 37, 1047-1050.
  • Fukuoka, E., Makita, M., and Nakamura, Y. 1989. Glassy state of pharmaceuticals.IV. Studies by TMA. Chem. Pharm. Bull. 37:2782-2785.
  • Fukuoka, E., Makita, M., and Nakamura, Y. 1991. Glassy state of pharmaceuticals. V. Relaxation during cooling and heating of glass by DSC. Chem. Pharm. Bull. 39:2087-2090.
  • Gatlin, L. and Deluca, P.P. 1980. Study of Phase Transitions in Frozen Antibiotic Solutions by DSC. J. Parenteral Drug Assoc. 34, 398-408.
  • Gribbon, E.M., Hatley, R.H.M., Gard, T., Blair, J., Kampinga, J., and Roser, B.J. 1996. Trehalose and novel hydrophobic sugar glasses in drug stabilization and delivery. In Chemical Aspects of Drug Delivery Systems, eds. D.R. Karsa and R.A. Stephenson, RSC, Cambridge UK, pp. 138-145.
  • Guo, Y., Byrn, S.R., and Zografi, G. 2000a. Physical characteristics and chemical degradation of amorphous quinapril hydrochloride. J. Pharm. Sci. 89:128-143.
  • Guo, Y., Byrn, S.R., and Zografi, G. 2000b. Effects of lyophilization on the physical characteristics and chemical stability of amorphous Quinapril hydrochloride. Pharm. Res. 17:930-935.
  • Hancock, B.C. and Zografi, G. 1994. The relationship between glass transition temperature and water content of amorphous pharmaceutical solids. Pharmaceut. Res. 11, 471-477.
  • Hancock, B.C., Shamblin, S.L., and Zografi, G. 1995. Molecular mobility of amorphous pharmaceutical solids below their Tgs. Pharmaceut. Res. 12:799-806.
  • Hancock, B.C. and Zografi, G. 1997. Characteristics and significance of the amorphous state in pharmaceutical systems. J. Pharm. Sci. 86:1-12.
  • Hatley, R.H.M., Franks, F., Brown, S., Sandhu, G., and Gray, M. 1996. Stabilization of a pharmaceutical drug substance by freeze-drying: a case study. Drug Stability 1:73-85.
  • Hatley, R.H.M. 1997. Glass fragility and the stability of pharmaceutical preparations - excipient selection. Pharm. Devel. Technol. 2:257-264.
  • Jang, J.W., Kitamura, S., and Guillory, J.K. 1995. Some physicochemical proper ties of FK906: glass transition and relaxation. PDA J. Pharmaceut. Sci. Technol. 49:42-49.
  • Johari, G.P. and Pyke, D. 2000. On the glassy and supercooled liquid states of a common medicament: Aspirin. Phys. Chem. Chem. Phys. 2:5479-5484.
  • Kararli, T.T., Needham, T.E., Seul, C.J., Finnegan, P.M., Hidvegi, M.I., and Hurlbut, J. 1990. Physical state of misoprostol in hydroxypropyl methylcellulose films. Pharmaceut. Res. 7: 1181-1185.
  • Kararli, T.T. and Catalano, T. 1990. Stabilization of misoprostol with hydroxypropyl methylcellulose (HPMC) against degradation by water. Pharmaceut. Res. 7: 1186-1189.
  • Kerc, J. and Srcic, S. 1995. Thermal analysis of glassy pharmaceuticals. Thermochim. Acta 248:81-95.
  • Lechuga-Ballesteros, D., Bakri, A., and Miller, D.P. 2003. Microcalorimetric measurement of the interactions between water vapor and amorphous pharmaceutical solids. Pharm. Res. 20:308-318.
  • Lu, Q. and Zografi, G. 1998. Phase behavior of binary and ternary amorphous mixtures containing indomethacin, citric acid, and PVP. Pharm. Res. 15:1202-1206.
  • Moura Ramos, J.J., Correia, N.T., Taveira-Marques, R., and Collins, G. 2002. The activation energy at Tg and the fragility index of indomethacin, predicted from the influence of the heating rate on the temperature position and on the intensity of thermally stimulated depolarization current peak. Pharm. Res. 19:1879-1884.
  • Ohta, M., Tozuka, Y., Oguchi, T., and Yamamoto, K. 2000. Evaluation of physicochemical stability of amorphous cefditoren pivoxil, using MTDSC. J. Pharm. Sci. Technol. Jpn. 60:160-165.
  • Pyne, A. and Suryanarayanan, R. 2003. The effect of additives on the crystallization of cefazolin sodium during freeze-drying. Pharm. Res. 20:283-291.
  • Randolph, T.W. 1997. Phase separation of excipients during lyophilization: effects on protein stability. J. Pharm. Sci. 86:1198-1203.
  • Royall, P.G., Craig, D.Q.M., and Doherty, C. 1998. Characterization of the glass transition of an amorphous drug using modulated DSC. Pharm. Res. 15:1117-1121.
  • Royall, P.G., Craig, D.Q.M., and Doherty, C. 1999. Characterization of moisture uptake effects on the glass transitional behavior of an amorphous drug using modulated temperature DSC. Int. J. Pharm. 192:39-46.
  • Searles, J.A., Carpenter, J.F., and Randolph, T.W. 2001. Annealing to optimize the primary drying rate, reduce freezing-induced drying rate heterogeneity, and determine Tg' in pharmaceutical lyophilization. J. Pharm. Sci. 90:872-887.
  • Shalaev, E.Y. and Steponkus, P.L. 2001. Phase behavior and glass transition of DOPE dehydrated in the presence of sucrose. Biochim. Biophys. Acta 1514:100-116.
  • Shalaev, E.Y., Johnson-Elton, T.D., Chang, L., and Pikal, M.J. 2002. Thermophysical properties of pharmaceutically compatible buffers at sub-zero temperatures: implications for freeze-drying. Pharm. Res. 19:195-201.